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Abstract: Analyzing network traffic over time is crucial for understanding the changes in network
activity. To properly examine network traffic patterns over time, multiple network events in each
timestamp need to be converted to time series data. In this study, we propose a new approach to
transform network traffic data into time series formats by extracting temporal features to analyze
normal/attack patterns. The normal patterns indicate network traffic occurred without any intrusion-
related activities, whereas the attack patterns denote potential threats that deviate from the normal
patterns. To evaluate the features, long short-term memory (LSTM) is applied to forecast multi-step
network normal and attack events. Visual analysis is also performed to enhance the understanding
of key features in the network. We compared the performance differences using time scales of
60 and 120 s. Upon evaluation, we found that the temporal features extracted with the 60 s time scale
exhibited better performance in forecasting future network events.

Keywords: multi-step forecasting; time series; network traffic analysis; wavelet transformation;
permutation entropy

1. Introduction

Time series data is a collection of successive observations that are recorded in chrono-
logical order. Time series prediction (TSP) involves analyzing historical time series data to
discover patterns and predict future values. TSP has commonly been utilized in various
fields such as stock price prediction [1], weather forecasting [2], earthquake prediction [3],
river water level forecasting [4], physiological symptoms detection [5], and more. Moni-
toring and forecasting network events are imperative in network intrusion to understand
future attack trends. Network traffic analysis poses a particular challenge due to the ever-
changing nature of network activities over time. Time series analysis can play a vital role
in pinpointing essential attributes of attack events during the examination of network
activities. However, it may not be suitable for analyzing network traffic data directly, given
that network traffic events generally occur as a series of consecutive observations within
the same timestamp. Furthermore, monitoring sudden changes in the network over time
can serve as a key characteristic for identifying attack events.

In modern network environments, an enormous volume of network events is gen-
erated within seconds. Consequently, the analysis of network events requires significant
effort, particularly when dealing with large numbers of captured network variables. To
analyze time series network events data, it is critical to transform the data into time series
formats with equal intervals. Previously, researchers used aggregation [6] to analyze a large
number of streaming intrusion alerts. However, applying the aggregation technique to
time-stamped events may be susceptible to high variation because of numerous events at
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time ti. In this study, we propose an approach to convert multiple sequences of network
events to time series formats and forecast network normal and attack events. Specifically,
our approach extracts temporal features by utilizing statistical measurements and compu-
tational methods to convert network events to time series data with a targeted time scale.
A publicly available network traffic dataset captured in a honeypot system is used to test
our proposed approach and to highlight the effectiveness of identifying attack patterns
and forecasting possible future attacks. To determine the effectiveness of forecasting future
attack patterns, we evaluated two different time scales to predict network attack events
and understand the temporal patterns of attackers. We also performed a series of data
analyses to determine the effectiveness of our proposed approach. In summary, we make
the following contributions in this study:

• An advanced approach is introduced to extract temporal features by integrating
wavelet transform, permutation entropy, and statistical measurements from network
events. We also propose a new way to extract temporal features of categorical network
traffic variables.

• The performance evaluation with different time scales (ts = 60 and 120 s) is conducted
to determine the effectiveness of the proposed approach.

• Deep learning (DL) is utilized to evaluate the features and forecast multiple outputs
(i.e., network normal and attack events).

• Visual analysis with multiple visualization techniques is performed to determine the
effectiveness of analyzing network events with the extracted temporal features.

This paper begins by describing related work in Section 2. Then, we explain our
proposed approach and the network traffic dataset in Section 3. In Section 4, experimental
results are presented. Lastly, we discuss the implications of this study and future research
in Sections 5 and 6.

2. Related Work

Capturing the trends from time series data is a major task in analyzing anomaly
detection. Researchers have employed a range of methods to improve the performance of
network traffic prediction. These methods encompass statistical, machine learning, and
deep learning techniques. Also, time series techniques, such as AR, ARMA, and ARIMA,
are often used to predict time series data [7].

Wan et al. [8] proposed a predictive model for attack behaviors by aggregating traf-
fic flows into bags, which are fixed intervals, using the distribution of data within each
bag. The Gaussian mixture model (GMM) was used to check the data distribution. They
analyzed the Kyoto 2006+ dataset and found that the model effectively predicted the
number of security incidents. Werner et al. [6] introduced a novel approach known as
CLEAR (concept learning for intrusion event aggregation in real time), which involves
grouping intrusion alerts through concept learning and matching incoming alerts with
attack behaviors that exhibit similar temporal characteristics. The study employed the
concept of inter-arrival times (IATs) to aggregate alerts. By conducting a two-sample
KS-Test, the approach can generate aggregated alert groups that are statistically similar to
check any significant differences with the current aggregates and determine the status of
updating known concepts. Yaacob et al. [9] used a univariate autoregressive integrated
moving average (ARIMA) method to detect DoS attacks utilizing the protocol information.
Zeng et al. [10] introduced a multivariate time series anomaly detection approach based on
an adversarial transformer structure to ensure the quality of the Internet of Things (IoT)
services. Abdullah et al. [11] proposed a cyber defense system using generalized autore-
gressive moving average (GARMA) to predict hourly attack rates. This study emphasized
the significance of anticipating potential future attacks as such advanced predictions can
provide valuable information to system administrators.

Sokol et al. [12] conducted a time series analysis employing the Box-Jenkins technique.
They applied this technique to create autoregression (AR) models for predicting attacks,
using network traffic information obtained from honeypots. The study suggested that
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bootstraps based on AR(p) were appropriate for attack prediction, particularly when p = 1,
indicating that the number of preceding values used to predict the following values was
1. Lee et al. [13] introduced an algorithm for proactive real-time anomaly detection. This
algorithm employed long short-term memory (LSTM) to predict network anomalies in
incoming data. Using short-term historical data points, the approach identified anomalies
and dynamically adjusted the detection threshold over time. As a result, the algorithm
could detect anomalies in real time without human intervention, offering early warnings.
However, the approach accumulated time series data which used {t0, t1, · · · , tn−1} to
generate an LSTM model and predict whether the upcoming at tn data point showed an
anomaly based on a threshold. The proposed RePAD can detect anomalies to provide
early warnings in real time. The LSTM model is continuously generated depending on
a dynamically calculated threshold. Viinikka et al. [14] presented a time series model to
filter out irrelevant alerts from alert flows using alert aggregates. The primary objective of
this study was to remove alerts associated with normal flow behavior. A non-stationary
autoregression (NAR) model was generated, and a Kalman fixed-lag smoother algorithm
was utilized to estimate the parameters for the NAR. The results of the study demonstrated
an enhancement in model accuracy through the implementation of the NAR model.

