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Abstract: Knowledge of thermophysical properties of materials is important in the design process to
meet the ambitious targets with respect to reliability and performance of many modern machinery. In
this paper a simple method for the measurements of thermophysical material properties is presented.
A bar of the sample material is heated at one end by a constant heat source and temperature sensors
on or in the sample material at different locations record the temperature response. In the limit of
small Fourier-Numbers the temperature will not rise at the adiabatic end and the comparison to
the theoretical curve allows to extract thermophysical data. In the case of large Fourier-Numbers a
quasi steady temperature profile in the bar allows to extract all relevant thermophysical properties
simultaneously. Apart from the theory some measurement results are presented and the errors due to
diabatic boundary conditions are discussed.
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1. Introduction

The efficient design of cooling structures with modern manufacturing technologies
such as 3D metal printing requires the knowledge of the thermophysical properties of the
printed material [1]. Different methods for the determination of thermophysical material
properties of solid materials are available. Most of the methods are based on temperature
measurement and comparison to analytical solutions [2] of the temperature. The methods
differ in the sample geometry and the form of applying energy to the sample. The methods
can be classified accordingly into an energy pulse as in the laser flash method, fixed
boundary temperatures or fixed heat flux at boundaries.

In the laser flash method [3], a sample of the material is exposed to a laser flash on
one side and the temperature rise of the probe is used to determine the thermal diffusivity,
see Gobrecht et al., 1970 [4] and the corresponding standards and references (ASTM E2585-
09 [5], ASTM E1461-13 [6]).

In the Searls bar method [7], a linear sample of the material is kept at fixed temperature
at both ends. The temperature and the applied heat are measured. This allows to determine
the thermal conductivity.

In the transient line source method [8], a probe of small diameter is inserted into a
cylindrical sample of much larger diameter. The applied heat and the temperature are
monitored over time. The logarithmic temperature rise allows determining the thermal
conductivity.

In this paper, a rather simple method for the determination of thermophysical prop-
erties based on one dimensional conduction is presented. It differs from the previously
mentioned methods by a cost-effective realization without any potentially dangerous equip-
ment like a laser and no necessity of a regulated heat sink. The boundary conditions are
defined by a constant heat flux at one side of the bar and a diabatic condition at the other
end of the bar. Monitoring the temperature at different locations and comparison to the
analytical solution for small and large Fourier numbers allows the determination of the
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thermophysical properties. In the literature, analytical solutions for the one dimensional
bar are available for several boundary conditions, see Carslaw [2,9]. The time dependent
analytical spacial temperature profile is then typically given by an infinite series.

An alternative and mathematically simple way is to restrict oneself to the asymptotic
solutions of very small and very large physical time scales. In the limit of small Fourier-
Numbers at small physical time scales when the heat flux has not caused a temperature rise
at the adiabatic end, the analytical solution of the semi-infinite body can be applied. The
temperature evolution can then be used to determine the product of thermal conductivity,
density and heat capacity. In the case of large Fourier-Numbers, a quasi-steady spacial
temperature profile develops. It is only shifted by an offset temperature. The change of the
offset temperature is then used to determine the heat capacity of the sample material and
the spacial shape of the temperature curve allows determining the conductivity.

The theoretical considerations are only directly applicable to the measurement when
adiabatic boundary conditions are realized. As the reality is diabatic the heat flux to the
surrounding can be partially compensated by measuring the temperature while the sample
is cooling under the same boundary conditions as it was heated.

Compared to other methods, this method has the advantage of allowing to determine
several thermophysical properties, i.e., heat capacity cp and conductivity λ in one mea-
surement for a wide range of conductivities. In the case of low conductivities, the small
Fourier-number limit, the thermal diffusivity a can be determined and in the cases of large
conductivities, the large Fourier-number limit, heat capacity cp and conductivity λ can be
determined. Measurement results are compared to available data sheet values [10–12] and
have not been compared with other measurements using the same sample material.

2. Physical Foundations

Detailed derivations of the heat conduction in the one dimensional bar can be found
in standard textbooks, see Incropera et al., 2007 [13]. In this section, only the relevant
connections to the measurement are stated. Fourier’s law states that the specific heat flux q̇
is proportional to the temperature gradient in the material ∇T and the conductivity of the
material λ.

~̇q = −λ∇T(x, t). (1)

The temporal change of temperature in a body is described by the law of tempera-
ture diffusion, with the diffusion coefficient a = λ/(cp · ρ) and the second derivative in
space ∇2T.

