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Abstract: Thermal power plants use coal as a fuel to create electricity while wasting a significant
amount of energy as heat. If the heat and power plants are combined and used in cogeneration
systems, it is possible to reuse the waste heat and hence enhance the overall efficiency of the power
plant. In order to minimize production costs while taking system constraints into account, it is
important to find out the optimal operating point of power and heat for each unit. Combined heat
and power production is now widely used to improve thermal efficiency, lower environmental
emissions, and reduce power generation costs. In order to determine the best solutions to the
combined heat and power economic dispatch problem, several traditional as well as innovative
heuristic optimization approaches were employed. This study offers a thorough analysis of the use of
heuristic optimization techniques for the solution of the combined heat and power economic dispatch
problem. In this proposed work, the most well-known heuristic optimization methods are examined
and used for the solution of various generating unit systems, such as 4, 7, 11, 24, 48, 84, and 96,
taking into account various constraints. This study analyzes how various evolutionary approaches
are performed for various test systems. The heuristic methodologies’ best outcomes for various case
studies with restrictions are contrasted.

Keywords: heuristic optimization techniques; combined heat-power economic dispatch (CHPED);
constraints; environmental emission

1. Introduction

Major worries about a number of causes, most notably climate change, the scarcity of
oil and its consequent rise in price, population levels, and energy consumption, are rapidly
dominating the world’s energy supply and demand landscape. Finding a substitute for
fossil fuels, especially petroleum fuels, is therefore crucial from an economic, environmental,
and social standpoint [1].

Primary fossil fuels are converted somewhat inefficiently into electricity. The conven-
tional generating plant achieves efficiencies of 50% to 60% only, because most of the heat
energy is wasted during the conversion process and discharged into the environment [2].
Cogeneration, also known as combined heat and power (CHP) generation, is an advanced
and modern technology that outperforms conventional energy conversion systems and is
also environmentally friendly [3].
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CHP systems are systems that simultaneously provide consumers with electricity and
meet heating demands [4]. A tri-generation system (cooling, heating, and power generation)
can be created by integrating thermally activated technologies into the CHP system to
fulfill the consumer’s cooling requirement [5]. CHP systems can enhance the efficiencies of
thermal power plants by over 90% and decrease their environmental effects [6].

CHP systems get more attention because they can enhance the economics and sustain-
ability of electrical generating units [7]. CHP economic dispatch can improve the efficiency
of the energy conversion process in thermal power stations and reduce the cost of power
generation [8]. CHP units have the capacity to generate electricity from a range of fuels
while simultaneously recovering and reusing the heat that would typically be lost during
the creation of electricity [9].

Moreover, the use of CHP generation systems decreases pollutant emissions, such
asCOx, SOx, and NOx [10–15]. Because of these factors, researchers have focused increas-
ingly on CHP units in recent years in an effort to fully explore their potential for meeting
consumer demands for heat and electricity [16,17]. The economic dispatch (ED) issue,
which may be seen as the researchers’ initial attempt to maximize the advantages of power
systems, tries to determine the best scheduling of the generation units to reduce the fuel
cost of power generation subject to operational and technological restrictions [18,19]. The
combined economic dispatch problem not only offers significant economic power gener-
ation advantages but also lessens the negative consequences of polluting gases [20–22].
During studies in this area of research, it was found that many available articles showed
the effectiveness of heuristic optimization for the solution of combined heat and power
economic dispatch (CHPED), but no one had demonstrated a complete comparative study
between all the proposed heuristic approaches in this research area. Due to this research
gap, the authors of this article were motivated to conduct this study.

The objective of this research is to investigate the best heuristic optimization techniques
used to address the nonconvex and non-smooth CHPED optimization issues. The bulk of
the articles that used heuristic optimization techniques to find the optimum solution to the
CHPED issue are discussed in this proposed article, to the best knowledge of the authors.
To familiarize readers with the heuristic approaches used, a brief explanation of the utilized
heuristic methods is given, and the most important contributions of each research work
are introduced. Additionally, in order to create a helpful survey on the usage of heuristic
approaches for the solution of the CHPED issue, the best solutions found in the articles
under consideration are tallied. There are comparisons between the publications that have
been examined in terms of objective function, restrictions, minimal operational cost, and
computing time. This article will be of great use to scholars looking at the best generation
planning for CHP systems. The rest of the document is structured as follows: Section 2
provides reviews of several heuristic optimization methods that have been applied to
the CHPED issue in distinct case studies. The CHPED problem formulation is shown
in Section 3. A thorough review of heuristic optimization techniques, handling various
constraints and benefits of the heuristic techniques, are shown in Section 4. Comparative
results in terms of cost generation and computation time taken in convergence by various
optimization techniques are shown in Section 5, and the proposed work’s conclusion is
given in Section 6.

2. Literature Review

Researchers have been interested in the CHP economic dispatch problem recently,
and the answer has been found in earlier literature utilizing a variety of conventional
and modern heuristic methods. In the early 1990s, research started in the field of CHP
problems and suggested a quadratic programming method for the solution of this problem
for 15 generating unit systems [1]. The Lagrangian relaxation technique was proposed for
the solution to the CPH problem. They considered one case study for four generating units
with load balance and power generation limits [2].
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A classical method called Benders decomposition is used for the solution in cases of
four and five generating units with two and three co-generation systems with inequality
constraints [3]. To obtain optimum results, the four generating units (two co-generation and
one heat unit) were optimized by improved PSO (SPSO) for the load demand of 200 MW
and the heat demand of 115 MWth [4]. A novel bee colony optimization algorithm [5]
and AI (artificial immune) systems [6] were suggested for the study of a 4-generating unit
system of CHPED for the load demand of 600 MW and 150 MWth.

Similarly, the firefly algorithm was used for the optimization of CHED for the four
generating units, where units 2 and 3 have co-generation and unit 4 has heat. The proposed
optimization is used to obtain the global results of power and heat demand of 200 MW and
115 MWth, respectively [7]. For the test data of single heat area and power area systems
with loads and heat demands of 200 MW and 115 MWth, respectively, MADS-PSO and, for
various power and heat demands, MADS-DACE and MADS-DACE were used [8].