Fouladi et al. [15] proposed a DDoS attack detection approach using an autoregressive
integrated moving average (ARIMA) model. The exponential filter and the dynamic
threshold method were utilized to identify the changes in the network. For the study,
source/destination IP address features were used. The proposed approach exhibited high
accuracy and low false alarms. Nezhad et al. [16] used packet and source IP address data
to calculate a feature as a one-minute interval time series, aiming to predict DoS and DDoS
attacks. Specifically, the number of packets in every following minute was predicted using
ARIMA. Ergan et al. [17] introduced a time series analysis to identify anomalies. The study
utilized LSTM-based neural networks to find the optimal length for sequence data. Then,
one-class support vector machines (OC-SVMs) or a support vector data description (SVDD)
was used to determine the anomaly. Salahuddin et al. [18] introduced a method called
Chronos, which utilizes a time-based autoencoder technique for identifying DDoS anomaly
traffic. This technique aggregates features extracted from packets across different time
windows and subsequently compares their respective performances.

Given that a time series comprises sequential data points obtained at consistent time
intervals, network traffic data occurring across successive network events should be repre-
sented using time series analysis techniques. Previous studies used different approaches
such as aggregation [14,19] or subtraction [20] to present time series data. While the
studies have incorporated time series analysis, they predominantly employed univariate
data to construct time series-based models through data aggregation. Furthermore, lim-
ited studies have examined consecutive sequences of observations like network traffic
events. Numerous studies have been conducted to forecast short-term and long-term
network traffic changes within data center networks. They used various time intervals
of minutes, hours, and days to generate predictive models for better resource utilization
scenarios [21–23]. However, limited studies have been performed to forecast possible
network attacks in the network security community. Since a high volume of network traffic
events occurs in seconds and minutes (often caused by DOS or DDOS attacks), finding
appropriate time intervals or window sizes to forecast network attacks is considered a re-
search challenge. In our previous work [24], we conducted a study incorporating statistical
measurements to represent continuous variables in order to predict attacks by comparing
short time scales (1, 5, and 15 s). While the study demonstrated good predictive capabil-
ities for network attacks, such short time scales require high computational complexity
because a large volume of data needs to be processed. Increasing time intervals can be an
alternative approach to resolving this complexity problem. But, increased time intervals
may impact the efficiency of extracted features significantly. Overall, no comparative study
has been performed to show optimal time intervals in identifying network attacks due to
constant changes in attack types. In electric power cyber-physical systems, researchers
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considered each type of network attack sequence as invalid attack results if the time in-
terval exceeds 240 s [25]. However, many studies used 60 s to analyze network traffic
data [26–28] to evaluate high bursts of attack events. Therefore, we utilize 60 s intervals
to assess the network traffic data. Alternatively, 120 s intervals are used to determine the
performance differences.

Also, most previous studies did not take into account categorical variables in network
intrusion detection analysis. Given the significance of incorporating categorical variables
in intrusion detection analysis, [29], we introduce an advanced approach to represent
multiple sequential timestamped events as time series data by extracting temporal features
and analyzing categorical variables. We also assess these temporal features using long
short-term memory (LSTM) to predict future attacks and normal events.

3. Methodology
3.1. Dataset

We used a publicly available dataset (called the Kyoto dataset [30]). The dataset was
generated by capturing real network traffic data within a honeypot environment. The
honeypot comprises multiple computer systems that mimic a real computing environment,
designed to deceive cyber attackers into perceiving it as a viable target. The rationale behind
creating such an environment is to lure attackers and gain insights into their behaviors, as
well as comprehend security vulnerabilities. Therefore, all network events coming to the
honeypot environment are considered legitimate attacks. The dataset consists of twenty-
four variables, including fourteen variables that are identical to the variables presented
in the KDD Cup 99 dataset [31]. The dataset contains three distinctive network event
categories: normal activities, known attacks, and unknown attacks. Due to the limited
amount of unknown attack instances, ‘known attacks’ is designated as ‘attack’ within
the scope of this study. Also, three trigger variables, including IDS_detection trigger,
malware_detection trigger, ashula_detection trigger, were excluded. These three variables
represent detected triggering alerts by the IDS system or detection software. They are not
considered in the study because they possess limited information to predict normal or
attack events.

3.2. Methods

Assume that the given original network sequence is comprised of a series of time
sequence observations O = {(Ti, Xi, Yi)}, i = 1, 2, · · · , N contains network traffic events
(N is the total number of events). T represents time, X indicates the variables in the original
network traffic sequences with nominal, real numbers, and binary variables, and Y ∈
{normal, attack} indicates network events. To identify the underlying patterns of network
events over time, the time sequence observation series (O) needs to be transformed into
time series data with a regular interval. Our approach consists of three steps: (1) generating
one-hot encoded variables, (2) constructing time series with a pre-defined time scale ts, and
(3) generating forecasting models. A performance evaluation was conducted with different
time scales (ts = 60 and 120 s) to determine the effectiveness of the proposed approach.

3.2.1. Generating One-Hot Encoded Variables

The original network event data contain three categorical variables: service type, flag,
and protocol type. The service type indicates network connection types, such as HTTP,
telnet, FTP, etc. The flag represents the state of the network connection. There are about
thirteen connection states, including S0, S1, SF, REJ, S2, S3, RSTO, RSTR, RSTOS0, RSTRH,
SH, SHR, and OTH, and each state indicates a specific network connection state. For
more details about the connection states, please refer to ref. [30]. Protocol type denotes
network protocols used by each network connection. One-hot encoding [32] is applied to
the nominal variables. This process transforms categorical variables into numerical data
by replacing each attribute value with a binary representation (1 or 0), which indicates
the position of a corresponding attribute value. For example, the protocol type variable
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contains three attribute values: TCP, UDP, and ICMP. By applying one-hot encoding, three
one-hot encoded nominal features are generated. Similarly, the remaining categorical
variables are converted to one-hot encoded variables.

3.2.2. Constructing Time Series Data with a Pre-Defined Time Scale ts

Time series data are constructed by mapping a set of network traffic data series in
ts to values over time through the extraction of temporal features. First, the original
data is segmented with a pre-defined time scale ts. A new time index is created depend-
ing on the pre-defined time scale ts over time, ∇ti = (ts ∗ c)−∇ti−1, c = 2, · · · , tN , i =
2, · · · , tN ,∇t1 = ts where tN = mt

ts
, mt is a maximum time. Thus, a new time index is

generated as ∇ti = {t
′
1, t
′
2, · · · , t

′
N}. Within each time index, ∇ti contains a series of tu-

ples {(Xi, Yi)} forming M × J matrix (Xi ∈ RM×J) and M × D matrix (Yi ∈ RM×D), where
M(M ≥ 1) indicates the total number of observations at time∇ti, J represents the total num-
ber of variables, and D(D ≥ 1) denotes the size of dependent variables. It is important to
note that the size of M may vary because the number of network events occurring over time
is different.