∂

∂t
T(x, t) = a∇2T(x, t) (2)

Assuming constant diffusivity a and constant conductivity λ in the process, Fourier’s
law (Equation (1)) and the temperature diffusion equation (Equation (2)) can be combined
to find an equation for the diffusion of the specific heat flux.

∂

∂t
~̇q(x, t) = a∇2~̇q(x, t) (3)

Stating the equation in terms of heat flux, simplifies the application of the experimental
boundary conditions when solving the equation.

2.1. Heat Conduction in the One Dimensional Bar

When the width and height of the bar are significantly smaller than the length of the
bar, the mathematical problem becomes one dimensional with respect to the longitudinal
direction of the bar. A sketch of the geometry and the expected temperature profile is
given in Figure 1. With the diabatic BC, no heat is transferred to the ambient. The absolute
temperature of the bar will continuously, for this reason, only the temperature differences
∆T along the bar are shown.
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Figure 1. Sketch of the bar with the boundary conditions and the expected temperature profile.

The situation can be further simplified when the bar is considered to be semi-infinite,
i.e., that the bar is of infinite length. Then the boundary conditions need to be specified at
x = 0 and x → ∞. Equation (3) can be made non-dimensional. The arising factor and the
boundary conditions

• q̇(x, t)|x→∞ = 0
• q̇(x = 0, t > 0) = q̇0 = const.
• q̇(x, t = 0) = 0

suggest a variable substitution η = x/(2
√

at) in the same way as the standard substitution
in the semi-infinite body (see Incropera [13]). This yields an analytical solution for the
specific heat flux q̇. Integration of the specific heat flux yields the temperature profile [14]
in the semi-infinite bar.

T(x, t) = T0 +
2q̇0
√

at
λ

∫ ∞

x
2
√

at

er f c(µ)dµ (4)

Here er f c(µ) is the error function complement. The temperature rise at the heated
end of the bar ∆T(x = 0, t) follows a square root dependence on time (∝

√
t). The next step

is to consider a bar of finite length. This is possible when the time since the beginning of
heating is so small, that the heat flux has not caused the temperature to rise at the adiabatic
end of the bar. This condition can be described with small Fourier numbers.

2.2. Solution in the Small Fourier-Number Limit

At small physical times, when the Fourier-Number Fo = at/L2 is significantly smaller
than 1, the temperature rise at the adiabatic end is almost zero. This requires the integral∫ ∞

L
2
√

at
er f c(µ)dµ in Equation (4) to vanish. The measured temperature profile can then be

compared to the analytical temperature profile to determine the factor 2q̇0
√

a/λ.
The temperature rise at the heated end is then given by

∆TsF(x = 0, t) =
2q̇0
√

t√
λρcp
√

π
(5)

since the integral
∫ ∞

0 er f c(µ)dµ = 1/
√

π is constant. With a specific heat flux q̇0 at the
heated end (x = 0), it is sufficient to measure the temperature at the heated end to de-
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termine the factor λρcp. When the specific heat capacity cp and density ρ are known, the
conductivity can be extracted from the factor.

λ =
1

ρcp

4q̇2
0

π

t
∆T2

s f (x = 0, t)
(6)

The equation for the temperature distribution (Equation (4)) can be simplified when
the temperature between the heated and the adiabatic end of the bar ∆TsF is known.

T(x, t) = T0 + ∆TsF
√

π
∫ ∞

x
2
√

at

er f c(µ)dµ (7)

This equation is more suited for the post-processing of the experimental data, since
∆TsF can be obtained directly by measurements. When temperature is monitored at several
positions along the bar, it is possible to fit the curve to the temperature Equation (7) with
the product by variation of η = x/(2

√
at) with known time t and position x to extract the

thermal diffusivity a.

2.3. General Solution of Time-Dependent Conduction for the Finite Bar

The general temperature distribution in a bar of length L is given by Carslaw and
Jaeger 1959 [9] by

T(x, t) =
1
L

∫ L

0
T(0, t)dx +

2
L

∞

∑
n=1

exp
−n2π2at

L2 cos
nπx

L

∫ L

0
T(x, 0) cos

nπx
L

dx (8)

and is the base for developing thermophysical properties measurement as the flash method [15].
This analytical solution is remarkable with respect to the splitting of the solution in time
and space. The solution can be further simplified for large physical time scales.

2.4. Solution in the Large Fourier-Number Limit

At large physical time scales, when the Fourier-Number Fo = at/L2 is many times
greater than 1, the temperature profile becomes quasi-steady with respect to space.