For the solution of nonlinear CHPED, they suggested and demonstrated the effective-
ness of TVAC-PSO. The proposed technique was tested on two case study data sets. In
the first test case, they considered a four-unit system for the power and heat demand of
200 MW and 115 MWth, respectively. In the second case, they considered a five-unit system
for three different load conditions [9].

For the optimization of a large unit data set of CHPED along with constraints, criss-
cross optimization was used, and it was found that the proposed techniques gave a global
solution for such a large data set. They solved six different cases, and in all cases, the pro-
posed techniques gave the best-optimized solutions compared to the other algorithms [10].
Five different cases of CHPED were considered and global solutions were obtained using
the exchange market algorithm. This algorithm was tested for different loads in different
data sets (small and large data), and it was found that it gave the global solution in all
considered test data [11].

Based on the behavior of humpback whales, the WOA optimization used for the
solution of CHPED considered test cases of 24, 84, and 96 data points. The WOA performs
well for non-convex nonlinear optimization problems [12]. A crossover and mutation-based
improved GA was given for the solution to the CHPED problems [13].

For the non-linear combination of heat and power dispatch systems, the AMPSO
algorithm was proposed. To improve the efficiency of the proposed technique, the Taguchi
approach was used [14]. A hybrid algorithm is suggested by article [15] for solving the
CHP economic emission dispatch problem in such a way as to reduce the cost of generation
and emission. Similarly, a deep study discusses the different optimization techniques
recommended by the researchers for the solution of the CHP economic emission dispatch
problem in article [16].

The CHP economic dispatch problem was solved using the HBOA optimization algo-
rithm, which is based on the interaction of coworkers and employees [17]. A combination of
HBA and JSA, commonly known as HBJSA, was used for the solution of the CHP economic
load dispatch. The proposed methods overcame the problems associated with HBA and
JSA, easily handled the constraints, and solved the nonlinear CHP problem [18]. For the
solution to nonlinear CHP, the economic dispatch group search method was suggested,
which is based on opposition [19]. The foundation of GSA is the gravitational law, which
helps particles move in the search space used to solve CHPED [20].

To solve the CHPED problem with various constraints, biogeography-based particle
swarm optimization was suggested. In this PSO, particles update their position by using the
migration operator [21]. Based on the cuckoo bird’s reproduction behavior, CSA techniques
were proposed for the CHPED with a valve-point loading problem solution [22]. The
CPH problem was solved using a hybrid approach that combined PPS and CSO for local
and global search, respectively [23]. Article [24] demonstrates the use of the group search
optimizer for CHP dispatch problems. However, a hybrid (TVAC-GSA-PSO) method was
used to solve the large-scale, complex CHPED problems [25]. One more hybrid method (bat
algorithm + artificial bee colony) with a chaotic-based self-adaptive search strategy known
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as CSA-BA-ABC was suggested in article [26] to solve the large-scale, non-differential CHP
economic dispatch.

The suggested FS technique in Article [27] was used to solve the CHP economic
dispatch in such a way that the cost should be low and fulfill the constraints. Optimization
techniques based on the Kho-Kho game (a game played between two teams) were proposed
for the CHPED problem [28]. The CHPED problem was solved for a large data system
(48 units) with a minimum total operation cost [29]. To minimize the overall fuel cost of
cogeneration units, an improved marine predator optimization algorithm was used [30].

For the solution to the CHP dispatch problem with valve-point loading effects and
prohibited operating zones, a wavelet-mutated slime mold technique was used [31]. For the
purpose of calculating the system-wide additional costs associated with optimum dispatch
using the search optimization approach, an explicit formula was created [32]. For the
operation of CHP, a demand response algorithm was used [33]. The heat transfer search
technique, which follows the laws of thermodynamics and heat transfer, was used to find
the solution to complicated CHP economic dispatch problems [34].

To address the CHP dynamic economic dispatch, a new differential evolution method
that has an attractive component and gives mutant vectors more possibilities to find
prospective locations utilizing migrating variables was proposed [35]. The TVAC-PSO
was suggested to address the multi-objective CHPEED and dynamic economic emission
dispatch challenges in the context of operational limitations [36].

It was suggested to combine particle swarm optimization algorithms with enthusiasm-
aided teaching and learning-based optimization algorithms to simultaneously reduce
overall generation costs while taking constraints into account [37]. For handling a very
large CHPED (140 bus system), an article proposed a multiobjective technique that was
based on a chaotic opposition-based strategy [38]. The usefulness of the group search
method in solving the CHPED issue was reported in an article [39].

For the CHPED problem, a genetic algorithm method was suggested [40]. An effi-
cient tool called the search algorithm was proposed to solve the CHPED with ramp rate
constraints [41]. The authors of [42] suggested a cuckoo optimization algorithm to solve
the CHP in such a way that energy production costs are minimized. In order to solve the
CHPED problem, a paper proposed an IDE approach that makes use of mutation operators,
dynamical crossover, and population randomization [43].

To solve CHP dispatch problems with bounded and feasible operating regions, re-
searchers used a TLBO approach. In this method, an opposition-based learning approach
was incorporated so that convergence speed was enhanced and the simulation results were
improved [44].

Grey wolf optimization techniques were used for the solution of CHPD. The effective-
ness of the proposed algorithm was tested on the data of 4, 7, 11, and 24 units [45].To reduce
the generation cost and environmental emissions, a multiobjective fuzzy-operated system
was proposed for the CHPED problem [46]. For the optimization of the power economic
dispatch problem along with valve loading and multiple fuel constraints, an improved
genetic algorithm approach was proposed. The proposed algorithm was a combination of
an improved genetic algorithm and multiplier updating [47].