For the one-hot encoded dependent variables, the frequency of network events over
∇ti is computed as C(Yk

i ) = Σnt
1 IYi (δi), where δi indicates if each network event is normal

or an attack. The frequency of each one-hot encoded variable over ∇ti is also measured
for the nominal variables. For instance, for the variables (source and destination port
numbers), the number of used port numbers over ∇ti are counted. For the other variables,
a representative value for each M−dimensional vector over ∇ti is measured to generate
time series data with equal intervals. In this paper, we present a methodology that utilizes
wavelet transform (DWT [33]) and permutation entropy (PE [34]) to map values from
the original time sequences into time series features. The advantages of employing these
techniques (i.e., DWT and PE) include the capability to identify sudden network event
changes and to illustrate the trend of network event behaviors over time. DWT is well-
suited for analyzing non-stationary data, such as network traffic, in both time and frequency
domains. It achieves this by continually decomposing the data into two sub-bands. That is,
detail and approximation coefficients are produced by successively passing data through
high-pass and low-pass filters until they reach a predefined level. The coefficients represent
time and frequency information associated with each decomposition level by the following.

Wc = < d(t), φ(τ,γ) > =
∫ ∞

−∞
d(t)φ(τ,γ)dt

where d(t) indicates data, φ(τ,γ)(t) represents a mother wavelet function, and τ and γ
denote frequency resolution (i.e., scale) and shift parameters, respectively. Approxima-
tion coefficients (a(τ,γ)) present low-frequency information, while the detailed coefficients
(d(τ,γ)) show the high-frequency characteristics of data. PE is applied to analyze the wavelet
coefficients. It is a complexity measurement that integrates symbolic patterns and entropy.
Specifically, we used the coefficients, a(τ,γ), d(τ,γ), and a(τ,γ) + d(τ,γ) to extract features.
PE is used to construct subsequences (si) with a pre-defined embedding dimension (ed).
Then, each subsequence is mapped into a unique permutation to capture the order as
π(i) = {0, 1, · · · , ed}. The probability distribution of the permutation is computed as

pπ(i) =
δπ(i)
|si |

, where δπ(i) presents the occurrence of the pattern π(i). Lastly, Shannon’s
rule [35] is utilized to calculate the permutation entropy as Σi − pπ(i) × log(pπ(i)).

In addition, statistical feature (P) is extracted as χ(woi , oi), where χ(·) indicates the
ANOVA test, woi represents the detailed coefficients of oi, and oi denotes the ith vector of
the original sequences O at ∇ti. This feature represents a p-value, indicating if there is any
statistical difference between the original sequences and the wavelet coefficients. We also
compute an additional feature using the first moment (E ) as 1

|oi | ∑ oi in ∇ti. Algorithm 1
presents a pseudo-code that converts network traffic series to a targeted time scale (ts).
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Algorithm 1: Conversion of network traffic data to time series format with a
pre-defined time scale ts

Input: network traffic observations (O)
Output: converted time series data (F)

1 for i = 0 to mt
ts

do
2 for ∀j, vj ∈ Oi do

/* Oi: ith observations, vj: jth variable */
3 if vj ∈ CN then
4 Determine |φ(vj)| /* φ(·): a mapping to determine unique

attributes */
5 Generate one-hot encoded nominal variables, n1, n2, · · · , n|φ(·)|
6 for k = 1, 2, · · · , |φ(·)| do
7 Nj[k] = ΣI(nk ∈ vj) /* N : nominal variable features */

8 else if vj ∈ DY then
9 Determine |φ(vj)|

10 Generate one-hot encoded dependent variables, y1, y2, · · · , y|φ(·)|
11 for k = 1, 2, · · · , |φ(·)| do
12 Yj[k] = ΣI(yk ∈ vj) /* Y: dependent variable features */

13 else
/* χ(·): ANOVA test, ϕw(·): wavelet transform, ψ(·):

permutation entropy */
14 Wi[j] = ψ(ϕw(vj)) /* W: wavelet features */
15 Pi[j] = χ(ϕw(vj), Xj) /* P: statistical features */
16 Ei[j] = 1

|vj | ∑ vj /* E: first-moment features */

17 Fi = {(∇ti,Pi, Ei,Wi,Ni,Yi)}

3.3. Generating Forecasting Models

Long short-term memory (LSTM) is used to predict two future outputs (i.e., network
normal and attack events). LSTM is a type of recurrent neural network (RNN) architecture
that is frequently used in time-series analysis [36]. It addresses the vanishing gradient
problem in RNN by providing longer-lived short-term memory to preserve information
across timesteps [37]. It includes four components: a memory cell, an input gate, an output
gate, and a forget gate. The memory cell serves as an information store, while the gates
regulate the flow of that information [38]. We used a traditional LSTM model with four
components to forecast network normal and attack events (see Figure 1). It has three layers
to extract temporal features from the data. The model was built with two hidden layers,
dense and dropout layers, and used the rectified linear unit (ReLU) activation function
to forecast network attacks. The mean squared error (MSE) is used for loss function in
model training and validation. Adaptive moment estimation (ADAM) is also used as a
model optimizer to compute adaptive learning rates. The root mean square error (RMSE) is
computed to evaluate forecasting performances.
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Figure 1. A diagram of the proposed time-series prediction using LSTM.

4. Results

For the data analysis with wavelet transform, we used the decomposition level of three
with the ‘db3’ wavelet function. Different time scales (ts = 60 and 120 s) and embedding
dimensions (ed = 3 and 4) were taken into account to assess and compare performance
differences. Based on the analysis, we also present the results from the forecasting models
to predict future network events (i.e., normal and attack events). Rather than employing
a one-step forecasting method that predicts a single value based on the past, a multi-step
forecasting method is utilized to predict sequences of values.

Figure 2 shows visual representations of variables associated with ‘attack’ and ‘normal’
network events on the first day of January 2015. Figure 2a,c present the total number of
connections, destination port, and duration using the original network traffic data. The total
number of connections represents the number of network connections made in the past
two seconds with the same source and destination IP addresses. These variables are used
to identify suspicious activities by detecting a significant volume of continuous network
connections directed toward the same computer machines. The most commonly used
port numbers in cyberattacks are 22—SSH (secure shell), 80—HTTP (hypertext transfer
protocol), and 443—HTTPS (hypertext transfer protocol secure). However, by evaluating
the destination port information, we found that attackers tried to use various ports to
penetrate server machines in a honeypot environment (see Figure 2b). From the analysis
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of the duration information, we determined that the time duration for the attack events
varies. There were distinguishable patterns when comparing the difference between normal
and attack events. However, further analysis needs to be performed to establish a clear
distinction between them.