The analytical solution can be derived, considering the heat source term Q̇ to be a
Dirac function in space on the left side of the bar (x = 0). This can also be viewed as a
boundary condition on the left side, with ∂T

∂x = − Q̇
λA with λ being the unknown thermal

conductivity and A the surface on the left side of the bar. The shape of the temperature
profile from left to right remains similar, it is simply shifted by the increase in the average
bar temperature. As the temperature difference ∆TlF = T(x = 0, t)− T(x = L, t) from the
left side of the bar T(x = 0, t) to the right side of the bar T(x = L, T) remains constant, it
decouples from the temporal change in temperature.

Tas(x, t) =
Q̇ · t
mcp

+ ∆TlF f (x) (9)

We refer to this temperature profile as the asymptotic temperature solution Tas(x, t)
given by Equation (9). The time-dependent component is given by the constant power heat
source Q̇. The spatial distribution of the temperature is time independent and represented
by f (x). This leads to simple derivatives with respect to time and space. The temporal
derivative is simply the heating power divided by mass and heat capacity. The second
spatial derivative consists of the temperature difference ∆TlF times the second spatial

derivative ∂2 f (x)
∂x2 .

∂T(x, t)
∂t

=
Q̇

mcp

∂2T
∂x2 = ∆TlF

∂2 f (x)
∂x2 (10)
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Placing the terms into the temperature diffusion Equation (2) yields the following
relation.

Q̇
mcp

= a∆TlF
∂2 f (x)

∂x2 (11)

With a constant heat source Q̇, f (x) is a simple second order polynomial. For this
reason, the asymptotic temperature distribution Tas must follow the following equation
with unknown constant c1 and c2.

Tas(x, t) = T(0, t) + c1 ·
( x

L

)
+ c2 ·

( x
L

)2
(12)

The unknown constants can be obtained with the boundary conditions on the left and
the right end of the bar. Next to the temperatures at both ends of the bar, the lack of heat
flux at the right end of the bar gives an additional condition for the spatial derivative of the
temperature profile.

∂T(x, t)
∂x

|x=L = 0 (13)

Applying the boundary condition leads to a simple second order polynomial for the
temperature profile in the bar.

Tas(x, t) = T(0, t) + ∆TlF ·
( x

L

)(( x
L

)
− 2
)

(14)

Temperature measurements at both ends of the bar are sufficient to determine ∆TlF
and to verify that the asymptotic state is reached. Then the temporal change in temperature
can be used to determine the specific heat capacity cp.

cp =
Q̇

m ∂
∂t T(x = 0, t)

(15)

The temperature difference ∆TlF = T(x = 0, t)− T(x = L, t) at both ends of the bar
allows determining the thermal diffusivity a in the large Fourier-Number limit and thereby
the conductivity λ.

a = Q̇
mcp

L2

2∆TlF

λ = aρcp
(16)

The obtained values can be compared to the values determined in small Fourier-
Number limit.

3. Experimental Setup

The previously described theory can be applied to an experimental setup which
consists of a metal bar with length to width ratio (l/w) larger than ten. This allows the
temperature distribution to be almost one-dimensional when the heat source is heating the
entire height on one side of the bar. The bar shown in Figure 2 is heated on the left side
(x = 0) with a constant power source homogeneously over the entire height. In this setup,
an electric resistance heater cartridge is used as a heat source. The geometry of the sample
was chosen to satisfy the operating conditions of the heating cartridge. This includes
a hollow cylinder to house the heating cartridge. The minimal allowed wall thickness
surrounding the heating cartridge defines the height of the bar. The heating cartridge is
powered by an external constant power source. Monitoring of current and voltage allows
controlling the power in a window with an error lower than 1%.

The sample used here consists of a bar with a total length l of 167 mm, a width w of
40 mm and a thickness of 8 mm. The thickness of 8 mm was chosen to match the diameter
of the heating cartridge (d = 8 mm). As the heating cartridge requires an absorbing wall
thickness of 4 mm, the heated end of the bar was shaped in the form of a cylinder of 16 mm
in diameter.
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The bar was instrumented with PT100 (Class A) temperature sensors with 2.3 mm in
height in 2 mm in width. The temperature sensors have a response time of 0.2 s. Seven
temperature sensors were placed on the bar at a distance of 25 mm. The data acquisition
system was a self developed PCB using MAX31865 RTD-to-Digital converters.

The heating cartridge power was current controlled using an Aim-TTi CPX400 labora-
tory power supply.

x=0

Figure 2. One side heated one dimensional bar with temperature measurement.