Using penalty and binary concepts, researchers discussed a cuckoo algorithm for the
optimized CHPED problem [48]. A Mühlenbein mutation-based coded genetic algorithm
was presented for the solution of the CHP economic dispatch problem. Such mutations
enhance the convergence process and improve the results [49]. A multi-player harmony
search technique was recommended for the resolution of a non-linear large-scale CHPED
issue. The proposed methods were evaluated using data from CHPED 24- and 84-unit sys-
tems [50]. An MPSO with a Gaussian random variable was suggested for the optimization
of the CHPED problem. The proposed technique had good convergence speed and gave a
global solution to the problem [51]. Other authors created a new cuckoo search with elitist
CSA to address the issue of CHP economic load dispatch [52]. The CHPED problem was
suggested to be solved using improved particle swarm optimization in Article [53].
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3. Problem Formulation of CHPED

Thermal generating units, cogeneration units, and heat-only units were taken into
consideration for the problem formulation of the CHPED. The heat-power viable operation
zone of a combined cycle cogeneration unit is depicted in Figure 1. The KLMNOP boundary
curve encloses the viable operation zone.

Appl. Sci. 2023, 13, 10380 5 of 19 
 

zation of the CHPED problem. The proposed technique had good convergence speed and 

gave a global solution to the problem [51]. Other authors created a new cuckoo search 

with elitist CSA to address the issue of CHP economic load dispatch [52]. The CHPED 

problem was suggested to be solved using improved particle swarm optimization in Ar-

ticle [53].  

3. Problem Formulation of CHPED 

Thermal generating units, cogeneration units, and heat-only units were taken into 

consideration for the problem formulation of the CHPED. The heat–power viable opera-

tion zone of a combined cycle cogeneration unit is depicted in Figure 1. The KLMNOP 

boundary curve encloses the viable operation zone. 

The heat capacity rises along the boundary curve LM as the generation of electricity 

falls, whereas it falls along the curve MN. It is obvious that the unit’s maximum output 

power is reached along the KL curve. On the other hand, the MN curve is where the unit 

produces the most heat. 

 

Figure 1. Feasible operating region for a co-generation system. 

The main goal of the issue is to estimate the heat and power generation rates for each 

unit in order to minimize the cost of heat and power generation while meeting the heat 

and power demands. The CHP load dispatch problem is represented mathematically as 

follows: 

𝑚𝑖𝑛 (∑𝐶𝑖(𝑃𝑖
𝑃)

𝑁𝑃

𝑖=1

+∑𝐶𝑗(𝑃𝑗
𝑐 , 𝐻𝑗

𝑐

𝑁𝑐

𝑗=1

) +∑𝐶𝑘(𝐻𝑘
ℎ)

𝑁ℎ

𝑘=1

) (1) 

where 𝐶𝑖(𝑃𝑖
𝑃) is total generation cost, 𝐶𝑗(𝑃𝑗

𝑐, 𝐻𝑗
𝑐) is generation cost with CHP units, and 

𝐶𝑘(𝐻𝑘
ℎ) is generation cost using heat-only units. Np, Nc, and Ck denote the number of 

power only units, CHP units, and heat only units, respectively. Similarly, i, j and k show 

the number of power-only units, CHP units, and heat-only units. 

The quadratic cost function of power-only units is given as 

𝐶𝑖(𝑃𝑖
𝑝
) = 𝑎𝑖(𝑃𝑖

𝑝
)
2
+ 𝑏𝑖𝑃𝑖

𝑝
+ 𝑐𝑖 (2) 

where 𝐶𝑖(𝑃𝑖
𝑝
) denotes fuel cost of the ith generating units, and ai, bi, and ci are the cost 

coefficients of power-only units. 

A combined heat–power cogeneration system is given as 

𝐶𝑗(𝑃𝑗
𝑐 , 𝐻𝑗

𝑐) = 𝑎𝑗(𝑃𝑗
𝑐)

2
+ 𝑏𝑗𝑃𝑗

𝑐 + 𝑐𝑗 + 𝑑𝑗(𝐻𝑗
𝑐)

2
+ 𝑒𝑗𝐻𝑗

𝑐 + 𝑓𝑗𝑃𝑗
𝑐𝐻𝑗

𝑐 (3) 

And a heat-only unit is defined as 

𝐶𝑘(𝐻𝑘
𝑐) = 𝑎𝑘(𝐻𝑘

ℎ)
2
+ 𝑏𝑘𝐻𝑘

ℎ + 𝑐𝑘 (4) 

Figure 1. Feasible operating region for a co-generation system.

The heat capacity rises along the boundary curve LM as the generation of electricity
falls, whereas it falls along the curve MN. It is obvious that the unit’s maximum output
power is reached along the KL curve. On the other hand, the MN curve is where the unit
produces the most heat.

The main goal of the issue is to estimate the heat and power generation rates for each
unit in order to minimize the cost of heat and power generation while meeting the heat and
power demands. The CHP load dispatch problem is represented mathematically as follows:

min

(
NP

∑
i=1

Ci(PP
i ) +

Nc

∑
j=1

Cj(Pc
j , Hc

j ) +
Nh

∑
k=1

Ck(Hh
k )

)
(1)

where Ci(PP
i ) is total generation cost, Cj(Pc

j , Hc
j ) is generation cost with CHP units, and

Ck(Hh
k ) is generation cost using heat-only units. Np, Nc, and Ck denote the number of

power only units, CHP units, and heat only units, respectively. Similarly, i, j and k show
the number of power-only units, CHP units, and heat-only units.

The quadratic cost function of power-only units is given as

Ci(Pp
i ) = ai(Pp

i )
2 + biP

p
i + ci (2)

where Ci(Pp
i ) denotes fuel cost of the ith generating units, and ai, bi, and ci are the cost

coefficients of power-only units.
A combined heat-power cogeneration system is given as

Cj(Pc
j , Hc

j ) = aj(Pc
j )

2 + bjPc
j + cj + dj(Hc

j )
2 + ej Hc

j + f jPc
j Hc

j
(3)

And a heat-only unit is defined as

Ck(Hc
k) = ak(Hh

k )
2 + bk Hh

k + ck (4)

3.1. Problem Formulation with Valve-Point Effects

In traditional thermal power plants, a large number of steam valves are utilized to
increase turbine speed when the load is high. The plant’s cost function is altered as a
result of opening the valve in this way. A sinusoidal element is added to the quadratic
cost function of traditional thermal units to simulate valve-point consequences. The valve-
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point effect is taken into account, which creates a non-convex optimization issue. The cost
function for power-producing units under the influence of valve loading is expressed as

Ci(Pp
i ) = ai(Pp

i )
2 + biP

p
i + ci +

∣∣∣disin(ei(Pmin
i − pp

i ))
∣∣∣ (5)

where ai, bi, and ci are the fuel coefficients, and di and ei are the valve-loading coefficients.