Figure 2d,f represent the converted time series data with different time scales with
the ts = 1 s, ts = 60 s, and ts = 120 s. We found that the original network sequences data
does not provide much information associated with normal and attack events, while the
converted time series data clearly shows a difference between the normal and attack events.
In addition, we discovered that the time scale with ts = 1 s—compared with the rest of
the time scales—does not clearly separate between normal and attack events. Therefore,
we excluded the ts = 1 s, and used ts = 60 s and ts = 120 s to analyze network traffic
time series.

(a) (b) (c)

(d) (e) (f)

Figure 2. Representations of the network traffic data on the first day of January 2015. Orange and
blue color attributes are used to indicate attack and normal events, respectively. (a) Total num-
ber of connections with the same source and destination IP addresses in the past two seconds,
(b) destination port number of each network, (c) connection duration of each network event,
(d) total number of events in each second, (e) total number of events in the converted time se-
ries data with the time scale (ts = 60 s), (f) total number of events in the converted time series data
with the time scale (ts = 120 s). In (c,f), logarithmic scales are applied along the y-axis to advance the
visualizations to resolve data skewness toward large-density network events.

Figure 3 displays data distributions using box plots for the data from January 2015.
Due to skewed distributions in the data, logarithmic scales are applied to all figures.
Figure 3a,b show box plots of the variables (i.e., source and destination bytes) associated
with normal and attack events using the original data. We found that the attack events
exhibited significantly higher quartiles in the destination bytes compared to normal events.
But, there were only slight variations in the source bytes between normal and attack
events. We also observed that the source and destination bytes in the attack events showed
multiple outliers (located outside the whiskers of the box plot). As a non-parametric test,
the Mann–Whitney U test is used to compare the distribution of the variables between
two groups. Comparisons between the normal and attack events for the variables (source
and destination bytes) were assessed using the Mann–Whitney U test. From the test, we
found significant differences (p = 0.0004) in the distributions of the source byte variable
between the normal and attack events. The destination byte variable was also determined
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as significant (p < 0.0001) between the normal and attack events. Figure 3c,d present box
plots of the total number of normal and attack events in the converted time series data with
different time scales (ts = 60 and 120 s), respectively.

(a) (b) (c) (d)

Figure 3. Box plot distributions of the network traffic data in January 2015. (a) Source and destination
bytes of normal events, (b) source and destination bytes of attack events, (c) number of network events
with the time scale (tS = 60 s), and (d) number of network events with the time scale (tS = 120 s).
Logarithmic scales are applied to address data skewness.

When analyzing time series data, satisfying the stationarity property of data is essential
because it influences the overall forecasting performances [39]. The augmented Dickey–
Fuller (ADF) test is commonly used to check the stationarity of data. We performed the
ADF test to validate if the converted time series data met the stationary assumption. The
null hypothesis for the test was that the time series data were non-stationary. The test
results demonstrated statistical significance (p < 0.05) to reject the hypothesis, indicating
that the converted time series data satisfied the stationary assumption.
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In time series analysis, it is important to determine the effectiveness of a particular time
series in forecasting another one. The Granger causality test [40,41] is commonly utilized to
validate the effectiveness of time series. Thus, we performed the Granger causality test on
the converted time series data, considering both time scales (ts = 60 and 120 s) and the two
embedding dimensions (ed = 3 and 4). This test was carried out to assess the suitability
of variables to forecast a dependent variable. We tested the extracted temporal features in
forecasting network events with a 95% significance. We found high similarity even with
different dimensions (either ed = 3 or 4). We found that 67.6% and 69% of the temporal
features showed their significance with ts = 60 s and 42.3% and 61.9% with ts = 120 s
in forecasting normal and attack events, respectively. In addition, both 53.5% and 26.8%
of features were determined as significant in predicting both normal and attack events
with ts = 60 s and ts = 120 s. We also observed that all wavelet transform and permuta-
tion entropy features (W) demonstrated significance in predicting the attack events with
ts = 60 s and ts = 120 s. The summary of the Granger causality test result to forecast
normal and attack events is included in Table A1 in Appendix A.

The P features from the variables (i.e., source bytes and Dst_host_srv serror_rate)
were significant to determine attack events with ts = 60 s and ts = 120 s. The source
byte variable indicates the number of network event bytes transferred from source to
destination in a single connection. The Dst_host_srv serror_rate indicates the percentage of
the flag connections (i.e., s0, s1, s2, or s3) that have activated among the connections. Only
the P features from multiple variables (duration, count, same_srv_rate, srv_serror_rate,
srv_ serror_rate, dst_host_count, dst_host_same_src_port_rate, dst_host_serror_rate) were
determined as significant in predicting attack events with ts = 60 s and ts = 120 s. Also,
the N features from the variables (source port, destination port, TCP, and RSTOS0) were
determined as significant in predicting attack events for both ts = 60 and 120 s. As one
of the attribute values in the flag variable, the RSTOS0 indicates the originator sends a
synchronization signal (SYN) followed by a reset signal, but, an acknowledgment (ACK) of
the SYN does not appear. The TCP feature is one of the attribute values in the protocol type
variable. Interestingly, more nominal features were identified as significant for the ts = 120
s (43.5%) to predict attack events. The nominal features from the flag variable, such as REJ,
RSTO, and S0, were not determined as significant features for the ts = 60 s. REJ indicates
a rejected connection attempt, and S0 represents a connection attempt that has appeared
but no reply. This finding suggests that nominal features might be better presented for a
larger time scale. However, further analysis is required to determine an optimal time scale.
We intend to address this aspect as part of our future work since finding the optional time
scale is not the primary focus of this study.

Figure 4 shows the extracted nominal features (i.e., protocol types and service types)
based on our proposed approach with the targeted time scales (ts = 60 and 120 s). Multiple
charts are generated to understand the differences between daily and monthly network
events. By analyzing the variable (protocol types), we found that TCP and UDP have been
commonly utilized in network communications. ICMP was also widely used in normal
and attack events. This is an interesting result because ICMP is a network layer proto-
col for diagnosing internal network communication issues. Specifically, since the Kyoto
dataset was generated in a honeypot system consisting of multiple server nodes, each
node communicates continuously to check its stability using ICMP. We also observed that
ICMP was used in attack events as well. However, as stated earlier, ICMP was identified
as significant in predicting normal events only. Among various service types, SSH was
determined as a highly applied service type in network communication. SSH supports
accessing systems remotely. While SSH supports highly secure network communication,
it is frequently regarded as highly susceptible, especially when not properly adminis-
tered and monitored. We found numerous brute-force attacks to gain access to systems
(see Figure 4d).