Temperature recording with a frequency of 1 Hz is typically sufficient to capture all
transient effects. The electric heating is triggered a short time after the recording is started.
Since the temperature should be uniform at the beginning of the measurement, this allows
to verify the calibration of the temperature sensors. This results in no offset error and only
temperature dependent. One sample (AL7075) is measured to show the proof of concept.

3.1. Characteristic Time Windows of the Measurements

Before the measurement is performed, uniform temperature of the bar must be ensured.
This is done by keeping the sample at room temperature for several hours before the
measurement is performed. Furthermore, this offers the advantage of keeping the error
due to diabatic effects small in the small Fourier-Number limit. The measurements itself
can be divided into three phases:

1. Sensor alignment and calibration
2. Constant heating phase
3. Cooling phase

The necessary measurements for the determination of the thermophysical properties
take place during the constant power heating phase. Measurement without heating before
and afterward are necessary to calibrate the sensors and correct the diabatic effects. The
heating phase itself can be divided into three characteristic phases:

1. The phase of small Fourier-Numbers, where the temperature rise at the adiabatic end
has not started (Small Fo window).

2. Transient phase in which an asymptotic temperature profile is slowly established.
3. The phase of large Fourier-Numbers, where the asymptotic temperature profile is

stable (Large Fo window).

Figure 3 shows the temperature measurements without calibration corrections on the
sample bar AL7075. On the left side, the small time window for the small Fourier-Number
limit is marked. In the middle, the time window for the large Fourier-Number limit and the
different curves for the sensors can be seen. The processed data of the cooling phase lies in
the cooling window, which ranges approx. from 1000 s up to the end of the measurement.
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Figure 3. Temperatures at the different locations of the bar, T1 is next to the heating cartridge, T7 at
the adiabatic end of the bar.

3.2. Temperature Dependence of Thermophysical Properties

Specific heat capacity cp and conductivity λ changes with temperature [16,17]. The
changes in a limited heating range of less than 50 K at temperatures between 0 ◦C and
150 ◦C tend to be lower than the uncertainty of most methods. The presented method can
be extended to a procedure, where the changes in thermal diffusivity due to temperature
change can be extracted by locally fitting the heating slopes to limited temperature ranges
in the large Fourier-Number limit. Application of the small or the large Fourier-Number
limit can be adapted by the heating power and the length of the bar. This extension is
subject of current research.

3.3. Errors of the Measurement Procedure

The errors in the measurement procedure are of multiple origin. Major errors are
expected to arise from

• geometric difference to the ideal mathematical one dimensional geometry
• inclusion of the heating cartridge of a different, unknown material
• diabatic boundary conditions where adiabatic boundary conditions are assumed
• geometric extension and geometric position of the temperature sensors
• temperature measurement error due to calibration and measurement equipment
• precision of the power supply and heating loss to the connecting wires

The errors can be partially compensated.

3.4. Correction of Systematic Errors

For the geometric difference, the bar is separated into the heating cartridge (H), the
hollow cylinder (C) and the bar (B). In the small Fourier-Number limit, it must be ensured
that the characteristic time scales τ of the heating cartridge with diameter dH and the
hollow cylinder are small compared to the characteristic timescale of the bar.

τH = d2

16aH
� τB = L2

aS

τC = (da−di)
2

4aS
� τB = L2

aS

(17)

This requires the knowledge of the thermal diffusivity (a) of the sample (S) material
and the cartridge for the first condition and can only be established a posteriori. The second
condition is easily verified when the wall thickness of the hollow cylinder is significantly
smaller than the length of the bar. The heating of the cartridge ḢH and the heating of the
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hollow cylinder ḢC can then be subtracted from the electric heating power Pel . The diabatic
contribution should remain small as the temperature difference to the ambient is small
during this phase.

The Enthalpy change of the heating cartridge and the hollow sample cylinder at the
end can be simply estimated by the temperature change.

ḢH = mHcp,H
∂TH
∂t

ḢC = mCcp,C
∂TC
∂t

(18)

In the large Fourier-Number limit, when the asymptotic temperature profiles are
established, the enthalpy balance of the experimental setup can be established.

ḢH + ḢC + ḢB + Q̇L + Pel = 0 (19)

The heat loss due to the diabatic condition Q̇L can be modeled by assuming a convec-
tive heat transfer to the ambient temperature TA.