3.2. Constraints

When power is generated at thermal power plants, it faces many limitations called
constraints. The following constraints are considered when the CHP problem is formulated:

3.2.1. Power Balance

Generated power must be equal to the load demand plus the loss of power in the
transmission line. It is defined as follows:

Np

∑
i=1

Pp
i +

Nh

∑
j=1

Pp
j = Pd + PLoss (6)

where Pp
i is the power generated by the ith generating units, and Pd and PLoss are the

demand of power and power loss in the transmission line, respectively. Power loss in the
transmission line is given as

PLoss =
∫ Np

i=1

∫ Np

l=1
Pp

i Bil P
p
l +

∫ Np

i=1

∫ Nc

j=1
Pp

i BijPc
j +
∫ Nc

j=1

∫ Nc

m=1
Pp

j BjmPc
m (7)

where Bil , Bij, and Bjm are the line loss coefficients.

3.2.2. Heat Balance

The production of heat is always equal to the demand for heat, called the heat balance,
and it is formulated as follows:

Nc

∑
j=1

Hj +
Nh

∑
k=1

Hk = Hd (8)

where Hj is the heat generated due to the co-generation system, Hk is the heat generated
due to the heat-only unit, and Hd is the head demand.

3.2.3. Generation Limit Due to Power-Only Units

All generating units have limitations between maximum and minimum power gener-
ation, as given below.

Pp.min
i ≤ P

p

i ≤ Pp.max
i (9)

where Pp.min
i and Pp.max

i are the limits of minimum and maximum power generation.

3.2.4. Capacity Limits of Power and Heat Due to Combined Heat-Power Units Only

Pc,min
j

(
Hj
)
≤ P

c,max

j
≤ Pc

j (Hj) (10)

Hmin
j ≤ Hj ≤ Hmax

j (11)

4. Heuristic Optimization Techniques Analysis

The numerous demands make it difficult to include cogeneration units in the economic
dispatch of the power system. The cogeneration units’ mutual dependence on each other’s
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heat-power capacity makes it difficult to economically dispatch cogeneration units into the
power grid due to the numerous demands (for both heat and electricity). Researchers have
put forth a variety of heuristic methods for optimizing the CHPED problem. The many
heuristic methods proposed for CHPED optimization are shown in Table 1.

Table 1. Different optimization approaches used for the solution of the CHPED problem.

Ref. No. Optimization
Techniques Constraints Taken Case Study for

Optimization
Advantages and
Disadvantages

[1] 1994 Quadratic
programming Generation limits

15 traditional power
units, 9 boilers, and

15 co-generation units

Fast response and does not
depend on the size of the data

[2] 1996 Lagrangian relaxation Power balance and
generation limits 7-unit system

Best suitable for small
generating unit system

optimization

[3] 2013 Benders decomposition Inequality constraint 4- and 5-unit systems Performing well for a small
data set

[4] 2009 SPSO Equality and inequality 4 units Best performing for small
test data

[5] 2011 Bee colony Generation limits 4 units Fast and effective

[6] 2012 Artificial immune
system

Power balance and
generation limits 4 units

Gives an optimum solution
and takes less CPU time, but

does not test the big test
data set.

[7] 2013 Firefly algorithm Power balance and
generation limits 4 units Simple and effective

[8] 2011 Mesh adaptive direct
search

Power balance and
generation limits

Single- as well as
multi-heat area and
power area systems

Conceptually, it is very
straightforward, easily

implementable, and
computationally effective.

[9] 2015 TVAC-PSO
Valve point, generation

limit, power balance,
and heat balance

4- and 84-unit system
Effective for CHPED issues

that are non-convex and
non-linear

[10] 2015 Crisscross optimization

Valve point,
transmission losses,

and prohibited
operating zones

4,7, 24, and 48units Effective for large test data also

[11] 2016 Exchange market
Valve-point loss along

with power balance
and generation limits

4,5, 7, 24, and 48units Powerful and robust algorithm

[12] 2017 WOA Valve-point effect,
generation limits 24, 84, and 96 units Easily handles large test data

and gives a global solution

[13] 2019 IGA-NCM Power balance 4-, 5-, 7-, 24- and
48-unit system

It can handle small and large
data and give optimal

solutions easily.

[14] 2019 Advanced modified
PSO

Valve-point effect,
power balance, and

generation limits
4- and 7-unit system

The suggested technique can
locate the ideal solution and

avoid local minima.
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Table 1. Cont.

Ref. No. Optimization
Techniques Constraints Taken Case Study for

Optimization
Advantages and
Disadvantages

[15] 2020 Hybrid NSGA
II-MOPSO

Power balance and
generation limits 4- and 7-unit system It can handle single- as well as

multi-objective problems.

[17] 2021 HBOA Transmission losses
and the valve point

4, 24, 84, and
96 generating units

Compared to other
optimization techniques, the

feasibility, capability, and
efficiency are better for

large-scale systems.

[18] 2021 HBJSA Power balance and
generation limits

24-, 48-, 84- and 96-unit
systems

The method used by HBJSA to
calculate the lowest minimum,

average, and maximum
generation costs is very stable

and efficient.

[19] 2015 Opposition-based
group search

Valve-point loading
and prohibited
operating zones

4-, 7-, 24-, and 28-unit
systems

Best situated for small and
large data sets to solve

nonlinear problems

[20] 2016 Gravitational search
algorithm(GSA)

Valve-point effect,
power balance, and

generation limits

5-, 7-, 24- and 48-unit
systems

Ability to solve large data sets
of CHPED problems, good
convergence characteristics,

and efficiency in computation

[21] 2020 BLPSO

Power and heat
limitations and

prohibited operating
zones.