To analyze the daily network traffic data, we used twenty-three hours of data to
generate an LSTM model. Then, the model was used to predict the normal and attack
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events in the upcoming hour. For the LSTM model, the epoch and batch size numbers
were set to 100 and 200, respectively. The model was generated with the learning rate
(0.001) using the ‘ReLU’ activation function and Adam optimizer. For the loss function,
MSE was evaluated. Table 1 shows forecasting performances with the targeted time scales
ts = 60 and 120 s in two different embedding dimensions. We found that forecasting with
ts = 60 s targeted time scale performed better than using ts = 120 s to predict normal and
attack events. Interestingly, we observed relatively high RMSE and MAE scores for the
ts = 120 s to forecast normal events using the March and April data. When evaluating
the performances of the normal events with ts = 60 s, we observed that the embedding
dimension (ed = 4) showed smaller RMSE values except for the months of January, March,
November, and December. Furthermore, except for the months of January, March, and
September, RMSE showed better performance in the attack events using the embedding
dimension (ed = 4). Evaluating the performances of the normal events with ts = 120 s,
we found that the embedding dimension (ed = 3) showed smaller RMSE values except
for the months of April and July. Similarly, except for the months of March, April, June,
July, and November, better performance in predicting attack events was observed using the
embedding dimension (ed = 3).

(a) (b)

(c) (d)

Figure 4. Representations of nominal features with the time scale (ts = 120 s). (a) Protocol types of
the network events appeared on 1 January 2015, (b) protocol types of all network events in January
2015, (c) service types of the network events appeared on 1 January 2015, and (d) service types of
all network events in January 2015. Logarithmic scales are applied to address data skewness along
the y-axis.

Figure 5 presents visual representations of predicted network events with the time
scale ts = 60 s by applying principal component analysis (PCA). PCA is a popular di-
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mension reduction technique in visualization to represent high-dimensional data in a
lower-dimensional space. The first and second principal components are determined and
used to map all data instances into the x- and y-axis of the 2D space. To better represent the
forecasted network events, the Fisher-Jenks algorithm (often called Jenks’ natural breaks
classification method) is applied to form clusters. It determines the best arrangement of
values into different classes. A classification process was performed to categorize different
normal and attack events into three distinct groups. Figure 5 shows grouped represen-
tations of the events with distinctive colors using ‘red,’ ‘blue,’ and ‘green.’ The colors
represent clusters G1, G2, and G3, respectively. Figure 5a,b present the clusters analyzed on
1 January 2015 (one-day data). The clusters were split into three classification groups for
the normal events (G1 : 0 ∼ 44, G2 : 44 ∼ 244, G3 : 244 ∼ max) and the attack events
(G1 : 43 ∼ 233, G2 : 233 ∼ 583, G3 : 583 ∼ max). When classification was performed with
the normal events, we observed distinctively separated clusters (see G1 : red and G2 : blue).
However, the cluster (G3 : green) was not clearly visible. Interestingly, we identified that
the cluster (G3 : green) became distinct when analyzing the attack events (see blue-colored
glyphs, Figure 5b).

Table 1. Forecasting performances using LSTM models with the standard error means for different
targeted time scales (ts) and embedding dimensions (ed).

ts Month

Embedding Dimension ed = 3 Embedding Dimension ed = 4

Normal Events Attack Events Normal Events Attack Events

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

60

January 3.96 ± 0.03 2.39 ± 0.02 5.89 ± 0.04 3.82 ± 0.03 3.27 ± 0.02 2.25 ± 0.02 4.83 ± 0.03 3.66 ± 0.03

February 2.35 ± 0.03 1.20 ± 0.01 3.38 ± 0.02 2.30 ± 0.02 5.09 ± 0.05 2.86 ± 0.02 4.07 ± 0.02 2.95 ± 0.01

March 7.31 ± 0.10 4.85 ± 0.07 3.87 ± 0.01 2.88 ± 0.01 7.23 ± 0.10 4.85 ± 0.07 3.74 ± 0.01 2.88 ± 0.01

April 5.42 ± 0.11 3.79 ± 0.09 3.05 ± 0.02 2.28 ± 0.01 7.40 ± 0.08 4.90 ± 0.06 4.97 ± 0.02 3.99 ± 0.02

May 2.66 ± 0.01 1.39 ± 0.01 4.72 ± 0.01 3.29 ± 0.01 2.67 ± 0.01 1.40 ± 0.01 4.73 ± 0.01 3.31 ± 0.01

June 3.17 ± 0.01 1.69 ± 0.01 6.33 ± 0.02 4.47 ± 0.01 3.21 ± 0.01 1.73 ± 0.01 6.61 ± 0.02 4.62 ± 0.01

July 4.34 ± 0.04 2.75 ± 0.02 4.61 ± 0.02 3.19 ± 0.01 5.62 ± 0.06 3.28 ± 0.03 5.72 ± 0.04 3.64 ± 0.02

August 3.33 ± 0.02 2.37 ± 0.01 4.46 ± 0.01 3.25 ± 0.01 3.35 ± 0.02 2.37 ± 0.02 4.47 ± 0.01 3.24 ± 0.01

September 6.22 ± 0.07 2.63 ± 0.02 4.31 ± 0.02 2.73 ± 0.01 6.22 ± 0.07 2.64 ± 0.02 3.93 ± 0.01 2.69 ± 0.01

October 3.96 ± 0.04 1.77 ± 0.01 4.24 ± 0.02 2.48 ± 0.01 4.41 ± 0.04 1.98 ± 0.01 4.88 ± 0.03 2.79 ± 0.01

November 5.65 ± 0.04 3.62 ± 0.02 3.88 ± 0.01 2.85 ± 0.01 5.42 ± 0.04 3.59 ± 0.02 4.35 ± 0.02 2.88 ± 0.01

December 3.57 ± 0.02 1.71 ± 0.01 3.04 ± 0.01 1.84 ± 0.01 3.53 ± 0.02 1.71 ± 0.01 3.12 ± 0.01 1.85 ± 0.01

120

January 4.42 ± 0.02 3.11 ± 0.02 6.42 ± 0.04 4.99 ± 0.04 4.31 ± 0.02 3.08 ± 0.02 6.38 ± 0.04 4.98 ± 0.04

February 8.16 ± 0.10 4.22 ± 0.04 5.37 ± 0.03 3.65 ± 0.01 7.77 ± 0.10 4.16 ± 0.04 4.75 ± 0.02 3.57 ± 0.01