Q̇L = αA(TA − TB) (20)

The necessary coefficient for the convective heat transfer αA can be extracted from
the cooling phase with Pel = 0 W. When the energy is equally distributed within the bar,
all temperature sensors show the same temperature. Then the bar can be considered as a
thermal block capacity and the analytic expression for the temperature decrease Tcool(t)
can be fitted to the data to estimate the time constant τ.

Tcool(t) = Ta + (T0 − Ta)e−(t−t0c)/τ (21)

Here Ta is the ambient temperature surrounding the block and T0 is the temperature
at the starting time t0c of the block capacity cooling process. Using the estimated heat
capacity cp and the relation for the characteristic time τ = (mcp)/(αA), the heat flux to the
surrounding of the bar can be estimated by

Q̇ =
mcp

τ
(Tcool(t)− Ta) (22)

Measurements with insulating materials such as ceramic fiber insulation (thermal con-
ductivity λ of 0.07 W/mK) and different heating power revealed an unwanted effect of
transient heating of the insulation material with an undefined heat loss compared to free
convection. Therefore, it is easier to compensate for the free convection heat loss than
compensating for the retained heat in the non-ideal insulation.

4. Results

The experimental results are discussed for the different phases of the experiment. In
this study, the bar was heated with a power of Pel = 20 W.

4.1. Results in the Small Fourier-Number Limit

In the small Fourier-Number limit, the temperature increases at first near the heating
cartridge and then diffuses to the adiabatic end of the bar. The temperature measurements
for the small Fourier-Number can be extracted by the corresponding criteria: The beginning
is defined by the temperature rise in the sensor at the heated end of the bar (x = 0 W) and
the end of the phase is defined by a starting temperature rise in the diabatic end of the bar
(x = L).

For selected times of small Fourier-Numbers (Fo = 0.022, 0.035, 0.046, 0.059, 0.071,
0.083, 0.096) the temperature measurements at the sensor locations are given in Figure 4.
The temperature measurements can be fitted to Equation (7) to determine a value for the
thermal diffusivity a. Fitted curves are shown by dashed lines. For the sample Material the



Appl. Sci. 2023, 13, 10371 9 of 13

curve fitting resulted in a value of a = 3.8 · 10−5 m2/s for the thermal diffusivity. This is in
the range of the values found in different data-sheets (Table 1).

0.05 0.1 0.15

0

5

10

15

fit
measured

Figure 4. Measured temperatures at different times at the sensor locations are given by (+), the fitted
curve to the temperature (Equation (4)) is given by the dashed curve (–).

Table 1. Results for the thermophysical properties obtained in the large Fourier-Number limit.

Sensor cp a ·10−5 λ
in J/kgK in m2/s in W/mK

1 1321.5 4.507 160.82
2 1319.9 4.513
3 1319.1 4.515
4 1313.7 4.534
5 1317.2 4.522
6 1321.5 4.507
7 1335 4.461

Mean 1321.1 4.51 160.82

Datasheet [12] 862 5.38–6.63 130–160

The temperature T(x = 0, t) rise measured at the origin is shown in Figure 5. By fitting
the constants, it can be clearly seen that the measurements correspond to the analytical curve
as described by Equation (5). In this case, the fit leads to a value of λρcp = 7.2 · 108 kg2

m/K2s5. This value differs from the literature value (3.5 · 108 kg2 m/K2s5) [12] due to
the uncertainty of the fit that depends critically on the exact start of the heating time.
Knowledge of the specific heat flux q̇0 allows determining the product λρcp. Even if the
density ρ is known, it is necessary to measure the specific heat capacity cp before the
conductivity λ can be computed.
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Figure 5. Measured temperature of the first sensor as a function of time (+), the fitted curve to the
temperature (Equation (5)) is given by the dashed curve (–).

4.2. Results in the Large Fourier-Number Limit

The beginning of the large Fourier-Number window can be identified as the time when
the first and the last temperature sensor have the same slope ∂Ti

∂t . In the ideal adiabatic case
this window would end with the heating phase. In theory, heating curves should be linear
with time. Due to diabatic effects at temperatures higher than ambient, heat is lost, and the
temperature profiles bend to lower temperature rise. Therefore, the large Fourier-Number
window should be limited to times when the heat loss is still significantly smaller than the
heat supplied by the heating cartridge.

This can be verified by ensuring that the temperature profile matches the asymptotic
solution given by Equation (14). The asymptotic profiles can be superposed by subtracting
the offset temperature at the adiabatic end of the bar (T(L, t)). The temperature profiles are
shown in Figure 6 for selected times. Since the profiles almost superpose, the temperature
rise of every sensor has the same temporal change. Figure 7 shows the temperature rise of
the different sensors and the corresponding linear fits, starting with the “Large Fo window”
at t = 100 s. By Equation (16) it is directly possible to determine the thermal properties of
the material given in Figure 7 when the diabatic corrections are not applied.