5, 7, 24, and 48 units

This approach prevents
premature convergence and

increases the precision of
the solution.

[22] 2106 Cuckoo search
algorithm (CSA)

Valve point, power
losses, and power

balance
4 and 5 units

Controls parameters in such a
way that they evaluate the

high-quality solution and take
less computational time.

[23] 2017 CPSO
Prohibited operating

zones, valve point, and
transmission losses

4, 7, and 24 units
Enhances the quality of the

answer while requiring fewer
function evaluations.

[24] 2017 MGSO power balance and
valve point

5-, 24-, 48-, 72-, and
96-unit test system

The suggested approach
provides a better solution and
outperforms existing methods

computationally.

[25] 2017 Hybrid
TVAC-GSA-PSO

Power balance and
generation limits 24 units, 48 units,

This technology is robust in
evaluating the minimum
generation cost with less

expensive solutions.

[26] 2018 CSA-BA-ABC
Power and heat balance

and prohibited
operation zones

5- and 7-unit
test system

Delivering a high-quality
solution with more economic

benefits and no
convergence issues

[27] 2020 SFS Power balance and
generation limits

5- and 7-unit
test system

It is possible to avoid local
minima and require less

computing time.

[28] 2020 Kho-Kho optimization
(KKO)

Power balance and
prohibited operation

zones

5- and 7-unit
test system

This method imitates the
special technique the chasing

squad used to touch the
runners team.
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Table 1. Cont.

Ref. No. Optimization
Techniques Constraints Taken Case Study for

Optimization
Advantages and
Disadvantages

[29] 2020 OQNLP
Valve-point loading

effect and
power balance

48-unit system
This technique provides an

effective tool for dealing with
optimization problems.

[30] 2022
Improved marine

predators optimization
algorithm

Power balance and
generation limits 5, 48, 84, 96 units

Convergence characteristics of
IMPOA are stable, and

computation is also fast.

[31] 2023

Comprehensive
learning

wavelet-mutated slime
mold algorithm

Valve loading,
prohibited operating

zones, and
generation limits

24-, 48-, 84- and
96-unit system

The suggested technique
solves the local search issue of

population concentration.

[32] 2020 Direct Optimization
algorithm

Power balance and
generation limits 4-unit system

Good convergence
characteristics are suitable for

small test data sets.

[33] 2022 C-PSO Power balance and
generation limits 7 units (period of 24 h)

Performs well, and results
show it is effective compared

to other optimization
techniques used for the same

test data set.

[34] 2020 Heat transfer search
(HTS)

Transmission loss,
valve point, and

prohibited
operating zones

7, 24, and 48 units Stable operation and less
computation time

[35] 2022 Differential evolution

Power generation
limits, heat limits,

prohibited
operating zone

11, 33 and 165 units

This method can hasten the
removal of constraint

violations and the decrease in
the value of the goal function

for each solution.

[36] 2019 TVAC-PSO

Prohibited operating
zones, spinning reserve,
valve point, power loss,

and ramp rate

5, 7, and 48 units

It can handle the various
constraints and gives a global

solution for the
considered case.

[37] 2022 ETLBO with IPSO

Valve effects,
prohibited operating

zones, and power
transmission loss

4, 24, and 48 units Handles constraints easily

[38] 2020 Multi-verse
optimization algorithm

Valve point,
transmission losses,

and ramp limits

4-, 7-, 10-, and 40-unit
system

The exceedingly challenging
combined economic emission

dispatch is solved by the
suggested method.

[39] 2016 Group search
optimization

Prohibited operating
zones and

valve-point loading
4, 7, and 24 units Effective for multiobjective

nonlinear problem solutions

[41] 2013 SALCSSA Ramp rate 10, 30, 150 units
(for 24 h)

Gives an optimum solution
with a good convergence speed

[42] 2017 Cuckoo optimization
algorithm Valve-point effects 7, 24, 48 Handles the loading effect and

gives optimum results.

[43] 2016 IDE Valve-point effects 13, 38 units Easily handles the
equality constraints
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Table 1. Cont.

Ref. No. Optimization
Techniques Constraints Taken Case Study for

Optimization
Advantages and
Disadvantages

[44] 2014
Teaching–learning-

based
optimization

Valve-point loading 7, 24, and 48 units

For multiobjective problems,
this approach effectively

enhances the overall
performance of the solutions.

[45] 2016 Grey wolf optimization Ramp rate, valve point,
and spinning reserve 4, 7, 11, and 24 units

The recommended method
works more consistently and
with higher-quality solutions.

[46] 2013 Fuzzy logic Ramp-rate limits 7 units
This technique has the

potential to solve a larger,
multi-objective problem.

[47] 2005 IGA-MU Change fuels and
valve point 4-, 7-unit system

This approach has a
straightforward idea that
makes it easier to use and

more successful.

[48] 2020 Cuckoo optimization Power generation and
heat limits 4 units Enhances the exploration on

the search space

[49] 2015 Coded genetic
algorithm

Valve point and
transmission losses 4, 5, 7, and 24 units Effective for small and large

test data

[50] 2019 MPHS 24 and 84 units Handles large data easily

[51] 2013 MPSO
Valve point and

prohibited
operating zones

24 and 48 units
Toimprove the efficiency and
simulation solution, Gaussian
random variables were used.

5. Comparative Results and Analysis

Test case 1
The first case considered the test data of a four-unit system with one available power-

only unit, two CHP units, and one available heat-only unit. The test data for this case is
taken from the articles [7–9,11,13,27,32,37]. All the optimization techniques were tested
for the power and heat demands of 200 MW and 115 MWth, respectively. Table 2 shows
the comparative results of FA [7], MADS-DACE [8], TVAC-PSO [9], CSO [10], EMA [11],
IGA-NCM [13], SFS [27], ETLBOIPSO [37], and GWO [45] for the load demand of 200 MW
and heat demand of 115 MWth.