March 11.85 ± 0.22 8.43 ± 0.17 4.97 ± 0.01 3.95 ± 0.01 11.82 ± 0.22 8.43 ± 0.17 4.98 ± 0.01 3.97 ± 0.01

April 10.53 ± 0.15 6.78 ± 0.17 6.65 ± 0.05 5.59 ± 0.04 10.54 ± 0.15 6.79 ± 0.11 6.66 ± 0.05 5.60 ± 0.04

May 3.82 ± 0.02 2.10 ± 0.01 5.77 ± 0.02 4.10 ± 0.01 3.69 ± 0.02 2.04 ± 0.01 5.36 ± 0.02 3.88 ± 0.01

June 4.83 ± 0.02 2.60 ± 0.02 6.90 ± 0.02 4.99 ± 0.02 4.69 ± 0.02 2.59 ± 0.02 7.67 ± 0.03 5.10 ± 0.02

July 5.19 ± 0.05 3.38 ± 0.03 5.13 ± 0.03 3.78 ± 0.02 5.22 ± 0.05 3.39 ± 0.03 5.18 ± 0.02 3.79 ± 0.02

August 5.05 ± 0.05 2.89 ± 0.02 5.28 ± 0.02 3.95 ± 0.01 5.01 ± 0.05 2.85 ± 0.02 5.27 ± 0.02 3.93 ± 0.01

September 7.02 ± 0.07 3.11 ± 0.03 5.03 ± 0.02 3.57 ± 0.01 6.39 ± 0.07 3.01 ± 0.03 5.00 ± 0.02 3.52 ± 0.01

October 5.72 ± 0.05 2.35 ± 0.02 5.68 ± 0.02 3.55 ± 0.01 5.36 ± 0.05 2.16 ± 0.01 5.43 ± 0.02 3.40 ± 0.01

November 6.64 ± 0.05 4.27 ± 0.03 4.87 ± 0.02 3.87 ± 0.02 6.63 ± 0.05 4.27 ± 0.03 6.23 ± 0.05 3.98 ± 0.02

December 3.76 ± 0.03 2.00 ± 0.01 4.49 ± 0.02 2.81 ± 0.01 3.67 ± 0.03 1.98 ± 0.01 3.98 ± 0.01 2.76 ± 0.01

For the one-month data in January 2015, the three groups were determined with the
split ranges for for the normal events (G1 : 0 ∼ 111, G2 : 111 ∼ 517, G3 : 517 ∼ max) and
the attack events (G1 : 0 ∼ 518, G2 : 518 ∼ 6967, G3 : 6967 ∼ max). With the Fisher-Jenks
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algorithm, we found that most network events fall into the lower classification group
(i.e., G1). Figure 5c,d show high-density regions (red-colored) representing G1. The blue-
colored classification group (G2) does not form separated clusters. From the analysis of
data from January 2015, we found that it was not easy to see the classification group (G3) in
the PCA projections because not many network events are categorized into G3. Presenting
the data on a PCA projection space aids in understanding the similarities and differences
among network events. But, we could not identify clear patterns due to high similarities
among a large number of network events. Consequently, parallel coordinate visualization
is applied to provide a more detailed depiction of the data.

(a) (b)

(c) (d)

Figure 5. PCA projections by categorizing network events linearly into three groups (represented
as ‘red,’ ‘blue,’ and ‘green.’) with determining natural breaks using the Fisher-Jenks algorithm.
(a) PCA projection of the three groups based on the total number of projected normal events for the
1 January 2015 data, (b) PCA projection of the three groups based on the total number of projected
attack events for the 1 January 2015 data, (c) PCA projection of the three groups based on the total
number of projected normal events for the January 2015 data, (d) PCA projection of the three groups
based on the total number of projected attack events for the January 2015 data.

Figure 6 shows parallel coordinates of the network events. Parallel coordinates is
a visualization technique that plots individual network events as polylines in vertically
arranged axes. Based on the classification group information, three separated parallel
coordinates are created and arranged as the top (G1), center (G2), and bottom (G3). We
found high similarities between each group using the one-day data (1 January). However,
when analyzing the entire January (monthly) data, we found clear differences among
the groups because of the variables arranged at the end of parallel coordinates (see the
black bounding box in Figure 6c,d. The variables in the bounding box represent converted
nominal variables. These results suggest that nominal variables could potentially play an
important role in distinguishing group patterns. However, a more comprehensive analysis
is needed to understand the impact of nominal variables in distinguishing between normal
and abnormal network patterns, especially across various intrusion detection datasets.
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(a) (b)

(c) (d)

Figure 6. Parallel coordinates plots by categorizing network events linearly into three groups with
determining natural breaks using the Fisher-Jenks Algorithm. (a) Parallel coordinates of the three groups
based on the total number of projected normal events for the 1 January 2015 data, (b) parallel coordinates
of the three groups based on the total number of projected attack events for the 1 January 2015 data,
(c) parallel coordinates of the three groups based on the total number of projected normal events for the
January 2015 data, (d) parallel coordinates of the three groups based on the total number of projected
attack events for the January 2015 data. The unique distinction between each group has happened
because of the variable differences in the highlighted regions (see black bounding box in (c,d)).

5. Discussion

In this study, we found that the extracted temporal features held significance in predicting
network events. As demonstrated in the previous section, we found performance differences
depending on the embedding dimensions (ed = 3 and 4) to forecast normal and attack events.
To understand the effectiveness of embedding dimensions further, we measured the statistical
significance of all temporal features. 67.1%(ts = 60) and 58.6%(ts = 120) of the features
were identified as significant features to forecast attack events with ed = 3. With ed = 4, we
found similar results, as 68.6%(ts = 60) and 62.9%(ts = 120) of the features were determined
significant. These results suggest that there is no significant difference between the embedding
dimensions in predicting attack events. However, we found fewer significant features for
predicting normal events. Specifically, 38.6%(ts = 60) and 37.1%(ts = 120) of the features
were significant to forecast normal events with ed = 3. On the other hand, 65.7%(ts = 60) and
38.6%(ts = 120) of the features were determined significant when using ed = 4. While there
was no clear difference between the dimensions in terms of the number of significant features
for predicting normal events, the dimension ed = 4 provided a higher number of significant
features when predicting normal events.

From the analysis of forecasting performances, we found about 25% of the statistical
features (P) were significant for the time scale (ts = 60 s) in forecasting both normal
and attack events. However, none of the P features were identified as significant for
the ts = 120 s. We also found statistical significance in forecasting normal and attack
events using the first moment features (E ). More specifically, 91.7% of the features were
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significant in predicting network normal and attack events at ts = 60 seconds. When using
the time scale (ts = 120 s), we found 75% and 66.7% of the features were determined as
significant in predicting normal events, respectively. However, for predicting attack events,
we found that fewer features (66.7%) were significant at predicting attack events. These
results highlight the importance of utilizing the E features, as more than 50% of them were
statistically significant for predicting both normal and attack events.

