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Abstract: The advent of electric and flying vehicles (EnFVs) has brought significant advancements
to the transportation industry, offering improved sustainability, reduced congestion, and enhanced
mobility. However, the efficient routing of messages in EnFVs presents unique challenges that demand
specialized algorithms to address their specific constraints and objectives. This study analyzes several
case studies that investigate the effectiveness of genetic algorithms (GAs) in optimizing routing for
EnFVs. The major contributions of this research lie in demonstrating the capability of GAs to handle
complex optimization problems with multiple objectives, enabling the simultaneous consideration of
factors like energy efficiency, travel time, and vehicle utilization. Moreover, GAs offer a flexible and
adaptive approach to finding near-optimal solutions in dynamic transportation systems, making them
suitable for real-world EnFV networks. While GAs show promise, there are also limitations, such as
computational complexity, difficulty in capturing real-world constraints, and potential sub-optimal
solutions. Addressing these challenges, the study highlights several future research directions,
including the integration of real-time data and dynamic routing updates, hybrid approaches with
other optimization techniques, consideration of uncertainty and risk management, scalability for large-
scale routing problems, and enhancing energy efficiency and sustainability in routing. By exploring
these avenues, researchers can further improve the efficiency and effectiveness of routing algorithms
for EnFVs, paving the way for their seamless integration into modern transportation systems.

Keywords: multi-objective routing; electric vehicles; flying vehicles; genetic algorithm; optimization

1. Introduction

The transportation industry has witnessed a remarkable transformation with the ad-
vent of electric and flying vehicles (EnFVs), holding the promise of enhanced sustainability,
reduced congestion, and improved mobility [1–3]. These innovative modes of transporta-
tion, exemplified by electric vehicles (EVs) and unmanned aerial vehicles (UAVs), have the
potential to revolutionize urban mobility and logistics. However, the effective communi-
cation and message routing within these dynamic transportation systems are faced with
unique challenges that require specialized solutions [4]. Multi-objective message routing
stands as a critical issue of EnFV operations, requiring the simultaneous optimization of
different objectives, including travel time minimization, energy consumption reduction,
reliability maximization, and environmental sustainability promotion [5,6]. The optimiza-
tion task becomes even more tedious due to the inherent conflicts among these objectives.
Genetic algorithms (GAs) offer a promising avenue to address the multi-objective message
routing in EnFVs [7]. Efficient communications in EnFVs are essential, given their substan-
tial influence on the sustainability of futuristic transportation [8]. Embracing electric and
energy-efficient solutions not only reduces operational costs but also significantly mitigates
the adverse effects of global warming.

In light of these challenges and opportunities, this review paper sets out to provide a
comprehensive analysis of the utilization of GAs for multi-objective message routing in
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EnFVs. By conducting an extensive examination of existing research papers and studies,
this paper seeks to outline state-of-the-art approaches and methodologies, identify key
challenges, discuss the merits and limitations of GA-based routing strategies, and infer their
implications for realizing the efficiency, reliability, and sustainability of message routing in
EnFVs. Our novel work targets to answer pivotal questions given below, that roam in the
research community regarding the applications of the GA in EnFVs environment. Why is a
thorough examination and analysis of the application of GA for multi-objective message
routing in EnFVs missing from the literature? What approaches have been employed so far
in multi-objective message routing for EnFVs? What are the key challenges and complexities
associated with multi-objective message routing within dynamic EnFV systems? What are
the benefits and limits of GA-based routing strategies in the context of EnFVs? What are
the practical implications of employing GA-based routing on the efficiency, reliability, and
sustainability of message routing in EnFVs?

A comprehensive and thorough answer to the questions given above collectively
contributes to a comprehensive understanding of the role of genetic algorithms in ad-
dressing the multi-objective message routing challenges in electric and flying vehicles,
offering insights into their potential benefits and limitations. Moreover, this review pa-
per identifies future research directions and opportunities to enhance the effectiveness
of GAs in optimizing message routing for EnFVs. By providing critical insights into the
current state of research and potential areas for improvement, this study aims to con-
tribute to the advancement of efficient and reliable communication within these innovative
transportation systems.

1.1. Background and Motivation

In the realm of modern transportation, the landscape is rapidly evolving, presenting a
complex challenge for traditional routing methods initially tailored to conventional vehicles.
This complexity is particularly evident in emerging transportation systems like EnFVs [9].
Within the spectrum of routing solutions, there is a notable limitation. The majority of
existing approaches tend to focus narrowly on a single objective, often at the expense
of other critical considerations. However, there is a promising subset of solutions that
adopt a rigorous analytical approach. The solutions leverage mathematical calculations to
identify optimal routes while simultaneously considering multiple objectives [5]. While
this approach demonstrates potential in specific scenarios, it may lack the requisite dy-
namism and adaptability for real-world applications, occasionally resulting in excessively
convoluted routing.

Furthermore, it is important to acknowledge a scarcity of research addressing the
domain of multi-objective routing within the context of EnFVs [2]. This research gap
underscores the pressing need for innovative and versatile routing strategies tailored to
the unique demands of EnFVs. These demands include a wide range of factors, from
energy efficiency and real-time adaptability to navigating complex and ever-changing
environments. But let us delve deeper. Picture this: EnFVs, electric vehicles (EVs), and
flying vehicles (FVs) like drones are revolutionizing transportation. Ensuring efficient
message routing in these vehicles is absolutely critical for their seamless operation within
dynamic transportation systems. In the realm of EVs, message routing optimization is key.
We are talking about keeping the information flow reliable and real-time while considering
factors like energy usage, where to find charging stations, and staying within the vehicle’s
range [10]. Now, for FVs such as drones and UAVs, it is a whole new ballgame. Message
routing algorithms must factor in flight restrictions, airspace regulations, and the ever-
changing landscape of obstacles.

The exciting part? When we optimize message routing, we are not just improving a
single aspect; we are supercharging the performance and functionality of EnFVs. Think
intelligent transportation systems, futuristic package deliveries, and high-tech surveillance
operations [3]. We must admit, in the world of high-mobility vehicles with multiple
requirements, finding the absolute best route is quite the challenge. But here is the thing:
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there is often a solution that comes really close to meeting all the requirements and, honestly,
beats the competition. After a deep dive into the literature, it is clear that genetic algorithms
(GAs) are a popular choice for routing strategies. GAs excel in optimization due to their
ability to perform global searches, robustness in complex and noisy environments, and
adaptability to various problem types. They do not require derivatives, can be parallelized
for efficiency, and balance exploration and exploitation effectively. GAs maintain diverse
solution populations, facilitate crossover to produce better solutions, and are heuristic,
making them versatile for real-world problems. However, their effectiveness depends
on problem characteristics, and the choice of optimization technique should be problem-
specific. However, there is a twist—there is surprisingly little literature on their use in
EnFVs communications and routing.

1.2. Challenges in Message Routing for EnFVs

The routing of messages in EnFVs presents numerous challenges that need to be
addressed to ensure efficient and reliable communication [10,11]. One of the primary chal-
lenges is the dynamic nature of these transportation systems. EnFVs operate in dynamic
environments characterized by constantly changing traffic conditions, charging station
availability, flight restrictions, and environmental factors. Message routing algorithms
must be able to adapt in real-time to these dynamic conditions to provide efficient and
uninterrupted communication. Another key challenge is the multi-objective nature of mes-
sage routing in EnFVs. Efficient routing must consider multiple objectives simultaneously,
such as minimizing travel time, reducing energy consumption, maximizing reliability,
and incorporating environmental sustainability. However, optimizing these objectives
simultaneously is a complex task, as they often conflict with each other [12]. Traditional
single-objective optimization approaches are inadequate to capture the trade-offs and
achieve optimal solutions in these multi-objective scenarios. Furthermore, the integration
of genetic algorithms (GAs) offers a promising solution for addressing the multi-objective
message routing problem in EnFVs [4]. GAs are evolutionary optimization techniques that
mimic the process of natural selection to develop a population of potential solutions. How-
ever, the design and parameterization of GAs for message routing optimization requires
a careful consideration to ensure effective convergence towards optimal or near-optimal
solutions. Additionally, the computational complexities associated with genetic algorithms
can pose challenges in terms of scalability and efficiency.

1.3. Objective of the Review Paper

The objective of this review paper is to provide a comprehensive analysis of the
application of GAs for multi-objective message routing in EnFVs. By examining existing
research papers and studies, our aim is to achieve the following objectives:

• Explore the state-of-the-art approaches and methodologies for multi-objective message
routing in EnFVs using GAs.

• Identify the key challenges and considerations in optimizing message routing for these
transportation systems.

• Discuss the benefits and limitations of GA-based routing approaches and their impact
on the performance and functionality of EnFVs.

• Highlight the implications and potential applications of GAs in improving the effi-
ciency, reliability, and the sustainability of message routing in EnFVs.

• Identify future research directions and opportunities to further enhance the effective-
ness of GAs in optimizing message routing in these transportation systems.

By providing a comprehensive overview and analysis, this study contributes to the
understanding of multi-objective message routing in EnFVs and provides insights for
researchers and practitioners interested in leveraging GAs for efficient and reliable commu-
nication within these innovative transportation systems. It provides critical challenges to
the message routing of EnFVs and suggests many promising research directions.
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The subsequent sections of this paper delve into the multi-objective nature of message
routing in EnFVs (Section 2), GAs for multi-objective routing optimization (Section 3), a
review of existing studies on routing optimization for EVs and FVs (Sections 4 and 5),
respectively, and a detailed discussion on the benefits and limitations of GA-based routing
approaches (Section 6). This paper concludes by summarizing key findings, providing
implications for EnFV message routing, and suggesting promising future research directions
in this rapidly evolving field (Sections 7 and 8).

2. Multi-Objective Message Routing in EnFVs

Message routing plays a critical role in facilitating efficient communication and data
exchange in transportation systems, including EnFVs [13]. However, traditional routing
algorithms often fail to consider the unique characteristics and requirements of these
emerging modes of transportation [12]. EVs require a careful consideration of energy
consumption, charging station availability, and range limitations, while flying vehicles
such as drones need to navigate airspace regulations, flight restrictions, and congestion.
Therefore, there is a need for specialized routing approaches that address the specific
objectives and constraints of these vehicles.

In recent years, researchers have explored the application of multi-objective optimiza-
tion techniques to address the challenges of message routing in EnFVs. Multi-objective
optimization aims to find a set of solutions that simultaneously optimize multiple ob-
jectives, considering trade-offs between them [14]. GAs are inspired by the process of
natural selection and evolution [15]. They operate on a population of potential solutions,
represented by chromosomes, and iteratively improve them through selection, crossover,
and mutation operations. By applying these genetic operators, the algorithm explores the
solution space, considering different combinations of objectives and constraints. The use of
GAs in multi-objective message routing for EnFVs has been investigated in several studies.
For example, Alolaiwy and Zohdy [16] proposed a GA-based approach that optimized
message routing for EVs, considering objectives such as considers reliability, data rate, and
residual energy as routing metrics. Their results demonstrated significant improvements of
up to 90% in packet delivery rate using New York City traffic trace.

In the context of FVs, Wei et al. [6] applied a GA to optimize message routing for
flying ad hoc networks (FANETs). Their approach focuses on improving the routing in
FANETs to enhance network performance and lifetime. They proposed the GA-based
routing (GAR) protocol, which considers factors like stability, link bandwidth, and node
energy. By utilizing a GA approach, GAR quickly identifies optimized routes, resulting
in improved network performance. The simulation results show that GAR enhances
route stability, thereby improving overall network performance and increasing network
availability. However, the paper acknowledges the need to incorporate energy consumption
in future research to develop energy-efficient routing strategies. Overall, the GAR protocol
offers a promising solution for enhancing routing in FANETs, with potential implications
for network sustainability and efficiency. This study highlighted the effectiveness of GAs
in addressing the multi-objective nature of message routing for EnFVs. By considering
multiple objectives and constraints simultaneously, GAs can generate a set of solutions that
represent trade-offs between different optimization goals. These solutions offer decision-
makers a range of routing options that cater to various objectives, such as minimizing
energy consumption, maximizing efficiency, and adhering to operational constraints.

In conclusion, multi-objective message routing in EnFVs requires specialized approaches
that consider the unique characteristics and objectives of these modes of transportation.

2.1. Objectives and Constraints in Routing Optimization

Routing optimization in the context of EnFVs involves the determination of efficient
and optimal routes for message transmission, considering various objectives and con-
straints [17,18]. The objectives in multi-objective message routing optimization typically
include minimizing message delivery time, maximizing network throughput, reducing
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energy consumption, and ensuring reliable communication. These objectives are cru-
cial for enhancing the overall performance and efficiency of the transportation system
described below.

Message delivery time is a primary objective in routing optimization. For EVs, mini-
mizing the message delivery time is essential for timely coordination, ensuring efficient
charging, and enabling effective vehicle-to-grid communication. In the case of flying
vehicles, timely message delivery is crucial for maintaining situational awareness, en-
abling efficient air traffic control, and supporting safe operations [1]. Maximizing network
throughput is another key objective in routing optimization. High network throughput
ensures the efficient utilization of communication resources and facilitates the exchange
of messages among vehicles. This objective is particularly relevant in scenarios where
a large number of vehicles are present, such as in urban environments or during peak
travel periods [19]. Reducing energy consumption is a critical objective for EnFVs. In the
case of EVs, minimizing energy consumption during message routing helps extend the
vehicle’s driving range and optimize battery usage. For flying vehicles, energy efficiency
is vital for increasing flight endurance and reducing the need for frequent refueling or
recharging [20]. Furthermore, the routing optimization process must consider various
constraints that arise in the context of EnFVs. These constraints may include the availability
and location of charging stations for EVs, flight restrictions and airspace regulations for
flying vehicles, road or airspace congestion, and real-time traffic conditions. Incorporat-
ing these constraints ensures that the generated routes adhere to the specific operational
requirements and limitations of the vehicles and the transportation system.

2.2. Traditional Routing Algorithms and Their Limitations

Traditional routing algorithms, such as shortest path algorithms (e.g., Dijkstra’s al-
gorithm) and heuristic-based algorithms (e.g., A* algorithm), have been widely used in
transportation systems to find efficient routes based on distance or time [21]. However,
these algorithms have limitations when it comes to addressing the specific requirements
and complexities of message routing in EnFVs. One major limitation of traditional routing
algorithms is their inability to consider the unique characteristics of EVs [22]. EVs have
limited range and require access to charging infrastructure to ensure uninterrupted oper-
ation. Traditional algorithms do not take into account the availability and proximity of
charging stations when calculating routes. Consequently, they may inadvertently direct
EVs on routes that exceed their battery capacity or fail to consider the optimal charging
locations along the route. In the case of FVs, traditional routing algorithms face similar
limitations. FVs, such as drones or UAVs, are subject to flight restrictions, airspace reg-
ulations, and safety constraints. Traditional algorithms do not incorporate these factors
into their routing decisions, potentially leading to routes that violate airspace regulations
or pose safety risks [9]. Moreover, traditional routing algorithms typically optimize for a
single objective, such as minimizing the distance or travel time. In the context of EnFVs,
multiple objectives need to be considered simultaneously. For example, routing decisions
should not only focus on minimizing energy consumption but also on factors such as traffic
congestion, vehicle load balancing, and environmental impact. Traditional algorithms lack
the capability to handle multi-objective optimization, leading to suboptimal or impractical
routing solutions.