Table 2. Results obtained for the four generating units with two co-generation units and one heat
unit for the load demand of 200 MW and 115 MWth.

Results of
Generating Units FA [7]

MADS–
DACE

[8]

TVAC-
PSO [9]

CSO
[10]

EMA
[11]

IGA-
NCM
[13]

SFS
[27]

ETLBOI
PSO [37]

GWO
[45]

P1 (MW) 0.0014 0 0 0 0 0 0 0.8473 0

P2 (MW) 159.99 160 160 160 160 160 160 159.338 160

P3 (MW) 40 40 40 40 40 40 40 39.8150 40

H2 (MWth) 40 40 40 40 40 40 40 40 40

H3 (MWth) 75 75 75 75 75 75 75 75 75

H4 (MWth) 0.0 0 0 0 0 0 0 0.18 0

Total cost ($) 9257.1 9257.07 9257.07 9257.07 9257.07 9257.07 9257.07 9178.9934 9257.07

CPU time (s) 1.25 3.27 1.78 1.18 0.9846 1.44 3.78 1.59 2.17
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Figure 2 shows the total costs obtained by different optimization techniques for the
load and heat demand of 200 MW and 115 MWth, respectively; out of all the techniques, it
is shown that ETLBOIPSO [37] gave the best results (total cost = $9178.9934), whereas the
other techniques gave almost the same results.

Appl. Sci. 2023, 13, 10380 10 of 19 
 

ited operating zones  solution, Gaussian random variables 

were used. 

5. Comparative Results and Analysis 

Test case 1 

The first case considered the test data of a four-unit system with one available 

power-only unit, two CHP units, and one available heat-only unit. The test data for this 

case is taken from the articles [7–9,11,13,27,32,37]. All the optimization techniques were 

tested for the power and heat demands of 200 MW and 115 MWth, respectively. Table 2 

shows the comparative results of FA [7], MADS-DACE [8], TVAC-PSO [9], CSO [10], 

EMA [11], IGA-NCM [13], SFS [27], ETLBOIPSO [37], and GWO [45] for the load demand 

of 200MW and heat demand of 115MWth. 

Table 2. Results obtained for the four generating units with two co-generation units and one heat 

unit for the load demand of 200 MW and 115 MWth. 

Results of 

Generating 

Units 

FA [7] 

MADS–D

ACE 

[8] 

TVAC- 

PSO [9] 

CSO 

[10] 

EMA 

[11] 

IGA-NC

M [13] 

SFS 

[27] 

ETLBOI 

PSO [37] 
GWO [45] 

P1 (MW) 0.0014 0 0 0 0 0 0 0.8473 0 

P2 (MW) 159.99 160 160 160 160 160 160 159.338 160 

P3 (MW) 40 40 40 40 40 40 40 39.8150 40 

H2 (MWth) 40 40 40 40 40 40 40 40 40 

H3 (MWth) 75 75 75 75 75 75 75 75 75 

H4 (MWth) 0.0 0 0 0 0 0 0 0.18 0 

Total cost ($) 9257.1 9257.07 9257.07 9257.07 9257.07 9257.07 9257.07 9178.9934 9257.07 

CPU time (s) 1.25 3.27 1.78 1.18 0.9846 1.44 3.78 1.59 2.17 

Figure 2 shows the total costs obtained by different optimization techniques for the 

load and heat demand of 200 MW and 115 MWth, respectively; out of all the techniques, 

it is shown that ETLBOIPSO [37] gave the best results (total cost = $9178.9934), whereas 

the other techniques gave almost the same results. 

 

Figure 2.Total costs for load demand of 200 MW and heat demand of 115 MWth. 

  

9120

9140

9160

9180

9200

9220

9240

9260

9280

To
ta

l c
o

st
($

)

Optimization Techniques

Figure 2. Total costs for load demand of 200 MW and heat demand of 115 MWth.

Test case 2
In this case study, a non-convex system with seven generating units was investigated,

and the testing performances of several optimization strategies were compared. Seven
units consisting of four power-only units, two CHP units, and one heat-only unit made-up
this system [6,9–11,20,25,34,39]. Optimization results yielded power and heat demands
of 600 MW and 150 MWth, respectively. For this case, the comparative performances of
AIS [6], TVAC-PSO [9], CSO [10], EMA [11], IGA-NCM [13], HTS [34], GSO [39], GWO [45],
and RCGA-I [49] are shown in Table 3. CSO [10], HTS [34], and RCGA-I [49] reported the
lowest generation cost compared to other techniques, whereas EMA [11] reported the least
amount of computation time. The AIS [6] techniques reported large generation costs and
long computation times compared to the other algorithms.

Figure 3 shows the total costs obtained by different optimization techniques for a load
demand of 600 MW and a heat demand of 150 MWth. Out of all the techniques, CSO [10]
gave the best results, whereas AIS [6] gave the worst results for this case study.
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Table 3. Comparative performances of the various optimization techniques for the 7-unit system for
the load demand of 600 MW and heat demand of 150 MWth.

Optimum
Results of

Generating Units
AIS [6] TVAC-

PSO [9]
CSO
[10]

EMA
[11]

IGA-
NCM
[13]

HTS
[34]

GSO
[39]

GWO
[45]

RCGA-I
[49]

P1 (MW) 50.1325 47.3383 45.2 52.684 45.155 44.2825 45.6188 52.8074 45.6614

P2 (MW) 95.5552 98.5398 98.539 98.5398 98.5398 100.110 98.5401 98.5398 98.5398

P3 (MW) 110.751 112.673 112.67 112.673 112.673 112.621 112.672 112.6735 112.6735

P4 (MW) 208.768 209.815 209.81 209.815 209.815 209.700 209.815 209.8158 209.8158

P5 (MW) 98.8 92.3718 94.183 93.8341 94.5549 94.0105 94.1027 93.8115 93.9960

P6 (MW) 42 40 40 40 40 40.0235 40.0001 40 40

H5 (MWth) 19.4242 37.8467 27.178 29.242 29.2388 28.262 27.6600 29.3704 28.2842

H6 (MWth) 77.0777 74.9999 75 75 75 74.7432 74.9987 75 75

H7 (MWth) 53.498 37.1532 47.82 45.75 45.7612 46.9948 47.3413 29.3704 46.7158

Total cost ($) 10,355 10,100.3 10,094.12 10,111.07 10,107.90 10,094.7 10,094.26 10,111.24 10,094.05

CPU time (s) 5.2956 3.48 3.09 2.06 3.47 2.01 2.4203 5.2618 3.15

Test Case 3
In this case, comparative results are shown in Table 4 for a large test data set con-

sisting of twenty-four units (thirteen power-only units, six CHP units, and five heat-only
units) [10–13,17,18,22,26,34,37]. All the algorithms were tested for power and heat demands
of 2350 MW and 1250 MWth, respectively.