0 0.05 0.15 0.15
0

5

10

15

20

25

30

t = 198 s
t = 248 s
t = 298 s
t = 348 s
t = 398 s
t = 448 s
t = 498 s
t = 548 s
t = 598 s
theory

Figure 6. Temperature profiles shifted by the offset temperature at different times of the measurement
in the large Fourier-Number limit.
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Figure 7. Temperatures of the different sensors in the large Fourier-Number window and the
corresponding linear fit.

4.3. Estimation of Errors Due to Diabatic Effects

The error due to diabatic effects can be estimated by the cooling curve given in
Equation (22). In this case, the estimated time constant is τ = 2583 s computed by the fit of
the logarithmic temperature gradient of the cooling curve.

The heat loss to the ambient is shown in Figure 8. Compared to the heating power of
P = 20 W this accounts for an error of roughly 10%. This error transfers to the computation
of the heat capacity since the temperature slope would be steeper if the heat losses do
not occur. The error can be compensated by correcting the electric power as suggested in
Equation (19).

40 50 60 65 70 75
1.4

1.6

1.8

2

2.2

2.4

2.6

Figure 8. Heat loss estimated by the cooling curve.

5. Discussion

Results for the determination of material properties with the temperature rise in the
small Fourier-Number limit at the origin are prone to error due to uncertainties in the fit of
the product. However, fitting the curve with the temperature difference to several sensors
shows results comparable to literature values and is more reliable. Since the temperature
difference to the ambient temperature is still small, the evaluation of properties in the small
Fourier-Number limit leads to smaller errors due to heat transfer to the ambient compared
to the results obtained from the large Fourier-Number limit.

Fitting the curves in the large Fourier-Number limits give acceptable values compared
to literature values due to the stable shape of the curves. Due to the temperature rise,



Appl. Sci. 2023, 13, 10371 12 of 13

the heat transfer to the ambient is larger than in the small Fourier-Number limit and has
therefore a larger error due to heat transfer.

The error in the small Fourier-Number limit can be reduced further by increasing the
induced heat flux. This leads to a higher temperature difference in the bar at the same
timescale and therefore to a smaller error for the determination of the thermal diffusivity a.

If the heat flux is increased, the time range with stable temperature profiles in the large
Fourier-Number limit is decreased and the error due to heat loss to the ambient increases.
Performing the experiment in an environment that allows to control the temperature
surrounding the object can decrease the error due to heat flux. An alternative method to
decrease the error due to heat flux is to control the ambient temperature to the average
temperature of the bar.

6. Conclusions

Due to the complexity and cost of THW and TAB thermophysical property measure-
ments, a different cost-effective and simple measurement procedure was developed, using
only PT100 sensor elements, a heating cartridge and electronic for data acquisition and
power control. As analytical mathematical solutions are readily available for the one di-
mensional bar, this geometry was selected for the property measurement. The analytical
series solution given by Carslaw [9] supplies solutions for all physical times. More simple
and physically instructive solutions exist in the small and large Fourier-Number limit. The
limit solutions and methodology to extract the material properties are presented in detail.
The geometry of the probe was adapted for the heating with a simple electric resistance
and the instrumentation with temperature sensors. The measurement procedure consists
of heating the bar with the electric resistor. Temperature measurement prior to heating
and after heating allows calibration of the sensors. The heating phase can be divided into
small Fourier-Number limit, transient phase and large Fourier-Number limit. Separate
evaluation of small and large Fourier-Number limits allow determining the thermophysical
properties (thermal diffusivity, capacity, and conductivity). Systematic and random errors
are briefly discussed. Detailed discussion and the compensation of errors are the subject of
a planned subsequent publication.
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Abbreviations and Nomenclature
The following abbreviations are used in this manuscript:

BC Boundary condition
DUT Device under test
THW Transient hot wire method
THB Transient hot bridge method
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Symbol Meaning SI-Unit
A Cross section of the bar m2

cp Specific heat capacity -
a thermal diffusivity m2/s
Fo Fourier-Number -
L length of DUT m
q̇ specific heat flux W/m2

Q̇ specific heat W
T Temperature K
x Position along the DUT length m
λ Thermal conductivity W/mK
ρ Density kg/m3
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