2.3. Importance of Multi-Objective Optimization in EnFVs

There is a critical need to develop routing algorithms that can effectively optimize
message routing in these dynamic transportation systems and address the limitations of
traditional routing algorithms [18]. Multi-objective optimization is highly important in the
context of EnFVs due to several key reasons [10,14,23]:

• Conflicting objectives: EnFVs face multiple conflicting objectives that need to be opti-
mized simultaneously. These objectives may include maximizing energy efficiency,
minimizing travel time, reducing emissions, optimizing battery usage, ensuring pas-
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senger comfort, and considering safety and regulatory constraints. Multi-objective
optimization allows for balancing and trade-off analysis among these objectives to
find the most desirable solutions.

• Complex and dynamic environment: EnFVs operate in complex and dynamic environ-
ments, such as urban areas with varying traffic conditions, weather patterns, and the
availability of charging or refueling infrastructure. Multi-objective optimization tech-
niques enable the vehicles to adapt to these changing conditions and make informed
decisions to optimize performance based on multiple objectives.

• Resource constraints: EnFVs often have limited resources, such as battery capacity or
fuel availability. Multi-objective optimization helps in finding optimal solutions that
make efficient use of these resources by considering multiple objectives simultaneously.
It allows for better resource allocation and utilization, thereby extending the range
and overall performance of EnFVs.

• User preferences and stakeholder considerations: Different stakeholders, including
vehicle owners, operators, passengers, and regulatory bodies, may have diverse prefer-
ences and requirements. Multi-objective optimization provides a systematic approach
to incorporate these preferences and consider the needs of various stakeholders while
optimizing the vehicle’s performance. It allows for the generation of a set of Pareto-
optimal solutions, offering a range of choices that can cater to different user preferences
and stakeholder considerations.

• Innovation and future development: Multi-objective optimization serves as a catalyst
for innovation and the development of advanced EnFV technologies. By exploring
various trade-offs and finding optimal solutions, it encourages the integration of
cutting-edge technologies, such as advanced energy management systems, intelligent
routing algorithms, and vehicle-to-vehicle communication, to achieve the best possible
performance across multiple objectives. This drives the progress and advancement of
EnFV technologies for a sustainable and efficient transportation system.

In summary, multi-objective optimization is crucial in the context of electric and fly-
ing vehicles as it enables the vehicles to address conflicting objectives, adapt to dynamic
environments, optimize resource usage, consider user preferences and stakeholder consid-
erations, and drive innovation for future development. It plays a vital role in achieving
optimal performance and advancing the sustainability of EnFVs in the transportation sector.

3. GAs for Multi-Objective Routing Optimization

To address the multi-objective routing optimization problem in the context of EnFVs,
GAs have emerged as a powerful optimization technique. GAs are inspired by the process of
natural selection and evolution, and they have been widely applied to various optimization
problems, including routing optimization. The main advantage of using GAs is their
ability to efficiently search and explore the solution space, considering multiple conflicting
objectives simultaneously [10].

Multi-objective optimization (MOO) is a mathematical framework used to solve com-
plex decision-making problems where multiple conflicting objectives need to be simultane-
ously optimized. In MOO, the goal is to find a set of solutions that represent a trade-off
between these conflicting objectives, rather than a single optimal solution. Mathematically,
a multi-objective optimization problem can be defined as follows:

Let us consider an optimization problem with m objectives, represented as f1(x), f2(x),
. . . , fm(x), where x is a vector of decision variables.

Minimize (or maximize) the objectives: For minimization, the general form of a multi-
objective optimization problem can be expressed as:

Minimize:

f1(x), f2(x), . . . , fm(x) (1)
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Subject to constraints:

gi(x) ≤ 0, i = 1, 2, . . . , p (2)

hi(x) = 0, j = 1, 2, . . . , q, (3)

Here, the objective functions fi(x) represent the quantities to be minimized, and
the constraints gi(x) and hi(x) represent inequalities and equalities, respectively. These
constraints define the feasible region for decision variables x.

For maximization, you would replace “Minimize” with “Maximize” in the problem
statement. The key challenge in MOO is finding a set of solutions that represent trade-offs
among the conflicting objectives. The GA has the potential to choose the best dominant
solution out of solution space. The foundation of a GA lies in its key components, including
the representation and encoding of routes, the fitness evaluation and objective functions,
the selection, crossover, and mutation operators, as well as the concept of Pareto dominance
and non-dominated sorting [14], explained in following subsections.

3.1. Fundamentals of GAs

GAs, inspired by natural selection and genetics [4], offer a powerful optimization
technique for addressing complex problems with multiple objectives, including message
routing optimization in EnFVs. The core principle of GAs involves iteratively improving a
population of potential solutions to discover optimal or near-optimal outcomes.

The key components of a GA encompass solution representation and encoding, fitness
evaluation, selection, crossover, and mutation operators, as illustrated in Figure 1 [24].
These components collectively drive the search process towards the optimal solution space.

Figure 1. GA Process.

Solution representation and encoding are vital in GAs, especially in message routing
optimization for EnFVs. Routes need to be represented in formats that capture essential
problem characteristics [25]. Fitness evaluation plays a crucial role in GAs, as it assesses the
quality of potential solutions based on defined objectives. In message routing optimization,
the fitness function evaluates routes in terms of multiple objectives, such as minimizing
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travel time, reducing energy consumption, and adhering to EnFV-specific constraints [19].
The function assigns a numerical value to each solution, indicating its suitability or fitness
for the problem. Selection involves choosing the fittest individuals from the current popula-
tion for reproduction, akin to the principle of survival of the fittest in natural selection [26].
Various selection strategies, such as tournament selection, roulette wheel selection, or
rank-based selection, ensure diversity and balance exploration and the exploitation of
the solution space. Crossover, inspired by genetic recombination in natural reproduction,
combines genetic information from two parent solutions to generate offspring. In message
routing optimization, crossover exchanges genetic material between the routes of two
parents, creating new potential routes for the next generation. Mutation introduces random
changes in the genetic material of solutions, exploring new regions of the solution space. It
is crucial in maintaining diversity and preventing premature convergence to suboptimal
solutions [14]. In message routing optimization, mutation involves altering the specific
nodes or components of a route, enabling the exploration of alternative routes.

The next generation of solutions is determined through selection, crossover, and
mutation operators, creating a new population of potential solutions. This iterative process
continues until a termination criterion is met, such as reaching a maximum number of
generations or achieving a satisfactory level of fitness.

3.2. Representation and Encoding of Routes

The representation and encoding of routes are crucial aspects of GAs for multi-
objective message routing in EnFVs. The chosen representation directly impacts the algo-
rithm’s ability to explore diverse solutions within the search space. In message routing,
efficient encoding is necessary to capture the sequence of waypoints, charging stations, and
flight paths [27,28].

One commonly used representation is the chromosome-based approach, where each
chromosome corresponds to a potential route. The chromosomes consist of a sequence
of genes, with each gene representing a specific waypoint or charging station. The order
of genes in the chromosome determines the sequence in which waypoints or charging
stations are visited. For EVs, route encoding may include additional information like
energy consumption and charging requirements. The chromosome can be expanded to
include genes representing energy levels at each charging station or remaining battery
capacity at waypoints. For FVs, encoding may incorporate flight restrictions, altitude
limits, and airspace regulations. The genes within the chromosome can be expanded to
include information related to flight paths, altitude ranges, and any specific requirements
for each waypoint. The encoding scheme should balance representational capacity and
computational complexity, allowing the exploration of diverse routes while ensuring
feasible and efficient solutions. Various encoding schemes, such as binary encoding,
permutation encoding, or integer encoding, can be explored based on specific routing
problem requirements.

Commonly used encoding schemes include binary encoding, suitable for discrete
decision spaces; integer encoding, appropriate for finite options; permutation encoding, for
cases where the order matters; real-valued encoding, enabling continuous representation;
tree-based encoding, offering flexibility for complex relationships; and composite encoding,
combining multiple schemes for tailored representation. The choice of encoding depends
on the problem, decision variables, and objectives of the multi-objective GA. It is crucial
to select an encoding scheme that effectively represents the problem domain, which facili-
tates exploration of the solution space, and enables accurate fitness evaluation during the
optimization process.

3.3. Fitness Evaluation and Objective Functions

In multi-objective message routing for EnFVs, fitness evaluation is essential for assess-
ing the quality of each solution or chromosome within the GA. It involves quantifying the
performance of a solution based on the multiple objectives and constraints of the routing
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problem. Objective functions are used to measure the satisfaction level for each objective,
enabling the comparison and selection of better solutions [29].

The objective functions in multi-objective routing optimization for EnFVs consider
various factors such as energy consumption, travel time, distance, congestion, charging
station availability, flight restrictions, and environmental impact. These objectives represent
the diverse requirements of the vehicles and the transportation system, aiming to optimize
trade-offs between conflicting goals. The design of objective functions should be specific
to the transportation system’s characteristics and the routing problem’s objectives. These
functions need careful crafting to strike a balance between conflicting objectives and align
with desired system performance.

3.4. Selection, Crossover, and Mutation Operators

The selection, crossover, and mutation operators are crucial components of the GA-
based optimization framework for multi-objective message routing in EnFVs. These opera-
tors facilitate the exploration and exploitation of the solution space, leading the algorithm
towards optimal or near-optimal solutions [29]. The selection operator is responsible for
choosing the fittest individuals from the current population to create the next generation.
Various strategies, such as tournament selection and rank-based selection, assign higher
probabilities to individuals with better fitness values, promoting the propagation of su-
perior solutions. The crossover operator combines genetic information from two parent
individuals to create offspring, mimicking the process of sexual reproduction. Different
crossover techniques, like one-point crossover, enable the effective recombination of genetic
material and the generation of diverse solutions [7]. The mutation operator introduces
random changes in the genetic material of individuals to maintain diversity and explore
new regions of the solution space [30]. Commonly used approaches like bit-flip mutation
allow the fine-tuning of solutions and prevent convergence to local optima. These operators
work together to enable the GA to explore, maintain diversity, and converge towards
optimal or near-optimal solutions in multi-objective message routing for EnFVs.

3.5. Pareto Dominance and Non-Dominated Sorting

In multi-objective optimization for EnFVs, Pareto dominance is a fundamental concept
used to evaluate and compare different solutions [14]. A solution is considered superior to
another if it performs better in at least one objective without sacrificing performance in any
other objective. This concept allows for the identification of trade-offs between conflicting
objectives and helps in finding optimal solutions.

Non-dominated sorting is the process of categorizing solutions based on Pareto domi-
nance as depicted in Figure 2. This involves dividing the population into different fronts,
where each front contains solutions that are not dominated by any other solution. Non-
dominated sorting helps identify the Pareto-optimal solutions, which cannot be improved
in any objective without worsening another objective.

Non-dominated sorting is crucial in GA-based approaches for multi-objective message
routing in EnFVs. It enables the selection of promising solutions for the next generation,
allowing the GA to converge towards the Pareto-optimal front. By exploring trade-offs
between objectives, non-dominated sorting aids decision making and helps stakeholders
make informed choices based on their preferences. To improve efficiency and performance,
researchers have proposed various variations and enhancements to non-dominated sorting,
including adaptive methods, elitism strategies, and diversity preservation techniques.
Continuous research aims to develop novel algorithms to address challenges posed by
large-scale optimization problems in multi-objective message routing for EnFVs.
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Figure 2. Pareto Front-Multi-Objective Solutions.

3.6. GA Parameters and Tuning

GAs rely on various parameters that significantly influence their performance and
convergence to optimal or near-optimal solutions. The proper tuning of these parameters
is essential to strike a balance between exploring and exploiting the solution space [6]. The
commonly tuned parameters include population size, crossover rate, mutation rate, and
termination criteria. The population size determines the number of individuals (routes)
in each GA generation. A larger population size allows for the greater exploration of
the solution space but increases computational complexity. On the other hand, a smaller
population size may lead to premature convergence and suboptimal solutions. The choice
of population size should consider the problem complexity and available computational
resources. The crossover rate represents the probability of performing a crossover operation
between two parent routes to generate offspring [31]. A higher crossover rate promotes
the exploration and diversification of the solution space. However, an excessively high
crossover rate may result in the loss of good solutions, while a lower rate may slow down
convergence. The selection of the crossover rate should consider the problem character-
istics and the desired trade-off between exploration and exploitation. The mutation rate
determines the probability of introducing random changes in the genes (locations) of an
individual route [29]. Mutation helps maintain diversity and allows for the exploration
of new regions in the solution space. A higher mutation rate encourages exploration but
may slow down convergence, while a lower rate risks premature convergence to local op-
tima. The choice of the mutation rate should balance the exploration–exploitation trade-off,
considering the problem’s complexity. The termination criteria define the conditions for
stopping the GA’s execution. Common termination criteria include reaching a maximum
number of generations, achieving a satisfactory fitness level, or reaching a predefined
computational time limit. The choice of termination criteria should consider the problem’s
characteristics, available computational resources, and optimization goals.

Proper parameter tuning is essential to achieve the best performance of the GA for
multi-objective message routing in EnFVs. It requires a thorough experimentation and
analysis to strike the right balance between exploration and exploitation, considering the
problem’s complexity, available computational resources, and optimization objectives.

4. Review of Case Studies: Electric Vehicle Routing Optimization

Numerous case studies have been carried out to explore the efficiency of GAs in
optimizing routing for EVs. The distribution of these studies considered in this work over
the years is depicted in Figure 3.
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One notable study by Rajesh et al. [30] addressed the personal electric vehicle routing
problem (pEVRP) with the objective of optimizing the travel time and recharging costs for a
single electric vehicle. They aim to minimize travel time and charging process as objective
function, represented by Equation (4). The first three terms of Equation (4) denote the time
taken to reach the destination node D from the source node S and the next three terms are
associated with the charging process.

min ∑
i∈V

wS
i dSi

v
+ ∑

i∈V
∑
j∈V

xijdij

v
+ ∑

i∈V

wD
i diD

v
+ ∑

i∈V

ziδi
v

+ ∑
i∈V

ziwi + ∑
i∈V

ziyiC
Li

(4)

Real-life factors such as traffic delays, detour distances, and variable pricing were incor-
porated into the problem formulation. The study formulated a mixed-integer nonlinear
programming (MINLP) problem and employed the ε-constraint method to obtain a set
of non-dominated points representing the first Pareto front. Meta-heuristic techniques,
including GA and PSO, were applied to find globally optimal solutions. The results demon-
strated that the proposed methods effectively optimized travel time and recharging costs,
providing valuable insights into decision-making in personal electric vehicle routing. Sim-
ilarly, Alinaghian and Zamani [22] addressed the IRP with a focus on optimizing fuel
consumption and pollutant emissions in the transportation sector. They used comprehen-
sive modal emission model (CMEM) for computing fuel consumption rate and greenhouse
gas emission based on vehicle speed, load weight and road gradient. They computed fuel
consumption using Equation (5).