Table 4. Competitive results for a 24-unit system for the power and heat demands of 2350 MW and
1250 MWth.

Output CSO
[10]

EMA
[11]

WOA
[12]

IGA-
NCM
[13]

HBOA
[17]

HBJSA
[18]

HTS
[34]

ETLBOI-
PSO [37]

TLBO
[44]

P1 448.7 628.31 628.3185 628.318 538.5587 448.818 539.5724 458.4 628.324

P2 225.2 299.18 299.1993 299.198 300.2175 299.2188 298.9487 291.93 298.7686

P3 299.2 299.16 299.1993 29.1665 301.08255 300.7211 297.9085 228.1 298.9086

P4 109.86 109.86 109.8665 109.867 159.777 60.10963 110.082 93.74 110.1919

P5 109.86 109.86 109.8665 109.866 63.2173 159.7451 110.2645 180 110.0846

P6 159.73 109.865 109.8665 60 60.6889 159.7769 110.2381 124.06 110.1379

P7 159.73 60 109.8665 109.86 160.20652 159.7718 110.2745 115.92 110.1045

P8 159.73 109.86 60.00003 109.823 111.5383 60 110.2452 116.68 110.2444

P9 109.86 109.856 109.8665 109.852 11.25395 159.751 110.1592 180 110.1992

P10 40 40 40.00003 40.0001 40 77.41183 77.3992 65.38 77.4989

P11 77.399 77.019 76.9485 77.0316 40.00025 40.00109 77.8364 40 77.7367

P12 92.399 55 55.00003 55.0098 55.657936 55.00862 55.0023 79.44 55.1036

P13 55 55 55.00003 55 55.284 55.6611 55.0109 89.23 55.1107

P14 87.554 81 81.00003 81.0035 87.944 85.84419 81.0524 81 81.0624

P15 40 40 40.00165 40.0003 41.2662 42.75199 40.0015 40 40.3515

P16 90.609 81 81.00003 81.0003 84.034 95.88869 81.003 81.1 81.262
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Table 4. Cont.

Output CSO
[10]

EMA
[11]

WOA
[12]

IGA-
NCM
[13]

HBOA
[17]

HBJSA
[18]

HTS
[34]

ETLBOI-
PSO [37]

TLBO
[44]

P17 40 40 40.00003 40.0001 43.1437 44.46837 40.0009 40 40.0119

P18 10 10 10.00003 10.0002 11.0824 10.04622 10.0002 10 10.0011

P19 35 35 35.00003 35.0003 35.044 35.00512 35.0001 35.012 35.0012

H14 108.47 104.82 104.8 104.801 108.697 107.4915 105.2219 104.76 105.211

H15 75 75 75.0014 75.0001 76.0921 77.37645 76.5205 75 76.5306

H16 110.19 104.82 104.8 104.799 106.47627 113.1557 105.5142 104.74 105.511

H17 75 75 75 74.9988 77.7146 78.85075 75.4833 74.99 75.4706

H18 40 40 40 39.9993 40.4643 40.02 39.9999 40 39.9999

H19 20 20 20 20.0001 20.0204 20.00127 18.3944 18.25 18.4014

H20 461.32 470.39 470.3986 470.409 460.53781 453.1093 468.9043 473 468.902

H21 59.999 60 59.99998 60 60 60 59.9994 60 59.9995

H22 59.999 60 59.99998 60 60 59.99883 59.9999 59.96 59.9995

H23 119.99 120 119.9999 120 119.99644 119.9964 119.9854 119.35 119.9856

H24 120 120 119.9999 119.991 120 119.9995 119.9768 119.99 119.986

Total cost
($) 57,907.1 57,825.5 57,830.52 57,826.09 57,994.51 57,968.54 57,842.99 57,758.66 57,843.52

CPU (s) 24.98 1.167 2.71 1.72 3.62 4.04 5.47 2.63 5.4106

Table 4 shows the comparative results of the CSO [10], EMA [11], WOA [12], IGA-
NCM [13], HBOA [17], HBJSA [18], HTS [34], ETLBOI-PSO [37], and TLBO [44] techniques
for a 24-unit problem system. All the algorithms performed well, but the ETLBOI-PSO [37]
technique gave a minimum generation cost of 57,758.66 dollars, which is the best out of all
the other methods. EMA [11] reported the least computation time.

Figure 4 shows the total costs obtained by different optimization techniques for a load
and heat demand of 2350 MW and 1250 MWth, respectively. In this case, ETLBOI-PSO [37]
gave the best results, whereas HBOA [17] gave the worst results.
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Test Case 4
This case study took data from a large system with non-convex fuel costs [10,11,18,29–

31,36,37]. These large test system had 48 units (26 power-only units, twelve CHP units, and
ten heat-only units). The comparative results of the new heuristic optimization techniques
for the power and heat demands of 4700 MW and 2500 MWth, respectively, are shown in
Table 5. Compared to all the other techniques, KKO [28] gavea minimum cost of $115,422,
whereas the OQNLP [29] technique reported a generation cost of $116,993.2, which was the
maximum, compared to the other methods.

Table 5. Costs obtained by different heuristic optimization techniques for the 48-unit system (power
and heat demands of 4700 MW and 2500 MWth).