In network analysis, many previous studies have overlooked the nominal features.
This study highlights the importance of using the nominal features (N ) to predict normal
and attack events. When analyzing the N features, we found that 56.5% and 52.2% of the
features were significant in predicting normal events using the time scale ts = 60 and 120,
respectively. However, when predicting the attack events, we found that much fewer features
were significant in predicting attack events: 39.3%(ts = 60) and 30.4%(ts = 120). These
results suggest that the N features are effective in predicting normal events (about 50%
significance). But, the effectiveness of the N features in predicting attack events remains
inconclusive, as less than 50% of the features showed significance.

By analyzing the nominal features (protocol types ‘TCP,’ ‘UDP,’ and ‘ICMP’), we found
‘TCP’ and ‘UDP’ were statistically significant in predicting network events in different
time scales (ts = 60 and 120). But, for the ‘Flag’ variable representing network connection
statuses (‘S0,’ ‘S1,’ ‘SF,’ ‘REJ,’ ‘S2,’ ‘S3,’ ‘RSTO,’ ‘RSTR,’ ‘RSTRH,’ ‘SH,’ ‘SHR,’ etc. [30]),
we observed that not all features were found to be significant. In detail, the features
(‘RSTR,’ ‘RSTRH,’ and ‘SH’) were determined as non-significant features to predict normal
and attack events. The ‘RSTR’ variable represents a network connection that has been
established but is aborted by the destination-side machine before completion. The ‘RSTRH’
variable indicates that the destination machine sends a ‘synchronize acknowledge message’
(i.e., SYN-ACK) and subsequently issues a RST (connection established) signal to abort the
connection (forceful termination). SH denotes that a connection establishment message (i.e.,
SYN) has been sent and terminated without receiving the SYN-ACK message. Since the
features (‘RSTR,’ ‘RSTRH,’ and ‘SH’) represent instances of incomplete network connection
establishment, they were determined as non-significant variables when it came to predicting
network events. In addition, the ANOVA features extracted from the duration variable
were not significant.

We found that the wavelet features (W) from DWT and PE were significant in fore-
casting normal and attack events. Most importantly, all wavelet features were significant in
predicting attack events even with different embedding dimensions (ed = 3 and 4) and time
scales (ts = 60 and 120). To predict normal events, we found that 91.7% of the features were
significant with the time scale (ts = 60). But, with the time scale (ts = 120), we found about
25% of the features were significant. This may be due to the fact that data aggregation
with a relatively large time scale might degrade the sudden changes. In such a case, using
smaller time scales can be more effective in analyzing normal events.

As explained in Section 4, we conducted a comprehensive examination of all features
using the Granger causality test to ascertain their statistical importance in predicting normal
and attack events. Among the nominal variables, we found that the one-hot encoded
variable (‘REJ’) was statistically significant in forecasting future events. Given that the ‘REJ’
variable represents the denial of a network connection request, it can prove valuable in
predicting instances of rejected connection establishments, particularly in the context of
attack events. ‘TCP’ and ‘UDP’ variables were determined as significant in predicting 70%
and 69.6% of other features with ts = 60 s and ts = 120 s, respectively. We also found that
the one-hot encoded variable ‘SF’ (indicating normal network connection establishment
and termination) was significant in predicting 69% of the temporal variables. Interestingly,
the one-hot encoded variable (‘ICMP’) was identified as non-significant when examining
one-day and monthly data. The variables ‘S0’ (indicating a connection attempt was seen,
but no reply) and ‘SF’ (referring to normal establishment and termination) were determined
as significant in predicting both normal and attack events with January data (one month).
But, the ‘S0’ variable was not significant when analyzing the January 1 data (one day)
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with the Granger casualty test. The variables (source and destination port numbers) were
significant in predicting network events even with different time scales. When performing
the Granger casualty test, only a limited number of nominal features were recognized as
significant. However, by analyzing the January data, we observed a substantial count of
nominal features being designated as significant. This might be due to the necessity of
substantial data volumes for accurately estimating trends in network events concerning
nominal features.

We also performed the Mann–Whitney U test to compare the temporal features between
ts = 60 s and ts = 120 s. We found that the temporal features using WT and PE showed
statistical significance (p < 0.05). However, for the temporal features with one-hot encoded
nominal variables, we could not find any statistical significance. By analyzing the January
data using the Granger causality test, we found that 88.8% of the P and E features were
significant for normal and attack events with the time scale (ts = 60). With the time scale
(ts = 120 s), 50% of the P features and 88.8% of the E features were significant for normal and
attack events. We also found that allW features were identified as significant for ts = 60 s
and ts = 120 predicting normal and attack events. Overall, the time scale (ts = 60 s) yielded
better in evaluating the features and forecasting normal and attack events. By analyzing the
N features, we found that ‘S2 (p = 0.0029),’ ‘ICMP (p = 0.0026),’ and ‘SNMP (p = 0.0005)’
were significant in predicting normal events. We observed that the variables (i.e., source
and destination bytes) showed different results. In detail, the P andW features from the
variables were significant in predicting network events. However, the A features from the
variables were not significant.

We conducted an assessment of the temporal features using LSTM. Additionally,
we compared two different embedding dimensions to determine an optimal dimension
for analyzing the network data. While the optimal embedding dimension could not be
determined clearly, the evaluation results showed different patterns depending on time
scales and embedding dimensions. Specifically, with the time scale (ts = 60 s) and the
embedding dimension (ed = 4), we found better forecasting performances to predict normal
events in eight out of twelve months (66.7%) and attack events in nine out of twelve months
(75%). However, when using the time scale (ts = 120 s), we found that the embedding
dimension (ed = 3) presented better forecasting performances for normal events (88.3%—
ten months out of twelve) and attack events (58.3%—seven months out of twelve). These
findings suggest a potential avenue for future research to explore the relationship between
time scales and embedding dimensions.