FRh = ξ
khNhVh + Ph/η

k
(5)

where ξ is the mass rates of fuel to the air. kh is the vehicle type h engine friction. Nh is
engine speed, and Vh is engine displacement vehicle type h. η and k are constant values
and the diesel engine efficiency parameter and thermal value of diesel fuel, respectively.
Ph is momentary engine power output vehicle type h (in kW). A bi-objective model is
proposed, considering fleet composition as heterogeneous to enhance practicality. The
proposed model is solved using a multi-objective quantum algorithm, and its performance
is compared to other methods like NSGA-II and exact methods. The results demonstrated
the superior performance of the proposed algorithm in terms of defined criteria. The
paper concluded by suggesting future research directions, including the incorporation of
additional concepts and policies, fuel consumption models, and solution methods to further
enhance the model’s scope and effectiveness in addressing inventory routing optimization,
fuel consumption, and environmental sustainability.

In another study, Liu et al. [32] focused on optimizing the navigation system for EVs
considering both charging and routing aspects. Their study addressed the challenges posed
by the introduction of a real-time pricing (RTP) policy, which aimed to manage load shaving
during fast charging. The proposed approach extended the original traffic network to a
feasible state graph using EV arrival states and traffic parameters. An improved chrono-SPT
(ICS) algorithm is introduced to determine the optimal decision sequence for routing and
charging policies. To simplify the computational complexity, a simplify–charge–control
(SCC) algorithm is presented. Simulation results demonstrated the effectiveness of both the
ICS and SCC algorithms, with the SCC algorithm significantly reducing the computation
complexity while maintaining an acceptable level of deviation from the optimal cost.

Ombuki et al. [33] proposed a novel approach to solving the VRP with time windows
(VRPTW) by treating it as a multi-objective optimization problem (MOP) using a GA with
Pareto ranking. Unlike previous approaches that biased the optimization towards mini-
mizing the number of vehicles, this MOP formulation considered the number of vehicles
and the total distance traveled as separate dimensions in the search space. This avoided
introducing search bias and allows for a more comprehensive exploration of the solution
space. The proposed approach recognized the inherent nature of the VRPTW as a MOP and
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provides a computationally advantageous solution. Experimental results demonstrated
the competitiveness of the approach compared to existing methods, highlighting the effec-
tiveness of the MOP formulation in capturing alternative solutions that prioritize different
objectives. By adopting the MOP framework, the authors addressed the philosophical
and theoretical aspects of the VRPTW, acknowledging that there are multiple trade-offs
between minimizing the number of vehicles and minimizing the total distance traveled.
The proposed approach does not prioritize one objective over the other but allows for the
generation of a set of solutions that represent different trade-offs between the two objectives.
This MOP formulation provides flexibility for decision makers to select solutions based
on their specific priorities and constraints. The computational advantages of the approach
are also highlighted, as the performance and results obtained using the GA with Pareto
ranking are competitive with existing methods.

Figure 3. Distribution of GA-based EV routing optimization studies.

Another study by Liu et al. [7] also focused on the electric vehicle routing problem
with time windows (EVRPTW) in the context of logistics transportation. The study takes
into account the terrain grades of roads, which impact the travel process of EVs, and the
battery state-of-charge (SoC) dynamics are used to model the EVs’ electricity consumption.
The objective is to minimize the total electricity consumption while efficiently serving a set
of customers with specific time windows. The problem is formulated as a mixed-integer
programming model, and a hybrid GA that combines the 2-opt algorithm with GA is
developed to address the EVRPTW. Simulation results demonstrated that the proposed
approach outperforms the simulated annealing (SA) algorithm and GA in terms of finding
better solutions within a shorter computation time. The research contributes to optimiz-
ing EV routing and energy consumption in logistics transportation, taking into account
real-world factors such as terrain grades and battery dynamics. However, Syafrizal and
Sugiharti [34] addressed the EV routing problem with time windows (E-VRPTW) and
proposed an improvement by incorporating Fuzzy Logic using the GA and Tabu Search
(TS) methods. They determined the value of fitness of the current population based on four
indicators, travel_cost, f uel_cost, time_cost, and vehicle_cost as per Equation (6).

Fitness =
1

∑ Travel_cost + ∑ Fuel_cost + ∑ Time_cost + ∑ Vehicle_cost
(6)

The addition of fuzzy logic introduced tolerance in the time windows, allowing for flexibil-
ity in arrival times. The experimental results show that the proposed E-VRPFTW model
with GA-TS and fuzzy logic achieves higher fitness values compared to the E-VRPTW
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model without fuzzy logic. The fitness values increase by an average of 14.39% in the first
trial and 8.49% in the second trial. Furthermore, when considering the number of vehicles
and distance, the GA-TS method combined with fuzzy logic yields better results, with a
shorter mileage and a smaller number of vehicles, indicating the effectiveness of this ap-
proach in optimizing the E-VRPTW problem. They concluded that the integration of fuzzy
logic and the GA-TS approach enhances the E-VRPTW by providing more optimal routes.
The utilization of fuzzy logic in time windows introduces flexibility in arrival times, leading
to improved fitness values. The comparison of results with other studies confirms the
effectiveness of the GA-TS method and fuzzy logic, resulting in shorter distances traveled
and a reduced number of required vehicles.

Akbara and Aurachman [35] focused on optimizing the capacitated vehicle routing
problem with time windows (CVRPTW) for a mineral water company distributor. The
study utilized GA, Tabu Search Algorithm (TS), and a hybrid approach combining both
algorithms. The objective is to reduce the total distance traveled and determine the optimal
number of homogeneous fleet vehicles. The results show that the hybrid GA-Tabu Search
approach yields the best solution, reducing the existing route’s total distance by 15.99%.
The travel distances achieved were 932.47 km for GA, 982.96 km for TS, and 789.67 km
for the hybrid algorithm. This study suggested considering customer time windows and
evaluating the impact on transportation costs for future research. Additionally, visualizing
the results can aid in route determination and further enhance the optimization process.
Similarly, Mohammed et al. [36] focused on optimizing the shuttle bus services at UNITEN
by implementing the capacitated vehicle routing problem (CVRP) model. This study
utilized a GA as a metaheuristic approach to improve transportation efficiency and reduce
costs. The GA is effective in solving complex computational problems, such as VRP, and
has successfully achieved the study goals by minimizing distances and improving route
planning. However, the limitations of the algorithm are identified, including the simplicity
of the research problem with a single variable (distance) and a limited number of bus
stops. The lack of alternative physical roads and the constraint of passing through all
predetermined locations present challenges in finding shorter routes. The study suggested
future work to expand the algorithm’s domain to include more diverse locations, which
would showcase its strength and performance in handling complex scenarios. The authors
concluded that the implementation of the CVRP model using a GA has proven beneficial
in optimizing shuttle bus services, reducing transportation costs, and improving efficiency
at UNITEN. However, Agrawal et al. [37] addressed the problem of distributing perishable
goods with quality constraints using a heterogeneous fleet of vehicles. A mathematical
programming model is proposed to optimize the distribution process, considering factors
such as time windows and deterioration rates. The model proved effective in handling
perishable products with short shelf lives. A GA-based heuristic is introduced to efficiently
determine optimal routes. The results from the proposed model aligned with expectations,
requiring more vehicles as constraints on quality and time become more stringent. The
heuristic provided computationally efficient solutions with minimal loss in solution quality.
The authors stated that future research could explore incorporating traffic congestion,
demand variability, and the distribution of multiple items, as well as addressing pickup
operations in addition to drop-off operations at retail stores.

Goel and Gruhn [38] proposed a general vehicle routing problem (GVRP) model
that addresses various complexities encountered in real-life applications. Their model
incorporates time window restrictions, a heterogeneous fleet with diverse travel times, costs,
and capacities, order-to-vehicle compatibility constraints, orders with multiple services
and pickup/delivery locations, distinct starting and ending locations for each vehicle,
route restrictions, and limitations on drivers’ working hours. To solve this problem, they
proposed an iterative improvement approach that modifies the neighborhood structure
during the search process. Computational experiments demonstrated the effectiveness of
their method, as it successfully handled multiple vehicles and transportation requests.
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Many authors also integrated few conventional methods. For example, Sadouni [39]
proposed an original heuristic algorithm based on Tabu search to address the hybrid vehicle
routing problem (HVRP) with time window constraints and nonlinear penalized delays.
Their objective function considered a weighted sum of the vehicle cost, total distance
traveled, and a penalty cost for delays. Mendez et al. [40] formulated the HVRP with
time window constraints and multiple vehicle visits to the pickup and delivery nodes as a
mixed-integer linear programming (MILP) model. They utilized a branch and cut algorithm-
based commercial software package to obtain optimal vehicle routes. Penna et al. [41]
introduced an iterated local search (ILS) metaheuristic using a variable neighborhood
descent procedure to find optimal solutions for various HVRP variants with different
numbers of customers and fleet sizes. Kritikos and Ioannou [42] addressed a novel variant
of HVRP, considering permissible overloads and a penalty cost for overloads below a
predefined limit. They proposed a sequential insertion-based heuristic and evaluated it
on Solomon’s benchmark datasets [43]. Mungwattana et al. [44] conducted a practical
case study of a third-party logistics firm in Thailand and modeled an HVRP with time
windows, multi-product deliveries, and limited vehicle and driver availability. They
employed GA and branch and bound approaches to find optimal solutions. Cheng et al. [45]
introduced a greenIRP with a heterogeneous fleet and developed a mixed-integer linear
programming model to minimize the total cost, including load-dependent fuel consumption
and emission costs. Numerical tests were performed to evaluate the effectiveness of their
comprehensive study.

Cai et al. [46] focused on solving the multi-objective vehicle routing problem (VRP)
with simultaneous pick-up and delivery and time window constraints (Mo-EVRPSDPTW).
This study proposed a mathematical model that aims to minimize total logistics cost and
maximize average customer satisfaction. To address challenges such as traffic congestion
and dynamic power consumption, a multi-objective GA (NSGA-II) with improved strate-
gies is developed. The experimental results demonstrated the effectiveness of the improved
NSGA-II algorithm in reducing logistics costs while maintaining high customer satisfaction
levels. The algorithm generated more reasonable vehicle service routes, meeting customer
needs and optimizing the distribution process. Sensitivity analysis on traffic congestion
confirms the stability and effectiveness of the algorithm. The authors stated that future
research directions include considering nonlinear charging and queuing time in the charg-
ing process to account for real-world conditions. Additionally, incorporating clustering
algorithms to enhance the multi-objective evolutionary algorithm’s performance is sug-
gested. Xiao et al. [47] investigated the electric VRP with time windows (EVRPTW) and its
implications for incorporating EVs into fleet operations. The study focused on the energy
consumption rate of EVs and develops a mixed-integer linear programming (MILP) model
called EVRPTW-ECR to dynamically estimate the EV’s maximum range based on speed
and load. The model used two linearization methods to handle the nonlinear relationship
between speed and travel time. Computational experiments demonstrated that the MILP
model can be optimally solved for instances with up to 25 customers using the CPLEX
solver and partially optimized for larger instances using a heuristic approach. The research
highlighted the importance of considering EV characteristics and energy consumption in
route planning to support greener transportation.

Shen et al. [48] addressed the electric VRP with time windows (EVRPTW) by consider-
ing uncertain customer demand and weight-related energy consumption of EVs. A robust
optimization model based on a route-related uncertain set is proposed, and an adaptive
large neighborhood search heuristic is developed to solve the problem. The effectiveness of
the method is verified through experiments, highlighting the importance of considering
uncertainty and energy consumption in EVRPTW for practical and efficient distribution
tasks. Goeke and Schneider [49] presented the electric VRP with time windows and mixed
fleet (E-VRPTWMF), which focuses on optimizing the routing of a combination of electric
commercial vehicles (ECVs) and conventional internal combustion commercial vehicles
(ICCVs). This study incorporated a realistic energy consumption model that considers fac-
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tors such as speed, gradient, and cargo load distribution, which are crucial for ECVs due to
their limited driving range and recharging requirements. An adaptive large neighborhood
search algorithm, combined with local search, is developed to solve the problem efficiently.
The paper conducted numerical studies on new test instances to analyze the impact of load
distribution on solution quality and structure. It also explores different objective functions
and evaluates the contribution of ECVs to overall routing costs. The benchmark instances of
related problems are used to demonstrate the algorithm’s performance. Overall, the paper
provides insights and solutions for optimizing routing in mixed fleets of ECVs and ICCVs.

A study by Torabi et al. [50] examined the energy optimization for autonomous urban
electric buses with regenerative braking using GA, specifically addressing the challenge
of extending the range of these buses on a single battery charge. This study is conducted
within the Sohjoa Baltic project, which aims to improve public transportation through
the use of autonomous electric minibuses in various Baltic Sea region cities. The authors
introduced an extension of the speed profile optimization (SPO) framework to the context
of urban electric minibuses with regenerative braking. The SPO methodology is employed
to optimize the speed profiles of the buses, taking into account the frequent stops and
short distances between them. Basso et al. [51] presented the two-stage electric VRP
(2sEVRP), which addresses the challenge of accurately predicting energy consumption and
planning charging stops for fleets of electric commercial vehicles. The proposed approach
incorporated detailed factors such as topography and speed profiles to estimate energy
costs. It utilized a two-stage process to determine optimal paths and routes, considering
battery and time-window constraints. The method demonstrated improved accuracy in
time and energy estimations compared to existing approaches. Numerical experiments
conducted on a road network in Gothenburg, Sweden, validate the effectiveness of the
proposed method. The results indicated that the planned routes are feasible in terms of
energy demand and include appropriate charging stops when required.

Table 1 provides a summary of the key parameters and contributions of each paper,
allowing for a comparative analysis of the problem addressed, objectives, optimization
approach, and key contributions of each study.