Methods Min. Cost ($) Methods Min. Cost ($)

CSO [10] 115,967.7205 OQNLP [29] 116,993.2

EMA [11] 115,611.84 IMPAO [30] 116,640.6

IGA_NCM [13] 115,685.2 CLWSMA [31] 116,389.588

HBJSA [18] 116,140.34 TVAC-PSO [36] 115,610.465

OGSO [19] 116,678.2 ETLBOIPSO [37] 115,126.32

MGSO [24] 115,606.5482 COA [42] 116,789.91535

TVAC-GSA-PSO [25] 116,393.4034 TLBO [44] 116,739.3640

KKO [28] 115,422 OTLBO [44] 116,579.2390

MPSO [51] 116,919

Figure 5 shows the total costs obtained by different optimization techniques for a load
and heat demand of 4700 MW and 2500 MWth, respectively. In this case, ETLBOI-PSO [37]
gave the best results, whereas OQNLP [29] gave the worst results.
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Test Case 5
In this case, a large test system of 84 units was taken into consideration. This test case

had 40 generating, 24 cogeneration, and 20 heat-only units [12,30,31]. The test results of
various optimization techniques for the 84-unit system (5000 MWth and 12,700 MW of
heat and power demands, respectively) are shown in Table 6. The MPHS [50] techniques
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reported a minimum generation cost of $288,157.4297, which was a minimum compared to
all the other techniques, and it took 76.65 s to compute, which was also the least amount of
computation time, compared to all the other listed techniques in Table 6.

Table 6. Test results for the test data of 84-unit system.

Methods Minimum Cost ($) CPU Time (s)

TVAC-PSO [9] 295,680.9138 90.21

WOA [12] 290,123.97424 158.18

HBOA [17] 289,822.39 114.5

IMPAO [30] 289,903.8 134.4

CLWSMA [31] 288,698.9636 124.2

SMA [31] 288,978.8 89.5

CODED GENETIC
ALGORITHM [49] 298,417.18704 140.91

MPHS [50] 288,157.4297 76.65

Figure 6 shows the total costs obtained by the different optimization techniques
for a load and heat demand of 12,700 MW and 5000 MWth, respectively. In this case,
CLWSMA [31] gave the best results, whereas CODED GENETIC ALGORITHM [49] gave
the worst results.
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Test Case 6
In this case, again, a larger test data set of a 96-unit system was available, with

52 traditional power units, 24 cogeneration units, and 20 heat-only units [12,17,30,31]. All
the algorithms’ comparative results are listed in Table 7 for the load demand of 9400 MW
and the heat demand of 5000 MWth. The CLWSMA [31] method reported a minimum
generation cost of $235,083.367, which was the least, compared to the other listed techniques
in Table 7.
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Table 7. Cost of 96-unit system for the load demand of 9400 MW and heat demand of 5000 MWth.

Methods Min. Cost ($)

TVAC-PSO [9] 239,139.50

WOA [12] 236,699.1501

HBOA [17] 235,102.65

IMPAO [30] 235,260.3

CLWSMA [31] 235,083.367

SMA [31] 235,973.3

RCGA-IMM [49] 239,896.41

Figure 7 shows the total costs obtained by different optimization techniques for a load
and heat demand of 9400 MW and 5000 MWth, respectively. In this case, HBOA [17] gave
the best results, whereas RCGA-IMM [49] gave the worst results.
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6. Conclusions

This article presents a deep analysis of various heuristic optimization techniques used
for the optimum solution of CHPED. The CHPED problem is formulated along with various
constraints shown in Table 1, which increase the complexity of the system and make classical
optimization methods ineffective at finding an optimal solution. Numerous population-
based heuristic optimization approaches have now been used to solve the CHPED issue
in order to address the deficiencies of traditional optimization techniques. In this article,
we consider many of the heuristic optimization techniques shown in Table 1, which are
used to solve the CHPED problems with different load and heat demand conditions. Some
methods are used to solve small generating units, such as 4, 7, and 24 units, while others
are used for large generating units, such as 48-, 84-, and 96-unit systems. In this article,
we try to show the effectiveness of optimization techniques for small generating units
in a large available unit system. This study covered six cases for different unit systems.
It is observed that almost all techniques are able to solve the CHPED problem in a very
short amount of computation time. As in case 1, almost all the methods give the same
results; only the computation time is different. The WOA [12], the heap-based optimization
algorithm (HBOA) [17], the hybrid heap-based and jellyfish search algorithms [18], the
modified group search optimizer [24], the comprehensive learning wavelet-mutated slime
mold algorithm [31], the differential evolution [35], and the MPHS [50] techniques are
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found effective for small as well as large generating unit systems. For all the methods, the
results are similar to each other, but in some cases, the results from two to three techniques
are better in terms of minimum generation cost, which is already explained in the results
analysis section.
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Abbreviations

AI Artificial immune
BCO Bee colony optimization
BLPSO Biogeography-based learning particle swarm optimization
CHPED Combined heat-power economic dispatch
Ci Total generation cost
Cj Generation cost with CHP units
Ck Generation cost using heat-only units
CSA-BA-ABC Artificial bee colony
C-PSO Co-evolutionary particle swarm optimization
CSO Civilized swarm optimization
COA Cuckoo optimization algorithm
Np Number of power-only units
Nc CHP units
Ck Heat-only units
ECSA Elitist cuckoo search algorithm
GWO Grey wolf optimization
GSO Group search optimization
GAMS General algebraic modeling system
HBOA Heap-based optimization algorithm
HTSA Heat transfer search algorithm
HBJSA Hybrid heap-based and jellyfish search algorithm
IGA-NCM Improved genetic algorithm
IDE Improved differential evolution
IMPA improved marine predators algorithm
MPSO Modified particle swarm optimization
MGSO Modified group search optimizer
OQNLP OptQuest/NLP
PPS Powell’s pattern search
SPSO Selective particle swarm optimization
TVAC-PSO Time varying acceleration coefficient particle swarm optimization
WOA Whale optimization algorithm
SFS Stochastic fractal search algorithm
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