6. Conclusions and Future Work

A multivariate time series is a collection of sequences from multiple contemporaneous
variables that change over time. Given the abundant information available in various
application domains concerning time series data, there has been a growing interest in
predicting multivariate time series. This paper presents a new approach for constructing
network traffic time series at a pre-defined targeted time scale. This approach involves
extracting temporal features by utilizing WT, PE, and statistical measurements to forecast
normal and attack events. We also explored various techniques to extract temporal features
from categorical variables by measuring the frequency of variables and creating one-hot
encoded variables. The effectiveness of the proposed network activity analysis was demon-
strated by comparing the performance of time series data with two targeted time scales
in predicting future network event frequency using LSTM. Additionally, we employed
multiple visualization techniques to analyze the time series network events, highlighting
the distinctions between normal and attack events in the honeypot dataset. In future work,
we plan to test different embedding dimensions to find the optimal dimension and analyze
their differences across different time scales. We also plan to compare the results with
different forecasting techniques, such as autoregression, vector autoregressive, and moving
averages. Recently, Transformers [42] have received great attention in the time-series data
analysis because they showed considerable prediction accuracy improvements over tra-
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ditional methods by capturing long-range dependencies and interactions. Thus, we are
going to extend our study by conducting a comparative analysis of our proposed approach
with Transformers.
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Appendix A. Granger Causality Test

As described in Section 4, the Granger causality test [41] was performed on the con-
verted time series data, considering the time scales (ts = 60 and 120 s). The Granger causal-
ity test determines whether one time series is good for forecasting another.
Table A1 shows the Granger causality test result to forecast normal and attack events.
We found that about 90% of the temporal features showed their significance to forecast
network events when analyzing the monthly data (i.e., January 2015 dataset).

Table A1. Evaluating the predictability of all measured variables with the Granger causality test on
the data on 1 January 2015 and the entire January 2015. The variables are analyzed with the time
scales (ts = 60 and 60 s). P ,W , E , and N indicate statistical features, wavelet features, first-moment
features, and nominal features, respectively. The gradient color is used to show the scale of the
p-values. Statistically significant (p < 0.05) features are highlighted in a solid red color.

Events Normal Attack

Data 1 January 2015 January 2015 1 January 2015 January 2015

Features Time (ts = 60 s) Time (ts = 120 s) Time (ts = 60 s) Time (ts) Time (ts = 60s) Time (ts = 120 s) Time (ts = 60 s) Time (ts = 120 s)
0.28 0.01 0.00 0.01 0.15 0.13 0.00 0.00
0.01 0.23 0.00 0.00 0.00 0.01 0.00 0.00
0.00 0.25 0.00 0.00 0.00 0.29 0.00 0.00
0.68 0.01 0.00 0.00 0.72 0.13 0.00 0.01
0.33 0.09 0.00 0.00 0.04 0.25 0.00 0.00
0.23 0.29 0.00 0.00 0.01 0.12 0.00 0.59
0.18 0.07 0.05 0.13 0.03 0.08 0.00 0.18
0.07 0.28 0.49 0.30 0.29 0.15 0.00 0.23
0.06 0.64 0.00 0.02 0.12 0.19 0.00 0.03
0.01 0.34 0.00 0.00 0.00 0.13 0.00 0.00
0.09 0.25 0.02 0.39 0.05 0.10 0.00 0.24

P

0.20 0.53 0.69 0.19 0.01 0.02 0.00 0.22

https://www.takakura.com/Kyoto_data/
https://www.takakura.com/Kyoto_data/
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Table A1. Cont.

Events Normal Attack

Data 1 January 2015 January 2015 1 January 2015 January 2015

Features Time (ts = 60 s) Time (ts = 120 s) Time (ts = 60 s) Time (ts) Time (ts = 60 s) Time (ts = 120 s) Time (ts = 60 s) Time (ts = 120 s)
0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.90 0.00 0.00 0.00 0.65 0.39 0.24
0.80 0.63 0.42 0.31 0.62 0.66 0.79 0.76
0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.02 0.00 0.00 0.00 0.31 0.00 0.00
0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.10 0.00 0.00 0.00 0.11 0.00 0.00
0.00 0.03 0.00 0.00 0.00 0.04 0.00 0.00

E

0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.34 0.00 0.00 0.00 0.00 0.00 0.00
0.57 0.01 0.00 0.00 0.03 0.01 0.00 0.00
0.00 0.47 0.00 0.00 0.00 0.01 0.00 0.00
0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.05 0.00 0.00 0.00 0.04 0.00 0.00
0.00 0.28 0.00 0.00 0.00 0.02 0.00 0.00
0.00 0.18 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.38 0.00 0.00 0.00 0.00 0.00 0.00
0.43 0.00 0.00 0.00 0.02 0.00 0.00 0.00
0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.08 0.00 0.00 0.00 0.03 0.00 0.00
0.35 0.31 0.00 0.00 0.00 0.00 0.00 0.00
0.12 0.29 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.39 0.37 0.06 0.03 0.00 0.20
0.50 0.02 0.01 0.72 0.36 0.82 0.00 0.57
0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.09 0.00 0.00 0.00 0.00 0.03 0.00
0.08 0.59 0.00 0.05 0.01 0.07 0.00 0.08
0.58 0.03 0.00 0.00 0.00 0.01 0.00 0.00
0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.12 0.00 0.00 0.00 0.00 0.90 0.00
0.50 0.26 0.42 0.49 0.10 0.47 0.00 0.55
0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00

W

0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.03 0.03 0.00 0.00 0.05 0.00 0.00
0.10 0.39 0.00 0.22 0.13 0.04 0.00 0.00
0.00 0.71 0.01 0.01 0.00 0.92 0.00 0.26
0.64 0.42 0.58 0.43 0.67 0.26 0.05 0.00
0.10 0.00 0.00 0.00 0.23 0.42 0.01 0.00
0.00 0.04 0.76 0.49 0.10 0.00 0.00 0.38
0.28 0.75 0.00 0.00 0.32 0.00 0.39 0.07
0.00 0.80 0.00 0.00 0.46 0.06 0.08 0.00
0.03 0.20 0.00 0.01 0.42 0.32 0.00 0.15
0.01 0.02 0.00 0.00 0.20 0.84 0.11 0.00
0.05 0.02 0.00 0.00 0.27 0.01 0.00 0.00
0.47 0.06 0.00 0.00 0.00 0.43 0.00 0.00
0.14 0.42 0.00 0.00 0.58 0.89 0.00 0.06
0.20 0.19 0.00 0.01 0.05 0.57 0.00 0.21
0.20 0.12 0.00 0.00 0.64 0.28 0.04 0.00
0.00 0.81 0.02 0.00 0.07 0.00 0.00 0.07
0.45 0.02 0.00 0.01 0.24 0.56 0.00 0.68
0.00 0.01 0.00 0.00 0.59 0.01 0.68 0.00
0.29 0.00 0.01 0.01 0.57 0.02 0.00 0.00
0.00 0.00 0.00 0.00 0.04 0.43 0.00 0.00
0.00 0.01 0.00 0.00 0.00 0.49 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

N

0.00 0.05 0.00 0.00 0.37 0.94 0.00 0.80
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