These case studies demonstrate the effectiveness of GAs in optimizing routing for
EVs. By considering multiple objectives such as energy consumption, travel time, and
customer satisfaction, the GA-based approaches offer promising results in improving route
efficiency and sustainability. The integration of real-time data and dynamic constraints
further enhances the performance of the routing optimization process for EVs.

To evaluate the efficiency and quality of the GA-based approach for multi-objective
message routing in EVs, several performance evaluation metrics have been utilized in
previous studies. These metrics offer valuable insights into the routing solutions achieved
by the GA in terms of their effectiveness and efficiency. Figure 4 depicts the performance
metrics utilized in various studies examined in this research. It is evident that the majority
of researchers concentrated on optimizing two key factors: energy consumption and
distance traveled. These metrics highlight the significance of enhancing energy efficiency
and minimizing the overall distance covered for electric vehicle (EV) routing optimization.
By prioritizing these objectives, researchers aim to achieve greener and more sustainable
transportation solutions for EVs. However, it is important to note that different studies
might consider additional performance metrics to address specific requirements and real-
world constraints in their respective EV routing scenarios.

Table 2 summarizes GA studies for optimizing electric vehicle routing-based applications.
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Table 1. Comparative analysis of electric vehicle routing optimization papers.

Study Problem Addressed Objective(s) Optimization Approach Key Contributions

Rajesh et al. [30] Personal electric VRP (pEVRP) Minimize travel time and
recharging costs ε-constraint method, GA, PSO

Incorporation of real-life factors, such as
traffic delays and variable pricing, in the

optimization model.

Alinaghian and
Zamani [22] IRP Optimize fuel consumption and

pollutant emissions Multi-objective quantum algorithm
Consideration of fleet composition and
comparison of performance with other

methods.

Liu et al. [32] Navigation system optimization
for EVs

Optimize routing and charging
policies

Improved Chrono-SPT (ICS)
algorithm, simplify–charge–control

(SCC) algorithm

Incorporation of real-time pricing policy
and reduction in computational

complexity.

Ombuki et al. [33] VRP with time windows (VRPTW) Multi-objective optimization
using GA GA with Pareto ranking

Treating VRPTW as a multi-objective
problem, considering number of vehicles
and total distance as separate dimensions

in the search space.

Liu et al. [7] Electric VRP with time windows
(EVRPTW)

Minimize total electricity
consumption

Mixed-integer linear programming
model, Hybrid GA

Consideration of terrain grades and
battery state-of-charge dynamics in the

model.

Syafrizal and
Sugiharti [34]

Electric VRP with time windows
(E-VRPTW)

Optimize routes with fuzzy logic and
time windows GA, Tabu search (TS), fuzzy logic

Introduction of tolerance in time
windows using fuzzy Logic, improved

fitness values.

Akbara and
Aurachman [35]

Capacitated VRP with time windows
(CVRPTW) Minimize total distance traveled GA, Tabu search algorithm (TS),

Hybrid approach

Comparison of algorithms and reduction
in total distance traveled using the hybrid

approach.

Mohammed et al. [36] Optimization of shuttle bus services Minimize distances and improve
route planning GA

Application of GA to the capacitated VRP
(CVRP) in the context of shuttle bus

services.

Agrawal et al. [37] Distribution of perishable goods with
quality constraints

Optimize distribution process
considering time windows and

deterioration rates

Mathematical programming model,
genetic algorithm-based heuristic

Optimization of perishable goods
distribution considering quality

constraints.

Goel and Gruhn [38] General VRP (GVRP) Optimize vehicle routes considering
various complexities Iterative improvement approach

Handling of multiple vehicles, diverse
travel times, order-to-vehicle

compatibility, and other constraints.
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Table 1. Cont.

Study Problem Addressed Objective(s) Optimization Approach Key Contributions

Sadouni [39]
Hybrid VRP (HVRP) with time

window constraints and penalized
delays

Minimize vehicle cost, total distance
traveled, and penalty cost of delays Tabu search-based heuristic algorithm Introduction of Tabu search-based

heuristic algorithm for the HVRP.

Mendez et al. [40] HVRP with time window constraints
and multiple vehicle visits

Optimal vehicle routes using
MILP model

Branch and cut algorithm-based
commercial software package

Formulation of HVRP as an MILP model
and use of commercial software for

optimization.

Penna et al. [41] Iterated local search (ILS) for various
HVRP variants

Optimal solutions for different
HVRP variants

Iterated local search (ILS)
metaheuristic

Introduction of ILS metaheuristic for
HVRP optimization.

Kritikos and
Ioannou [42]

Variant of HVRP with permissible
overloads Sequential insertion-based heuristic

Introduction of a sequential
insertion-based heuristic for the

variant of HVRP.

Mungwattana et al. [44]
HVRP with time windows,

multi-product deliveries, and limited
availability

GA, branch and bound approaches Practical case study of a third-party
logistics firm in Thailand

Application of GA and branch and bound
approaches to a practical case study.

Cheng et al. [45] GreenIRP with heterogeneous fleet
Minimize total cost considering

load-dependent fuel consumption
and emission costs

Mixed-integer linear
programming model

Consideration of green aspects in the IRP
and evaluation of performance.

Cai et al. [46]

Multi-objective VRP with
simultaneous pick-up and delivery

and time window constraints
(Mo-EVRPSDPTW)

Minimize total logistics cost and
maximize average customer

satisfaction
Multi-objective GA (NSGA-II)

Incorporation of multiple objectives and
improved strategies in NSGA-II for the

Mo-EVRPSDPTW.

Xiao et al. [47] EVRPTW considering energy
consumption and time windows

Minimize total electricity
consumption

Mixed-integer linear
programming model

Dynamic estimation of EV maximum
range based on speed and load, two

linearization methods to handle nonlinear
relationships.

Shen et al. [48] EVRPTW considering uncertain
demand and energy consumption

Robust optimization model, adaptive
large neighborhood search heuristic

Robust optimization model based on
uncertain set, efficient solution

approach

Consideration of uncertain demand and
energy consumption in EVRPTW.

Goeke and
Schneider [49]

Electric VRP with time windows and
mixed fleet (E-VRPTWMF)

Optimize routing for mixed fleet of
electric and conventional vehicles

Adaptive large neighborhood search
algorithm

Incorporation of realistic energy
consumption model and development of

efficient solution approach.

Basso et al. [51] Two-stage electric VRP (2sEVRP)
Precise prediction of energy

consumption and planning of
charging stops

Two-stage approach, improved
energy consumption estimation

Incorporation of detailed factors such as
topography and speed profiles for

accurate energy consumption estimation.
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Table 2. Comparative analysis of GA studies for optimizing electric vehicle routing-based applications.

Study Application Domain Optimization Technique Performance Metrics Results

Rajesh et al. [30] Personal electric VRP (pEVRP)
mixed-integer nonlinear

programming (MINLP), ε-constraint
method, GA, PSO

Travel time, recharging costs

Proposed methods effectively optimize
travel time and recharging costs,

providing valuable insights for decision
making in personal electric vehicle

routing.

Alinaghian and
Zamani [22] IRP Multi-objective quantum algorithm Fuel consumption, Pollutant

emissions

Proposed algorithm outperforms other
methods, demonstrating superior
performance in optimizing fuel

consumption and pollutant emissions.

Liu et al. [32] EV navigation system
Improved Chrono-SPT (ICS)

algorithm, simplify–charge–control
(SCC) algorithm

Routing and charging policies

Both ICS and SCC algorithms are
effective, with SCC algorithm

significantly reducing computation
complexity while maintaining an

acceptable level of deviation from the
optimal cost.

Ombuki et al. [33] VRP with time windows (VRPTW) GA with Pareto ranking Number of vehicles, total distance
traveled

Proposed approach avoids search bias
and provides a computationally

advantageous solution, competitive with
existing methods.

Liu et al. [7] Electric VRP with time windows
(EVRPTW) Hybrid GA Total electricity consumption

Proposed approach outperforms
simulated annealing (SA) algorithm and
GA in finding better solutions within a

shorter computation time, optimizing EV
routing and energy consumption.

Syafrizal and
Sugiharti [34]

Electric VRP with time windows
(E-VRPTW) GA, Tabu search (TS), fuzzy logic Fitness values, number of vehicles,

distance

GA-TS method combined with fuzzy
logic achieves higher fitness values,

shorter mileage, and a smaller number of
vehicles, optimizing the E-VRPTW

problem.

Akbara and
Aurachman [35]

Capacitated VRP with time windows
(CVRPTW)

GA, Tabu search algorithm (TS),
hybrid approach

Total distance traveled, number of
vehicles

Hybrid GA-TS approach yields the best
solution, reducing total distance by

15.99% compared to other algorithms.

Mohammed et al. [36] Capacitated VRP (CVRP) GA Distances, route planning
GA improves transportation efficiency,
reduces costs in optimizing shuttle bus

services.
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Table 2. Cont.

Study Application Domain Optimization Technique Performance Metrics Results

Agrawal et al. [37] Distribution of perishable goods GA-based heuristic Logistics cost, quality constraints

Heuristic provides computationally
efficient solutions with minimal loss in

solution quality, considering time
windows and deterioration rates.

Goel and Gruhn [38] General VRP (GVRP) Iterative improvement approach Time window restrictions,
heterogeneous fleet, route restrictions

Proposed approach successfully handles
multiple vehicles and transportation

requests in GVRP.

Sadouni [39] Hybrid VRP (HVRP) Tabu search-based heuristic Vehicle cost, total distance traveled,
penalty cost for delays

Heuristic algorithm effectively addresses
HVRP with time window constraints and

penalized delays.

Mendez et al. [40] Hybrid VRP (HVRP) MILP Optimal vehicle routes Branch and cut algorithm-based approach
obtains optimal vehicle routes in HVRP.

Penna et al. [41] Hybrid VRP (HVRP) Iterated local search (ILS)
metaheuristic Optimal solutions for HVRP variants

ILS metaheuristic provides optimal
solutions for HVRP variants with

different numbers of customers and
fleet sizes.

Kritikos and
Ioannou [42] Hybrid VRP (HVRP) Sequential insertion-based heuristic Permissible overloads, penalty cost

for overloads

Heuristic algorithm effectively addresses
HVRP considering permissible overloads

and penalty cost for overloads.

Mungwattana et al. [44] Hybrid VRP (HVRP) GA, branch and bound Time windows, multi-product
deliveries, limited resources

GA and branch and bound approaches
find optimal solutions for HVRP with

time windows, multi-product deliveries,
and limited resources.

Cheng et al. [45] GreenIRP Mixed-integer linear programming
model

Total cost, fuel consumption, emission
costs

Mixed-integer linear programming model
minimizes total cost, considering

load-dependent fuel consumption and
emission costs.

Cai et al. [46]

Multi-objective VRP with
simultaneous pick-up and delivery

and time window constraints
(Mo-EVRPSDPTW)

Multi-objective GA (NSGA-II) Total logistics cost, average customer
satisfaction

Improved NSGA-II algorithm reduces
logistics costs while maintaining high

customer satisfaction levels, optimizing
the distribution process.
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Table 2. Cont.

Study Application Domain Optimization Technique Performance Metrics Results

Xiao et al. [47] Electric VRP with time windows
(EVRPTW) MILP Energy consumption rate, EV range

MILP model optimally solves EVRPTW
instances with up to 25 customers,
heuristic approach used for larger

instances, highlighting the importance of
considering EV characteristics in route

planning.

Shen et al. [48] Electric VRP with time windows
(EVRPTW)

Robust optimization model, adaptive
large neighborhood search heuristic

Uncertain customer demand, energy
consumption

Robust optimization model efficiently
addresses EVRPTW with uncertain

customer demand and weight-related
energy consumption, supporting practical

and efficient distribution tasks.

Goeke and
Schneider [49]

Electric VRP with time windows and
mixed fleet (E-VRPTWMF)

Adaptive large neighborhood search
algorithm Energy consumption, routing costs

Algorithm optimizes routing in mixed
fleets of electric commercial vehicles

(ECVs) and conventional internal
combustion commercial vehicles (ICCVs),
considering realistic energy consumption

model.

Basso et al. [51] Two-stage electric VRP (2sEVRP) Two-stage process, detailed energy
cost estimation Time, energy estimations

Two-stage process provides accurate time
and energy estimations for optimizing

electric vehicle routes.
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Figure 4. Performance metric analysis of GA-based EV routing optimization studies.

Table 2 presents a critical summary of various studies addressing GA-based opti-
mization techniques for electric VRPs. The studies cover a range of application domains
such as personal EV routing [30], inventory routing [22], EV navigation, and the distribu-
tion of perishable goods [37], among others. Multiple optimization techniques, including
GAs, metaheuristic algorithms, and mathematical programming models, are employed to
solve these problems. Overall, the studies demonstrate the effectiveness of the proposed
optimization techniques in improving various performance metrics such as travel time,
recharging costs, fuel consumption, pollutant emissions, total electricity consumption,
logistics cost, and customer satisfaction [38,40]. The results indicate that the optimization
approaches provide valuable insights and contribute to decision making in VRPs.

Some studies highlight the importance of incorporating real-life factors such as traf-
fic delays, detour distances, variable pricing, and terrain grades into the optimization
models [30,35]. These factors significantly impact the performance of EVs and the energy
consumption of the fleet. By considering these factors, the studies demonstrate improved
optimization results and better alignment with real-world conditions. Comparatively,
the studies utilize different optimization techniques and approaches, each tailored to the
specific problem at hand. GAs and metaheuristic algorithms like particle swarm optimiza-
tion, Tabu search, and adaptive large neighborhood search are frequently employed to
efficiently explore the solution space and find optimal or near-optimal solutions. These
techniques often outperform traditional methods like exact algorithms in terms of solution
quality and computational efficiency [27,45,52]. Furthermore, some studies address multi-
objective VRPs, where conflicting objectives such as minimizing the number of vehicles
and minimizing the total distance traveled need to be balanced [48,51,53]. The adoption of
multi-objective optimization frameworks, such as Pareto ranking and non-dominated sort-
ing, allows for the generation of a set of solutions representing different trade-offs between
objectives. This flexibility enables decision makers to select solutions based on specific
priorities and constraints, enhancing the practicality and effectiveness of the optimization
process. It is worth noting that several studies propose future research directions to further
enhance the optimization models and techniques [8,46,49,53]. Suggestions include incor-
porating additional concepts and policies, considering nonlinear charging and queuing
time, integrating clustering algorithms, addressing pickup operations, and exploring dy-
namic factors like traffic congestion and demand variability. These future directions aim
to broaden the scope and applicability of the optimization techniques, making them more
robust and adaptable to real-world scenarios.

In conclusion, the comparative analysis of the optimization techniques employed in
electric VRPs demonstrates their effectiveness in improving various performance metrics.
The studies contribute valuable insights, propose innovative approaches, and provide
avenues for further research in optimizing vehicle routing processes, reducing costs, im-
proving efficiency, and promoting sustainable transportation.
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5. Review of Case Studies: Flying Vehicle Routing Optimization

Several case studies have been conducted to explore the application of GAs for flying
vehicle routing optimization. These studies aim to address the unique challenges associated
with routing UAVs or drones, considering factors such as airspace regulations, battery
limitations, and varying mission objectives. The distribution of these studies considered in
this work over the years is depicted in Figure 5.

Figure 5. Distribution of GA-based FV routing optimization studies.

One notable case study by Wei et al. [6] proposes a GA-based routing (GAR) protocol
for flying ad hoc networks (FANETs) that addresses the challenges of high node mobility.
The protocol improved routing by considering factors such as link stability, link band-
width, and node energy. The selection, crossover, and variation operators of the GA are
enhanced to optimize route planning. Experimental results demonstrated that GAR signif-
icantly improves the network throughput, reduces the delay, and enhances the network
stability, making it well suited for FANETs. However, the paper acknowledged the need
for future research to consider energy consumption in realistic environments. However,
Jeauneau et al. [54] introduced two methods for the path planning of UAVs in a real 3D
environment. One method was based on the A-Star algorithm and provides real-time path
planning capability, while the other method used a GA to generate multiple trajectories
based on a Pareto front. Both methods considered the dynamic properties of the UAV and
computed 2D trajectories, with the missing dimension being computed using a recursive
algorithm. The A-Star method has an average computation time of 836 ms, demonstrating
its real-time capability, while the GA method offers performance and flexibility by identi-
fying failures in the tactical situation and providing diverse solutions. The experimental
results show that the GA improves the fitness of the A-Star solution by an average of 44.5%.
The paper concluded by highlighting the potential of combining these methods to create a
fully operational system, and suggests future work to improve the quality of the estimator
and explore parallelization techniques.

Dai et al. [55] proposed a quality-aware coverage and path planning scheme for UAV
networks in complex environments. They introduced a waypoint generation algorithm
to achieve full coverage with satisfactory spatial resolution and an energy-efficient path
planning solution for multiple UAVs. Simulation results demonstrated improved coverage
and energy consumption compared to traditional techniques. They suggested two future
research directions: exploring online adjustment strategies for unpredictable situations
and investigating effective communication mechanisms for delivering sensed images to
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end-users. The proposed framework will be extended to incorporate relay UAV nodes and
consider image quality and deadline requirements. A study of Luo et al. [56] presented
a study on the integration of wind effects in the optimization of task allocation and path
planning for fixed-wing UAVs. Their objective is to minimize the time required for UAVs
to complete tasks in the presence of steady wind. The authors proposed a variable-speed
Dubins path VRP (VS-DP-VRP) model that incorporates the minimum turning radius of
UAVs and calculates the UAV’s ground speed based on the wind speed and airspeed.
The model is solved using a GA with customized crossover and mutation operators.
The feasibility and effectiveness of the method are demonstrated through an illustrative
example, and the sensitivity of the algorithm to different parameters is analyzed. The study
concluded that the proposed model and algorithm provide an effective solution for UAV
task allocation and path planning under steady wind conditions.

However, Greiff and Robertsson [57] presented a modular approach for generating
state trajectories for a miniature UAV while considering computational constraints, obstacle
avoidance, and priority assignment. The proposed algorithms included a GA for solving
the traveling salesman problem with respect to priorities and obstacle avoidance, a projec-
tive algorithm for finding the shortest paths around obstacles, and a quadratic program
for generating minimum-snap polynomial trajectories while ensuring the avoidance of
static obstacles. These algorithms enabled efficient motion planning in both 2D and 3D
environments and have been implemented in real-time scenarios. Chen et al. [58] focused
on UAV path planning and proposes two parallel optimization algorithms: the improved
GA (IGA) and the particle-swarm-optimization-based ant colony optimization algorithm
(PSO-ACO). The goal is to solve the TSP for UAVs and find optimal path planning solutions.
The TSP model is established, considering UAVs as traveling salesmen and mission targets
as cities. The IGA and PSO-ACO algorithms are applied to solve the TSP model, providing
effective and reasonable UAV path planning schemes. Experimental results show that the
proposed algorithms outperform a contrast approach and offer more rational and effective
solutions for UAV path planning. The study highlighted the importance of UAV path
planning for successful UAV missions and contributes to the development of UAV path
planning techniques. Bouzid et al. [59] presented a coverage path-planning algorithm for
quadrotors in a 2D workspace with obstacle avoidance. The algorithm consists of two steps:
the first step uses the RRT*FN algorithm to find optimal paths between points and their
neighbors, while the second step connects these points to form the overall shortest path
using GAs. The algorithm also addresses energy consumption by providing a scalable
solution using the savings technique. A discrete model of the map is generated, and points
of interest (POIs) are defined based on this discretized map. The proposed algorithm offers
an effective solution for coverage scenarios with obstacle avoidance and energy efficiency.
Numerical simulations demonstrate promising results for the algorithm’s effectiveness.

Ferrandez et al. [60] investigated the effectiveness of implementing unmanned aerial
delivery vehicles in delivery networks. The focus is on comparing the performance of a
truck–drone network with standalone truck or drone delivery systems in terms of overall
delivery time and energy consumption. The objectives included examining the time and
energy associated with the truck–drone network, proposing an optimization algorithm to
determine the optimal number and locations of launch sites, and developing mathematical
formulations for estimating the optimal number of launch locations and total delivery time.
The algorithm presented in their paper utilized K-means clustering to find optimal launch
locations and a GA to solve the truck route as a TSP. The optimal solution is determined by
minimizing the cost associated with a parabolic convex cost function. The results show that
in tandem delivery efforts outperform standalone systems, and having multiple drones per
truck leads to energy and time savings. This paper also provided closed-form mathematical
solutions that serve as estimators for the optimal number of launch locations and delivery
time. Alinaghian and Zamani [22] focused on the IRP and its relevance in addressing fuel
consumption and environmental impact in the transportation sector. They proposed a
bi-objective model for IRP that incorporates fuel consumption and pollutant emissions as
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separate objectives. The model also considers a heterogeneous fleet composition, making
it more realistic for real-world applications. The study highlighted the importance of
optimizing fuel consumption to improve economic efficiency and mitigate environmental
issues related to transportation. The proposed model offered a novel approach to solving
IRP and shows promising results compared to other methods. By addressing the challenges
associated with the fuel consumption and environmental impact, this study contributed to
the field of transportation and logistics.

Sahraeian and Mehraneh [12] addressed the tri-objective two-echelon capacitated
vehicle routing problem (2E-CVRP) for distributing perishable products. The objective
is to minimize total travel cost, customer waiting times, and carbon dioxide emissions.
The proposed model is formulated as a mixed-integer nonlinear programming problem
and is transformed into a mixed integer linear programming problem using linearization
methods. To solve the problem, they introduced a non-dominated sorting GA (NSGA-II)
as a meta-heuristic approach. The algorithm is compared with the Lp-metric method in
small-sized problems and with the multi-objective particle swarm optimization (MOPSO)
algorithm in medium- and large-sized problems. The results demonstrate the efficiency
and effectiveness of the NSGA-II algorithm in finding near-optimal solutions within a rea-
sonable computational time. This study provided valuable insights into the optimization
of vehicle routing for perishable products. It highlighted the importance of considering
customer satisfaction through reduced waiting times and the reduction in carbon dioxide
emissions for environmental sustainability. The comparison of different algorithms pro-
vides a benchmark for evaluating the performance of optimization approaches in solving
the 2E-CVRP.

Haerani et al. [19] addressed the multiple-depot vehicle distribution routing problem
(MDVRP) in the context of perishable product distribution. This research focuses on finding
the optimal route using a GA and optimizing parameter values through the use of a fuzzy
logic controller (FLC). The objective is to minimize the risk of product spoilage by deter-
mining the shortest route for distribution. The combination of GA and FLC enhances the
optimization process and improves the efficiency of the distribution system. The findings
of the study demonstrated the effectiveness of the proposed approach in optimizing the
MDVRP and reducing the risk of product deterioration. Liu et al. [61] introduced a UAV-
vehicle joint delivery model for logistics distribution in mountainous cities, addressing the
challenges posed by complex terrain and limited UAV capabilities. The model aimed to im-
prove delivery efficiency and reduce the total delivery route length. The proposed approach
utilized a three-step route distribution method and employs a GA with end optimization
to solve the problem. Simulation results demonstrate the effectiveness of the joint delivery
model in solving logistics distribution problems in mountain cities. The future prospects of
UAV technology and its potential advancements, such as increased load capacity and flight
distance, are also highlighted. This study suggested further research directions, including
expanding the joint delivery model to multiple UAVs and vehicles, considering additional
factors like weather and signal interference, and exploring the application of the model in
different urban areas.

Li et al. [62] focused on the optimization of emergency logistics distribution using a
collaborative delivery model with vehicles and UAVs. This study addressed the limitations
of UAV-only delivery and proposes a model that considers factors such as start-up costs,
waiting costs, and penalty costs. A GA is used to minimize the overall logistics distribution
cost, including fixed costs, start-up costs, distribution costs, waiting costs, and penalty
costs. The model is compared with other delivery models in a county-level district in Xi’an
city, showing significant reductions in total cost compared to the vehicle-alone and UAV-
alone models. The vehicle–UAV collaborative delivery model improved the distribution
efficiency and customer satisfaction. However, they ignored to explore the impact of road
congestion constraints and the scale of vehicles and UAVs on collaborative delivery in
emergency situations. Shavarani et al. [63] focused on the economics and logistics of a
drone delivery system, specifically addressing the optimization of drone specifications
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and the configuration of launch and recharge stations. This study proposed a hierarchi-
cal facility location model to minimize the total costs of the system, taking into account
establishment costs, drone procurement and usage costs. Two metaheuristic algorithms,
GA and a hybrid GA, are developed and compared for solving the model. This study also
examined the feasibility and profitability of investing in a drone delivery system. The find-
ings provided valuable insights for companies considering establishing an aerial delivery
system, addressing logistics, investment feasibility, resource requirements, and demand
allocation. This paper suggested future research directions including considering capac-
itated models, fuzzy programming approaches, congestion models, and environmental
sustainability assessments.

Sajid et al. [64] presented a joint-optimization framework for addressing the UAV-
routing and UAV-route scheduling problems in UAV-assisted delivery systems. They
introduced mixed-integer linear programming models to capture the impact of incidental
processes and varying the payload on travel time. To optimize the travel time, a hybrid
genetic and simulated annealing (HGSA) algorithm is proposed for UAV-routing. The
HGSA algorithm combined GAs and simulated annealing to achieve the optimal global
position of customers while avoiding local optima. Additionally, a UAV-oriented MinMin
(UO-MinMin) algorithm is introduced for UAV-route scheduling to minimize makespan.
The UO-MinMin algorithm employs a UAV-oriented perspective to generate the route-
scheduling order efficiently without compromising makespan quality. Extensive Monte
Carlo simulations are conducted to evaluate the impact of the hybridization probability
of GA and SA in the HGSA algorithm. The performance of the proposed algorithms is
assessed using a set of benchmark instances, and they outperformed existing algorithms
such as GA, PSO-SA, DE-SA, and HHO. The effectiveness of the UO-MinMin algorithm
is demonstrated for various numbers of UAVs, surpassing base algorithms like MCT and
OLB. Pehlivanoglu and Pehlivanoglu [65] addressed the problem of constructing a safe
and efficient path for autonomous UAVs in target coverage scenarios. Various algorithms,
including GA_1, GA_2, GA_3, GA_4, and GA_5, are proposed to overcome challenges such
as collisions with terrain surfaces. The algorithms are tested in different 3D environments
with rural and urban terrains. The results show that the GA_5 algorithm, which uses
cluster centers based on collision points, outperforms the other algorithms by achieving a
significant reduction in the required number of cost function evaluations. The convergence
histories indicate that GA_4 and GA_3 also perform well. The accuracy of cluster centers
plays a crucial role in the success of the Voronoi diagram in GA_3 and GA_4. On the other
hand, GA_5 produces more accurate additional waypoints by considering only collision
points, resulting in higher confidence levels in the results. Overall, the findings highlight
the effectiveness of the proposed GA_5 algorithm in path planning for UAVs, particularly
in avoiding collisions with terrain surfaces.

Yuan et al. [27] proposed a coverage path planning method for fixed-wing UAVs based
on an improved GA. The algorithm addressed the energy inefficiency issue caused by the
conventional scan-type path planning approach. It utilized the good point set algorithm
to generate a more uniform primary population and incorporates heuristic crossover
and random interval inverse mutation operators to reduce the risk of local optimization.
Simulation results demonstrated that the proposed algorithm outperforms the conventional
GA in terms of solution quality, particularly with an increasing number of paths. The
authors suggested exploring region segmentation algorithms for large areas and extending
the coverage path planning to three-dimensional space in future research. Khan et al. [66]
explored the use of UAVs for emergency medical aid delivery. Their aim was to develop an
algorithm for efficient and safe UAV navigation from a hospital to the location of a medical
emergency. Their proposed algorithm focused on optimizing path planning to minimize
computational time and transportation costs. Various algorithms, including capacitated
vehicle routing problem (CVRP), PSO, ACO, and GA, are compared for vehicle routing. The
results demonstrated that the CVRP algorithm outperforms the others, particularly when
the vehicle capacity is increased. This indicated that the proposed path planning method has
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the potential to effectively provide real-time medical aid with improved efficiency. Euchi
and Abdeljawed [67] addressed the issue of energy consumption in VRPs by proposing
the use of UAVs as a battery-powered delivery method. The emergence of commercial
companies like Amazon, Google, and DHL utilizing drones for package delivery has led to
the development of a new variant of the VRP known as VRP with drones (VRPD). In VRPD,
vehicles and drones are employed to deliver packages to customers either independently or
in a dependent manner. An MILP model is presented to describe the problem, and a hybrid
GA is proposed to solve the VRPD. Experimental results demonstrated the effectiveness
of the proposed algorithm in solving this variant of the VRP. The study highlighted the
potential of using UAVs for efficient and environmentally friendly deliveries, providing
insights for companies looking to optimize their logistics operations.

Wang et al. [68] addressed the optimization of package delivery using a fleet of
drones with different capabilities. The problem is formulated as an extension of the
classic VRP and involves scheduling operations in a package depot center. A mixed-
integer programming (MIP) model is proposed to minimize the delivery time for a set
of packages. To tackle the computational complexity, two GAs, FBGA and RBGA, are
developed. RBGA incorporates a rescheduling-based optimization model to adjust drone
operations and minimize completion time. Extensive experiments show that the proposed
algorithms outperform the MIP approach, particularly for larger problem instances. The
findings highlighted the practicality and effectiveness of these methods for real-world
implementation in drone-assisted package delivery systems. Changjiang et al. [69] focused
on optimizing the delivery paths of UAVs for efficient and automated delivery in the field
of e-commerce and urban logistics. The problem is formulated as a multi-objective path
planning problem, aiming to minimize the total cost and maximize customer satisfaction. A
novel GA based on the non-dominant sorting GA II (NSGA-II) with constraints is proposed.
The algorithm represented decision vectors as one-dimensional chromosomes and utilizes
specialized variation operators. These design choices, along with the properties of NSGA-II,
enable the discovery of a larger number of non-crowding Pareto optimal solutions with
reduced computational complexity. A case study on a portion of the Solomon dataset
demonstrated the algorithm’s ability to find sparse and well distributed non-dominant
solutions within a short time and with a relatively small population size.

Shi et al. [53] addressed the need for the efficient and timely delivery of medical
supplies during the COVID-19 pandemic. The use of drones for medical supply delivery
offers advantages such as overcoming traffic restrictions and reducing the risk of contact
with COVID-19 patients. However, existing optimization models for drone delivery are
not suitable for the specific requirements of medical supply delivery during public health
emergencies. To address this, the authors proposed a new bi-objective mixed integer
programming model for the multi-trip drone location routing problem. This model allows
for simultaneous pick-up and delivery, enabling the efficient and timely delivery of medical
supplies to the right locations. To solve the model, a modified version of the NSGA-II
algorithm is developed. This modified algorithm incorporates double-layer coding to
enhance its performance in finding optimal solutions. Multiple sets of data experiments
are conducted to evaluate the performance of the proposed model and algorithm. The
results demonstrate that the simultaneous pick-up and delivery mode achieves shorter
delivery times, improves safety, and saves more resources compared to separate pick-up
and delivery modes. Additionally, sensitivity analysis is performed by varying certain
parameters, providing valuable insights for the management of medical supply delivery
using drones. Overall, the proposed approach shows promising results in meeting the
specific requirements of medical supply delivery during public health emergencies.

Kuo et al. [70] examined the feasibility and environmental advantages of using drones
for delivery. It introduces the VRP with drones (VRPD) model, which aims to minimize
both the delivery route’s makespan and carbon emissions. The model incorporated the
collaboration between trucks and drones, where each truck is equipped with a drone
to enhance delivery efficiency. The paper presented a mathematical formulation for the
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VRPD and proposes the use of the NSGA-II to solve it. The algorithm’s performance is
evaluated using different-scale problems, and the quality of the solutions is assessed using
hypervolume and spacing metrics. The results demonstrated that the algorithm generates
high-quality solutions, as indicated by favorable hypervolume and spacing values. Through
significance tests, the study confirmed the benefits of using drones in terms of reducing
both makespan and carbon emissions. The findings underscore the significant difference
achieved by incorporating drones in the delivery process. Hazama et al. [71] focused on the
scheduling problem of parcel delivery using drones, where customers need to be assigned
to both takeoff points and drones. A GA is proposed as a solution method to efficiently
find a near-optimal solution. Experimental results demonstrated that the proposed GA
outperforms an integer programming (IP) solver and other GAs in terms of speed and
solution quality. The effectiveness of the GA is attributed to its optimized crossover and
mutation operations. It is important to note that this study considers a scenario where
drones carry only one parcel. The authors ignored the exploration of the problem to drones
carrying multiple parcels.

Chiang et al. [72] investigated the environmental and cost-saving implications of
using unmanned aerial vehicles (UAVs) for last-mile parcel deliveries. The focus is on
analyzing the impact of UAVs on CO2 emissions and cost. A mixed-integer green routing
model is proposed to maximize the sustainability benefits of UAV usage. The model
considers factors such as energy consumption and carbon emissions. To solve the complex
model, a GA is developed. Extensive experiments are conducted to validate the analytical
model and the solution algorithm. The results demonstrated that routing and delivering
packages with UAVs can lead to energy savings and a reduction in carbon emissions. These
findings strongly support the argument that utilizing UAVs for last-mile logistics is not only
cost-effective but also environmentally friendly. Khoufi et al. [73] addressed the pickup
and delivery optimization problem with a time window and intermittent connectivity
network using UAVs. The NSGA-II algorithm was successfully applied, considering UAV-
specific constraints like refueling. A novel representation of individuals and associated
heuristics and algorithms were introduced to improve the solution generation, crossover,
and mutation processes. Experimental results showcased the effectiveness of the NSGA-
II approach in achieving high-quality results for the PDPTW-UAV problem, with and
without the consideration of refueling constraints. Future work will focus on optimizing
refueling management and developing a formula to determine the refueling time based on
UAV energy requirements, aiming to further enhance the efficiency and performance of
UAV-based pickup and delivery systems.

In a study conducted by Dorling et al. [9], a model for energy consumption in drone
delivery was developed. They proposed a cost function that takes into account drone reuse,
aiming to identify sub-optimal solutions in real-life scenarios. To optimize the overall cost
and delivery time, an MILP formulation was used, and the problem was solved using the
simulated annealing (SA) heuristic. The research findings demonstrated that, by optimizing
battery weight and promoting drone reuse, significant improvements of over 10% could
be achieved compared to scenarios where each drone had an identical battery weight.
Xia et al. [52] presented a nonlinear MIP formulation that aimed to optimize homogeneous
drone operations by minimizing costs while considering battery wear and disposal ef-
fects. To solve this problem, they implemented a tailored branch-and-price algorithm,
which demonstrated practical applicability by successfully solving instances with up to
100 customers within the given time limit. In a similar vein, Sawadsitang et al. [74] pro-
posed a three-stage stochastic IP model that accounted for the uncertainty of takeoff and
breakdown conditions in the context of minimizing the total delivery costs while adher-
ing to traveling distance limitations. To handle the high complexity of this optimization
problem, they adopted an L-shape decomposition method, which enabled an efficient
solution computation. Table 3 provides a summary of the key parameters and contributions
of each paper, allowing for a comparative analysis of the problem addressed, objectives,
optimization approach, and key contributions of each study.
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Table 3. Comparative analysis of flying vehicle routing optimization papers.

Study Problem Addressed Objective(s) Optimization Approach Key Contributions

Wei et al. [6] GA-based routing (GAR) protocol for
FANETs

Improve routing in FANETs
considering link stability, link
bandwidth, and node energy

GA
Significant improvements in network

throughput, delay reduction, and
network stability for FANETs

Jeauneau et al. [54] Path planning of UAVs in a 3D
environment

Real-time path planning, generating
multiple trajectories based on a Pareto

front
GA, A-Star algorithm

Enhanced path planning solutions,
improved fitness of A-Star solution,
flexibility, and real-time capability

Dai et al. [55]
Quality-aware coverage and path

planning for UAV networks in
complex environments

Achieve full coverage with
satisfactory resolution,

energy-efficient path planning
Waypoint generation algorithm Improved coverage, energy consumption,

suggested future research directions

Luo et al. [56]
Optimization of task allocation and

path planning for fixed-wing UAVs in
the presence of steady wind

Minimize time required for UAVs to
complete tasks in steady wind GA

Variable-speed Dubins path vehicle
routing problem (VS-DP-VRP) model,

effective solution for UAV task allocation
and path planning in steady wind

Greiff and
Robertsson [57]

Motion planning for a miniature UAV
considering computational

constraints, obstacle avoidance, and
priority assignment

GA
Modular approach for generating
state trajectories, efficient motion

planning in 2D and 3D environments

Chen et al. [58]

UAV path planning using improved
GA and

particle-swarm-optimization-based
ant colony optimization algorithm

Solve the TSP for UAVs, find optimal
path planning solutions

Improved genetic algorithm, particle
swarm optimization, ant colony

optimization

Effective and reasonable UAV path
planning schemes, more rational and

effective solutions compared to contrast
approach

Bouzid et al. [59]
Coverage path-planning algorithm for

quadrotors in a 2D workspace with
obstacle avoidance

Find optimal paths between points
and their neighbors, connect points to

form shortest path
RRT*FN algorithm, GAs

Effective solution for coverage scenarios
with obstacle avoidance and energy

efficiency

Ferrandez et al. [60]
Performance comparison of

truck–drone network, standalone
truck, and drone delivery systems

Minimize delivery time and energy
consumption GA, K-means clustering

In tandem delivery outperforms
standalone systems, closed-form

mathematical solutions for optimal
number of launch locations and delivery

time

Alinaghian and
Zamani [22] Bi-objective model for the IRP Optimize fuel consumption and

pollutant emissions GA
Novel approach for solving IRP

considering fuel consumption and
environmental impact
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Table 3. Cont.

Study Problem Addressed Objective(s) Optimization Approach Key Contributions

Sahraeian and
Mehraneh [12]

Capacitated VRP (CVRP) for
distributing perishable products

Minimize total travel cost, waiting
times, and carbon dioxide emissions NSGA-II

Efficient and effective solutions for the
2E-CVRP, consideration of customer

satisfaction and environmental
sustainability

Haerani et al. [19]
Multiple depot vehicle distribution

routing problem (MDVRP) for
perishable product distribution

Minimize risk of product spoilage by
determining shortest route GA, FLC Optimal route planning, reduced risk of

product deterioration

Liu et al. [61]
UAV-vehicle joint delivery model for
logistics distribution in mountainous

cities

Improve delivery efficiency, reduce
total delivery route length GA

Effective solution for logistics distribution
in mountain cities, future research

directions suggested

Li et al. [62]

Optimization of emergency logistics
distribution using collaborative

delivery model with vehicles and
UAVs

Minimize overall logistics distribution
cost, improve distribution efficiency GA

Reduced total cost compared to
vehicle-alone and UAV-alone models,

improved efficiency and customer
satisfaction

Shavarani et al. [63]

Optimization of drone delivery
system considering drone

specifications and configuration of
launch and recharge stations

Minimize total costs of the system GA
Insights into logistics, investment

feasibility, and resource requirements for
establishing an aerial delivery system

Sajid et al. [64]

Joint optimization framework for
UAV-routing and UAV-route

scheduling problems in UAV-assisted
delivery systems

Minimize travel time and makespan Hybrid genetic and simulated
annealing algorithm

Optimized UAV-routing and UAV-route
scheduling, outperformed existing

algorithms

Pehlivanoglu and
Pehlivanoglu [65]

Safe and efficient path planning for
autonomous UAVs in target coverage

scenarios

Minimize costs, consider battery wear
and disposal effects Branch-and-price algorithm

Optimized homogeneous drone
operations, practical applicability, battery

weight optimization

Hazama et al. [71] Optimization of scheduling for parcel
delivery using drones Minimize delivery route makespan GA Improved efficiency, speed, and solution

quality compared to other algorithms

Chiang et al. [72]
Environmental and cost-saving
implications of using UAVs for

last-mile parcel deliveries

Minimize energy consumption and
carbon emissions GA

Reduced energy consumption and carbon
emissions, cost-effective, and

environmentally friendly last-mile
logistics

Khoufi et al. [73]
Optimization of pickup and delivery

with UAVs in intermittent
connectivity network

Solve pickup and delivery problem
with time window, intermittent

connectivity network, and
UAV-specific constraints

NSGA-II
High-quality solutions for the

PDPTW-UAV problem, efficient handling
of UAV-specific constraints



Appl. Sci. 2023, 13, 10427 30 of 46

Table 3. Cont.

Study Problem Addressed Objective(s) Optimization Approach Key Contributions

Dorling et al. [9]
Model for energy consumption in

drone delivery considering
sub-optimal solutions

Minimize overall cost and delivery
time SA heuristic

Improved performance compared to
integer programming solver,

identification of sub-optimal solutions

Xia et al. [52]
Optimization of homogeneous drone
operations considering battery wear

and disposal effects
Minimize costs Tailored branch-and-price algorithm Practical applicability, successful solution

computation

Sawadsitang et al. [74]
Stochastic IP model for last-mile

delivery considering uncertainty and
traveling distance limitations

Minimize total delivery costs L-shape decomposition method
Efficient solution computation,

consideration of uncertainty and
limitations

Yuan et al. [27] Coverage path planning for
fixed-wing UAVs using improved GA

Optimize coverage path planning for
fixed-wing UAVs using an improved

GA

Improved GA for coverage path
planning

Improved solution quality for coverage
path planning with increasing number of

paths

Khan et al. [66]
Algorithm for efficient UAV

navigation in medical emergency
delivery

Develop an algorithm for efficient and
safe UAV navigation from hospital to

medical emergency location

Path planning using capacitated VRP
(CVRP) algorithm

Improved efficiency and safety in medical
emergency deliveries

Euchi and
Abdeljawed [67] Optimization of VRP using UAVs

Optimize VRP (VRP) using UAVs for
energy-efficient and environmentally

friendly deliveries
MILP model and hybrid GA

Efficient solution for VRP using UAVs
with improved energy efficiency and

environmental sustainability

Wang et al. [68] Optimization of package delivery
using fleet of drones

Minimize delivery time for packages
using a fleet of drones with different

capabilities

MIP model, FBGA, and RBGA genetic
algorithms

Efficient optimization of package delivery
with improved solutions compared to

MIP approach

Changjiang et al. [69] Optimization of UAV delivery paths
for e-commerce and urban logistics

Minimize total cost and maximize
customer satisfaction in UAV delivery

paths for e-commerce and urban
logistics

NSGA-II
Efficient discovery of non-crowding

Pareto optimal solutions with reduced
computational complexity

Shi et al. [53]
Optimization of medical supply

delivery using drones during
COVID-19

Optimize delivery of medical supplies
using drones during public health

emergencies

Bi-objective mixed integer
programming model and modified

NSGA-II algorithm

Efficient and timely delivery of medical
supplies during public health

emergencies

Kuo et al. [70] Optimization of delivery routes using
trucks and drones

Minimize delivery route makespan
and carbon emissions by combining

trucks and drones in a delivery
system

VRP with drones (VRPD) model and
GA

Reduced makespan and carbon emissions
in delivery systems by incorporating

drones
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These case studies collectively showcase the effectiveness of GAs in addressing the
routing optimization challenges specific to flying vehicles. The application of GAs enables
the consideration of multiple objectives, constraints, and trade-offs in the optimization
process, resulting in improved performance and efficiency in the routing of flying vehicles.

The assessment of the GA-based approach for multi-objective message routing in
FVs involves the utilization of various performance evaluation metrics in existing studies.
These metrics offer valuable insights into the quality and efficiency of the routing solu-
tions obtained through the GA optimization process. Figure 6 provides a comprehensive
overview of the performance metrics employed in the diverse studies analyzed in this
research. Notably, the majority of researchers have focused on three fundamental factors:
energy consumption, carbon emissions, and routing efficiency. These metrics underscore
the paramount importance of enhancing energy efficiency and sustainability while ensuring
optimal routing decisions for FVs. By emphasizing these key objectives, researchers aimed
to develop environmentally friendly and efficient routing solutions for FVs, which play a
critical role in promoting green transportation and mitigating the environmental impact of
these advanced aerial vehicles. It is essential to acknowledge that individual studies may
incorporate additional metrics based on the specific requirements and complexities of their
EnFV routing scenarios.

Figure 6. Performance metric analysis of GA-based FV routing optimization studies.

Table 4 summarizes GA studies for optimizing flying vehicle routing-based applications.
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Table 4. Comparative analysis of GA studies for optimizing flying vehicle routing-based applications.

Study Application Domain Optimization Technique Performance Metrics Results

Wei et al. [6] FANETs GA Throughput, delay, network stability Improved network throughput, reduced delay,
enhanced network stability

Jeauneau et al. [54] Path planning GA, A-Star Fitness improvement GA improves A-Star solution fitness by 44.5%

Dai et al. [55] UAV networks GA Coverage, energy consumption Improved coverage, reduced energy
consumption

Luo et al. [56] UAV task allocation GA Task allocation, path planning Effective task allocation and path planning under
steady wind conditions

Greiff and
Robertsson [57] UAV motion planning GA, projective algorithms,

quadratic programs Efficient motion planning Efficient motion planning in 2D and 3D
environments

Chen et al. [58] UAV path planning GA, PSO TSP optimization, path planning More rational and effective solutions for UAV
path planning

Bouzid et al. [59] Quadrotor path planning GA, RRT*FN Coverage, obstacle avoidance, energy
efficiency

Effective path planning with obstacle avoidance
for quadrotors

Ferrandez et al. [60] Delivery networks Clustering, GA Delivery time, energy consumption
In tandem truck–drone delivery outperforms

standalone systems in terms of delivery time and
energy consumption

Alinaghian and
Zamani [22] Inventory routing GA Fuel consumption, pollutant

emissions
Bi-objective model to optimize fuel consumption

and mitigate environmental issues

Sahraeian and
Mehraneh [12] Capacitated VRP NSGA-II Travel cost, waiting time, CO2

Emissions
NSGA-II algorithm provides near-optimal

solutions for the 2E-CVRP

Haerani et al. [19] MDVRP GA, FLC Routing efficiency GA combined with FLC improves the efficiency
of the distribution system

Liu et al. [61] Logistics distribution GA Delivery efficiency, route length Joint delivery model improves delivery efficiency
and reduces route length

Li et al. [62] Emergency logistics GA Distribution cost, customer
satisfaction GA minimizes overall logistics distribution cost

Shavarani et al. [63] Drone delivery system GA Total costs Hierarchical facility location model minimizes
total costs of the system

Sajid et al. [64] UAV routing MILP, GA, SA Travel time optimization, UAV route
scheduling

Hybrid genetic and simulated annealing
algorithms provide effective solutions for

UAV-assisted delivery systems
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Table 4. Cont.

Study Application Domain Optimization Technique Performance Metrics Results

Pehlivanoglu and
Pehlivanoglu [65] UAV path planning GA Safe path construction

Algorithms overcome challenges such as
collisions with terrain surfaces and provide safe

and efficient path planning for autonomous
UAVs

Yuan et al. [27] Fixed-wing UAVs GA Energy efficiency, solution quality
Improved energy efficiency compared to

conventional scan-type path planning
approaches

Khan et al. [66] Emergency aid delivery Capacitated VRP (CVRP) UAV navigation efficiency Efficient and safe UAV navigation from a
hospital to the location of a medical emergency

Euchi and
Abdeljawed [67] VRPD GA Energy efficiency, environmentally

friendly deliveries
Tailored GA for optimizing UAV deliveries with

battery-powered drones

Wang et al. [68] Drone-assisted delivery GA Makespan, carbon emissions GAs outperform MILP approach, reducing both
makespan and carbon emissions

Changjiang et al. [69] E-commerce, logistics NSGA-II Multi-objective path planning
Genetic algorithm generates sparse and well
distributed non-dominant solutions within a

short time

Shi et al. [53] Medical supply delivery Modified NSGA-II, mixed-integer
programming delivery time, safety, resource savings

Simultaneous pick-up and delivery mode
achieves shorter delivery times, improves safety,

and saves more resources

Ku et al. [70] Delivery optimization GA Carbon emissions, makespan
GA reduces both makespan and carbon

emissions, incorporating drones in the delivery
process

Hazama et al. [71] Parcel delivery GA Speed, solution quality GA outperforms other algorithms in terms of
speed and solution quality

Chiang et al. [72] Last-mile delivery GA Energy consumption, carbon
emissions

Mixed-integer green routing model maximizes
sustainability benefits, reducing energy

consumption and carbon emissions

Khoufi et al. [73] Pickup and delivery GA Optimization quality Tailored GA generates high-quality solutions for
pickup and delivery optimization with UAVs

Dorling et al. [9] Drone energy consumption SA Energy consumption optimization Cost function considers drone reuse, identifies
sub-optimal solutions in real-life scenarios
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Table 4. Cont.

Study Application Domain Optimization Technique Performance Metrics Results

Xia et al. [52] Drone operations Branch-and-price algorithm Battery wear, disposal effects
Branch-and-price algorithm optimizes

homogeneous drone operations, considering
battery wear and disposal effects

Sawadsitang et al. [74] Delivery optimization L-shape decomposition method Uncertainty handling, delivery
conditions

Three-stage stochastic IP model considers
uncertainties and limitations in delivery

conditions
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Based on the provided Table 4, it is evident that the GA-based studies cover a wide
range of application domains, including FANETs [6], UAV path planning [54], UAV net-
works [55], VRPs [56], logistics distribution [58], emergency logistics [59], drone delivery
systems [18], and medical supply delivery [71]. This indicates the diverse areas in which
GA-based optimization techniques are being applied to enhance efficiency and effectiveness.
The optimization techniques employed in these studies vary, with common approaches
including GAs, A-Star algorithm, PSO, ACO, and MILP. These techniques are well suited
for addressing complex optimization problems and have been adapted and enhanced to
tackle specific challenges in each application domain. The results of the studies indicate
positive outcomes in terms of improving efficiency, reducing energy consumption, enhanc-
ing coverage, optimizing logistics, and achieving better solution quality. Many studies have
demonstrated significant improvements compared to existing approaches or highlighted
the potential of the proposed methods in real-world scenarios. However, it is important
to note that the results may vary depending on the specific conditions and constraints of
each application domain. While the studies provide valuable insights and contributions to
their respective fields, there are a few limitations and areas for further improvement. Some
studies acknowledge the need for future research to consider additional factors or chal-
lenges, such as energy consumption in realistic environments, or scalability [9,27,66]. These
future research directions can enhance the practicality and applicability of the proposed
optimization techniques [53,70].

In terms of optimization techniques, it would be beneficial to explore the use of other
metaheuristic algorithms or hybrid approaches to further improve solution quality and
computational efficiency. Additionally, several studies focus on single-objective optimiza-
tion, and future research could consider multi-objective optimization to address conflicting
objectives and provide decision-makers with a range of trade-off solutions. Furthermore,
while the studies highlight the benefits of using UAVs for delivery and logistics, there is
limited discussion on the regulatory, safety, and ethical aspects associated with UAV oper-
ations [69,70]. Considering these factors is crucial for the successful integration of UAVs
into real-world scenarios. Overall, the studies reviewed provide valuable contributions to
their respective domains and demonstrate the effectiveness of optimization techniques in
addressing complex problems. However, further research is needed to address the identi-
fied limitations and to explore new avenues for optimization in the context of emerging
technologies and evolving application domains.

In summary, performance evaluation metrics such as the average travel time, energy
consumption, message delivery reliability, and network congestion were utilized to assess
the effectiveness of the GA-based approach for multi-objective message routing in EnFVs.
The results obtained in various studies demonstrate the capability of GAs to provide
efficient and effective routing solutions, improving the travel time, energy consumption,
reliability, and overall system performance.

6. Evaluation, Benefits, and Limitations of GA-Based Routing

GA-based routing offers several advantages in the context of routing for EnFVs. Firstly,
GAs are highly effective in addressing complex optimization problems with multiple
objectives, allowing for the simultaneous consideration of various critical factors.

A comprehensive quantitative performance evaluation of GA-based routing was con-
ducted in [16] for optimizing route selection within the EnFVs paradigm. This evaluation
treated energy consumption and transmission rates as a MOO problem, and GA was
employed to select the best optimal solution from the Pareto front. The assessment was
carried out using real New York City traffic trace data, where it achieved an impressive
90% packet delivery ratio with GA. In contrast, three state-of-the-art solutions yielded
packet delivery ratios ranging from 50% to 70%. It is worth noting that the optimal route
chosen by GA incurred a slightly longer connection time, approximately 4–5 s, compared
to all existing solutions. This outcome is particularly significant considering the high
mobility of the flying vehicles involved, which travel at speeds of 10–50 m per second. A
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connectivity advantage of more than five seconds represents a substantial gain in EnFV
routing performance. However, it is crucial to acknowledge that genetic algorithm-based
routing comes with its share of limitations and challenges. Notably, the management of
trade-offs between multiple objectives demands careful consideration since optimizing one
objective may necessitate compromises in others.

In spite of these limitations, genetic algorithms remain an invaluable tool for multi-
objective routing in electric and flying vehicle systems. The following sub-sections delve
into the benefits, limitations, and trade-offs associated with GA-based routing in more detail.

6.1. Benefits of GAs in Electric and Flying Vehicle Routing

GAs offer several benefits when applied to the optimization of message routing in
EnFVs. These advantages stem from the unique characteristics of GAs, such as their ability
to handle multi-objective optimization problems and their capacity to explore a wide range
of potential solutions [75]. Firstly, GAs excel in handling multiple conflicting objectives
in routing optimization for EnFVs [76]. In these complex transportation systems, the ob-
jectives may include minimizing travel time, maximizing energy efficiency, considering
environmental factors, and ensuring passenger comfort. Traditional routing algorithms
often struggle to effectively balance these objectives. However, GAs leverage the concept of
Pareto dominance and non-dominated sorting to generate a diverse set of solutions, known
as Pareto-optimal solutions. These solutions represent trade-offs between the different objec-
tives, allowing decision makers to choose the most suitable routing strategies based on their
preferences and priorities. Moreover, GAs enable the exploration of a large solution space,
providing a more comprehensive search for optimal or near-optimal solutions [31]. The use
of crossover and mutation operators facilitates the creation of new routes by combining and
modifying existing ones, introducing diversity and preventing premature convergence to
suboptimal solutions. This feature is particularly advantageous in dynamic transportation
environments, where conditions such as traffic congestion, charging station availability, and
flight restrictions may change over time. By adaptively updating and refining the routing
solutions, genetic algorithms can respond to real-time data and ensure the resilience and
efficiency of the routing strategy. Furthermore, GAs offer flexibility in the representation of
routes, allowing the incorporation of various constraints and considerations specific to En-
FVs [34,77]. For example, the representation can include information about charging station
locations, battery capacity, vehicle range, flight restrictions, and other relevant factors. This
flexibility allows the optimization process to consider these vehicle-specific requirements,
leading to more realistic and effective routing solutions.

6.2. Limitations and Challenges in GA-Based Routing

While GA-based routing offers significant advantages for optimizing message routing
in EnFVs, it also comes with certain limitations and challenges that need to be addressed.
Understanding these limitations is crucial for researchers and practitioners to develop
more robust and effective solutions. One of the primary challenges is the computational
complexity associated with GAs [68,78]. As the problem size and the number of objectives
increase, the computational time required to find optimal or near-optimal solutions may
become prohibitively high. The exploration of the solution space through the population
of chromosomes and the application of selection, crossover, and mutation operators ne-
cessitate substantial computational resources. Researchers should focus on developing
efficient algorithms and parallel computing techniques to mitigate this challenge [1]. An-
other limitation is the difficulty in determining appropriate parameter settings for the GA.
Parameters such as population size, mutation rate, and crossover rate significantly impact
the algorithm’s performance and convergence. Identifying the optimal parameter values is
a non-trivial task, as they often depend on the specific characteristics of the routing problem
and the objectives involved. Researchers must conduct thorough experimentation and
sensitivity analysis to determine suitable parameter settings for different scenarios [68].

Furthermore, GA-based routing may struggle with finding a balance between explo-
ration and exploitation of the solution space. Premature convergence, where the algorithm
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becomes trapped in a suboptimal solution, is a common issue. The selection of appropri-
ate selection, crossover, and mutation operators, as well as the management of diversity
within the population, are crucial for addressing this challenge. Novel techniques, such
as adaptive operators and diversity preservation mechanisms, should be explored to en-
hance the algorithm’s exploration capabilities [79]. Additionally, the inclusion of real-time
data and dynamic updates in GA-based routing introduces additional complexities. The
incorporation of real-time factors, such as traffic conditions, charging station availability, or
flight restrictions, requires efficient data integration and decision-making mechanisms. Dy-
namic updates further exacerbate the computational complexity and necessitate algorithms
capable of adapting the routes in real-time. Research efforts should focus on developing
algorithms that can handle dynamic environments and efficiently incorporate real-time
data [1,68].

Addressing these limitations and challenges will pave the way for more effective and
efficient GA-based routing solutions in the context of EnFVs. Future research should focus
on developing advanced algorithms, incorporating advanced optimization techniques,
and integrating emerging technologies to overcome these challenges and unlock the full
potential of GA-based routing.

6.3. Trade-Offs between Multiple Objectives

In multi-objective message routing for EnFVs, optimizing multiple objectives often
leads to trade-offs among different performance metrics. These trade-offs arise due to the
inherent conflicts and dependencies between objectives, making it challenging to find a
single optimal solution that simultaneously satisfies all objectives. For instance, in electric
vehicle routing, two primary objectives are minimizing travel time and minimizing energy
consumption [17,80]. These objectives are inherently contradictory, as reducing the travel
time often requires higher vehicle speeds and increased energy consumption. On the
other hand, minimizing energy consumption might lead to longer travel times. Therefore,
finding an optimal routing solution necessitates striking a balance between these conflicting
objectives. Similarly, in the case of FV routing, objectives such as minimizing flight time,
avoiding restricted airspace, and optimizing passenger comfort can come into play [9,55].
These objectives may compete with each other, as minimizing the flight time might involve
flying through congested or restricted areas, potentially compromising passenger comfort
or violating airspace regulations.

To handle these trade-offs, GAs offer a valuable approach. GAs utilize the concept of
Pareto dominance and non-dominated sorting to identify a set of Pareto-optimal solutions,
also known as the Pareto front [14]. These solutions represent different trade-offs between
the multiple objectives, where improving one objective comes at the expense of another.
By analyzing the Pareto front, decision-makers can choose the most appropriate solution
based on their preferences and priorities. Several metrics can be employed to evaluate the
trade-offs between objectives, such as the hypervolume indicator, epsilon dominance, and
weighted sum of objectives. These metrics provide insights into the quality and diversity of
solutions along the Pareto front, allowing decision makers to understand the trade-offs and
make informed decisions [81]. Previous studies in the field demonstrated the effectiveness
of GAs in identifying trade-offs and enabling decision-making in multi-objective message
routing for EnFVs.

7. Future Research Directions

In the field of multi-objective message routing in EnFVs, there are several promising
avenues for future research. These directions aim to enhance the effectiveness and efficiency
of routing algorithms and address various challenges and considerations using GA, as
described below.

7.1. Integration of Real-Time Data and Dynamic Routing Updates

One promising area for future research in multi-objective message routing for EnFVs is
the integration of real-time data and dynamic routing updates [24,80]. Real-time data, such
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as traffic conditions, weather information, vehicle availability, and charging station status,
can significantly impact the performance and efficiency of routing decisions. Incorporating
such dynamic factors into the GA-based optimization process can enable adaptive and
responsive routing strategies that better account for the current operating conditions of
the vehicles and the transportation network. To achieve this integration, researchers can
explore various avenues. Firstly, the development of efficient data collection mechanisms
and sensors can provide real-time information on key parameters, such as traffic congestion,
weather patterns, and charging station availability [20]. These sensors could be integrated
into the vehicles or the surrounding infrastructure to gather relevant data continuously.

Secondly, novel algorithms and techniques need to be devised to effectively process
and utilize the real-time data [1,82]. Machine learning approaches, such as reinforcement
learning, deep learning, or online learning, can be explored to develop models that can
learn and adapt to changing conditions in real-time. These models can be integrated
into the GA framework to dynamically update the routing decisions based on the latest
available data. Furthermore, the scalability of the GA approach needs to be considered
when incorporating real-time data [38]. Efficient techniques for handling large-scale and
complex routing problems in real-time must be explored to ensure the practicality and
feasibility of the proposed solutions.

In conclusion, integrating real-time data and dynamic routing updates into the GA-
based optimization framework is a promising direction for future research. This integration
can enhance the adaptability, responsiveness, and efficiency of multi-objective message
routing in EnFVs. By leveraging real-time information on traffic, weather, and vehicle
availability, researchers can develop intelligent routing strategies that effectively balance
multiple objectives in dynamic transportation systems.

7.2. Hybrid Approaches and Integration with Other Optimization Techniques

While GAs have shown promise in optimizing multi-objective message routing in
EnFVs, there is still room for further advancements by exploring hybrid approaches and
integrating them with other optimization techniques. Hybridization involves combining
genetic algorithms with complementary optimization methods to leverage their individual
strengths and improve the overall performance of the routing algorithms [22,35].

One possible direction for future research is the integration of machine learning
techniques with GAs [83,84]. Machine learning algorithms, such as neural networks or
reinforcement learning, can be employed to model and predict the dynamic behavior of
EnFVs, including traffic patterns, charging station availability, and flight restrictions. These
learned models can then be used as heuristic guidance within the GA framework to enhance
the decision-making process during message routing. For instance, neural networks can be
trained to estimate energy consumption or predict congestion levels, which can inform the
GA’s fitness evaluation and help optimize the routing solutions. Such hybrid approaches
have the potential to improve the scalability and adaptability of the routing algorithms
in dynamic environments. Additionally, the integration of other optimization techniques,
such as swarm intelligence algorithms or ant colony optimization with GAs can lead to
hybrid algorithms that offer enhanced exploration and exploitation capabilities [85]. For
example, swarm intelligence algorithms, inspired by collective behavior in natural systems,
can be used to dynamically adapt the population size, mutation rates, or selection strategies
in the GA based on the current state of the transportation system. This combination can
provide a more robust and efficient search process, enabling the GA to overcome local
optima and converge towards better solutions. Furthermore, the use of metaheuristic
frameworks, such as genetic programming or memetic algorithms, can also be explored to
develop not only the routing solutions but also the operators and parameters within the
GA itself [68,86]. This allows for an automated adaptation of the GA’s behavior during the
optimization process, leading to improved performance and convergence.

These are just a few potential avenues for future research in the domain of multi-
objective message routing in EnFVs using genetic algorithms. Exploring hybrid approaches
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and integration with other optimization techniques can lead to novel algorithms that
tackle the challenges of scalability, adaptability, and efficiency in the context of dynamic
transportation systems.

7.3. Consideration of Uncertainty and Risk Management

One critical aspect that requires further investigation in the field of multi-objective
message routing for EnFVs is the consideration of uncertainty and risk management. In
real-world transportation systems, uncertainties such as unpredictable traffic conditions,
weather disruptions, or changes in vehicle availability can significantly impact the perfor-
mance and reliability of message routing algorithms [87]. Moreover, flying vehicles face
additional uncertainties related to airspace regulations, airspace congestion, and flight path
deviations due to safety considerations. To address these challenges, future research should
focus on developing routing optimization models that explicitly incorporate uncertainty
and risk management mechanisms [88]. Bayesian approaches, probabilistic modeling,
or uncertainty quantification techniques can be employed to represent and reason about
uncertain factors in the routing optimization process. By integrating real-time data and
predictive models, these approaches can estimate the likelihood of events and dynamically
adapt the routing decisions to minimize potential risks.

One potential avenue for research in this direction is to develop robust optimization
models that consider the worst-case scenarios or robust objectives [89]. Robust optimization
aims to optimize the system’s performance against a set of plausible future scenarios, rather
than assuming a single deterministic scenario. This allows for more resilient and adaptive
routing decisions that can handle unforeseen events and uncertainties in the transportation
system. Furthermore, the integration of risk management techniques can help in identifying
and mitigating potential risks associated with message routing [90]. Risk assessment
methodologies, such as fault tree analysis or failure mode and effects analysis, can be
employed to identify critical failure points and vulnerabilities in the routing system. By
incorporating risk mitigation strategies, such as redundant routes, backup communication
channels, or dynamic reconfiguration mechanisms, the routing algorithms can enhance
system reliability and resilience in the face of uncertain events. Research in this area could
also explore the application of machine learning and data-driven approaches to improve
uncertainty and risk management in routing. By leveraging historical data and learning
from past routing decisions, machine learning algorithms can assist in predicting and
mitigating potential risks and uncertainties. For example, anomaly detection techniques
can identify abnormal traffic patterns or system behaviors, triggering proactive measures
to ensure reliable message routing.

In summary, future research in multi-objective message routing for EnFVs should
give significant attention to the consideration of uncertainty and risk management. The
integration of uncertainty quantification techniques, robust optimization models, risk
assessment methodologies, and machine learning approaches can enhance the adaptability,
reliability, and resilience of routing algorithms in dynamic transportation systems.

7.4. Addressing Scalability and Large-Scale Routing Problems

One of the key challenges in multi-objective message routing in EnFVs is scalability,
especially when dealing with large-scale transportation networks [91]. As the number of
vehicles and communication nodes increases, the complexity of the routing problem grows
exponentially, making it computationally expensive and time-consuming to find optimal or
near-optimal solutions. Therefore, addressing scalability is crucial to enable the practical im-
plementation of GA-based routing approaches in real-world scenarios. To tackle scalability,
future research should focus on developing efficient and scalable algorithms for large-scale
routing problems. One potential direction is the exploration of parallel and distributed
computing techniques. By leveraging the power of parallel processing and distributed
computing architectures, it is possible to distribute the computation load among multiple
computing units, enabling faster and more scalable solutions. For instance, techniques
such as parallel GAs, map-reduce frameworks, and cloud computing infrastructure can be
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explored to efficiently tackle large-scale routing problems [1,49]. Moreover, the utilization
of metaheuristic approaches beyond GAs could be investigated. Evolutionary algorithms,
including genetic algorithms, have shown promise in multi-objective optimization, but
other metaheuristic algorithms such as particle swarm optimization, ant colony optimiza-
tion, or simulated annealing can also be considered. These algorithms offer different search
strategies and exploration–exploitation trade-offs, which may provide improved scalability
and convergence properties for large-scale routing optimization problems [91].

Another avenue for future research is the development of hybrid approaches that com-
bine GAs with other optimization techniques or heuristics [3,38]. Hybrid algorithms can
leverage the strengths of different algorithms to address scalability challenges effectively.
For example, integrating GAs with local search methods or metaheuristic hybrids could po-
tentially improve the exploration of the solution space and enhance the convergence speed
for large-scale routing problems [7,91]. Additionally, the investigation of approximation
algorithms and heuristics tailored specifically for large-scale routing problems is warranted.
These algorithms aim to provide near-optimal solutions within reasonable computational
time, even though they do not guarantee global optimality [92]. Approaches such as local
search, greedy algorithms, or clustering-based heuristics can be explored and customized
to address the unique characteristics and constraints of EnFV routing scenarios.

In conclusion, future research should prioritize addressing scalability challenges and
focusing on large-scale routing problems in the context of multi-objective message routing
in EnFVs. Exploring parallel and distributed computing techniques, considering alternative
metaheuristic algorithms, developing hybrid approaches, and investigating approximation
algorithms and heuristics will contribute to the practical implementation of efficient routing
solutions for real-world transportation networks.

7.5. Enhancing Energy Efficiency and Sustainability in Routing

One crucial aspect of multi-objective message routing in EnFVs is the need to enhance
energy efficiency and promote sustainability [93]. As these vehicles rely on limited energy
resources, optimizing routing decisions to minimize energy consumption and promote
greener transportation is of paramount importance. Therefore, future research should ex-
plore innovative approaches to integrate energy efficiency and sustainability considerations
into the GA-based routing optimization.

One potential direction is to develop intelligent routing algorithms that consider the
energy consumption patterns of EnFVs [94]. By incorporating vehicle-specific energy mod-
els, such as battery discharge rates or power consumption rates, into the fitness evaluation
process, the GA can prioritize routes that minimize energy usage. Additionally, dynamically
adapting the routing decisions based on real-time energy availability and charging station
locations can further optimize energy consumption. Another avenue for research is to
explore the integration of renewable energy sources and charging infrastructure planning
into the routing optimization process [95]. This can involve incorporating data on renew-
able energy generation, such as solar or wind power availability, and identifying optimal
routes that enable EnFVs to recharge at strategically located charging stations powered
by renewable sources. By aligning the routing decisions with sustainable energy genera-
tion and distribution, the overall energy efficiency and sustainability of the transportation
system can be improved. Furthermore, considering the environmental impact of routing
decisions is crucial for promoting sustainability. Future research can focus on integrating
environmental factors, such as emissions and air quality, into the multi-objective routing
optimization. By incorporating environmental models and data, the GA can generate routes
that minimize carbon emissions or avoid areas with high pollution levels, contributing to
sustainable transportation practices. Table 5 summarizes the aforementioned directions for
future research in the field.
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Table 5. Summary of future research directions in multi-objective message outing for EnFVs.

Research Direction Description

Integration of real-time data and dynamic routing updates [96]

- Incorporating real-time data such as traffic conditions, weather information, and vehicle availability
into routing decisions.
- Developing efficient data collection mechanisms and sensors for continuous data gathering.
- Utilizing machine learning approaches to process and utilize real-time data effectively.
- Ensuring the scalability of the algorithms to handle large-scale and complex routing problems in real time.

Hybrid approaches and integration with other optimization techniques
- Integrating machine learning techniques with GAs to enhance decision making during routing.
- Exploring the integration of swarm intelligence algorithms or other metaheuristic approaches with
genetic algorithms.
- Leveraging metaheuristic frameworks to evolve routing algorithms and parameters within the GA itself.

Consideration of uncertainty and risk management
- Developing routing optimization models that explicitly incorporate uncertainty and risk management mechanisms.
- Employing robust optimization models and risk assessment methodologies to handle uncertainties and mitigate
potential risks.
- Applying machine learning and data-driven approaches to improve uncertainty and risk management in routing.

Addressing scalability and large-scale routing problems [97]

- Developing efficient and scalable algorithms for large-scale routing problems, including exploring parallel and
distributed computing techniques.
- Investigating the utilization of alternative metaheuristic algorithms and hybrid approaches to improve scalability.
- Exploring approximation algorithms and heuristics tailored specifically for large-scale routing problems.

Enhancing energy efficiency and sustainability in routing [98]
- Incorporating vehicle-specific energy models into the routing optimization process.
- Integrating renewable energy sources and charging infrastructure planning into the routing optimization.
- Considering environmental factors and emissions in the multi-objective routing optimization.
- Incorporating incentive mechanisms and policies to promote sustainable and energy-efficient routing decisions.
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8. Conclusions

In conclusion, this research paper focused on the challenges of message routing in
EnFVs and explored the application of GAs to optimize multi-objective message routing in
these dynamic transportation systems. This paper highlighted the unique requirements and
complexities posed by EnFVs, such as limited energy resources, airspace regulations, and
dynamic operating conditions. Traditional routing algorithms designed for conventional
vehicles were found to be inadequate in addressing these challenges. To tackle the multi-
objective nature of message routing in EnFVs, researchers turned to GAs, which proved
effective in optimizing routing decisions considering multiple objectives and constraints
specific to EnFVs. GAs leveraged evolutionary principles to develop potential solutions,
allowing for the exploration of the solution space and identifying trade-offs between
conflicting objectives. The key findings of this paper emphasized the importance of multi-
objective optimization, the effectiveness of GAs in addressing routing problems, and
the benefits showcased in case studies. However, the paper acknowledged challenges
such as scalability, the integration of real-time data, uncertainty handling, and energy
efficiency that require further research and development. The implications of GA-based
routing optimization in EnFVs were far-reaching, including reduced energy consumption,
improved system reliability, minimized travel time, and enhanced sustainability. Moreover,
the integration of real-time data and dynamic routing updates can improve the adaptability
and responsiveness of routing algorithms. Future research directions and opportunities
were identified, including real-time data and dynamic routing updates, investigating hybrid
approaches, considering uncertainty and risk management, addressing scalability, and
enhancing energy efficiency in routing.

In summary, this research paper demonstrated the potential of GAs in addressing
the multi-objective message routing problem in EnFVs. By providing a comprehensive
review of methodologies, highlighting key findings, and suggesting future research direc-
tions, this paper significantly contributes to the field of routing optimization in dynamic
transportation systems. The application of GAs in EnFV routing offers exciting prospects
for advancing the efficiency, reliability, and sustainability of transportation systems. By
leveraging the power of GAs, researchers and practitioners can optimize routing solutions
and pave the way for more efficient, sustainable, and reliable transportation systems in
the future.
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