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Abstract: To investigate the maintenance effect of diaphragm-to-rib fatigue cracks via steel plate
reinforcement, finite element models of different-shaped steel plates were established. Stress intensity
factors at the crack tip before and after reinforcement were obtained, and the variations in stresses
were studied. Polygonal steel plate reinforcements were then carried out on a real bridge based on the
finite element calculation results. The changes in stress amplitudes and fatigue damage degrees at the
crack tip were analyzed via the rain-flow counting method and Miner’s linear damage accumulating
theory. The results show that both the polygonal steel plate and the rectangular steel plate could
effectively eliminate the stress concentration and restrain the propagation of cracks. The stresses
in other parts of the arc notch increased after reinforcement and polygonal steel plates had less
influence. After the reinforcement in a real bridge, the cycle number of high stress amplitudes at the
crack tip decreased significantly. The fatigue damage degree of the repaired part reduced by 70.1%,
which verified the maintenance effect via polygonal steel plate reinforcement on diaphragm-to-rib
fatigue cracks.

Keywords: orthotropic steel deck; fatigue crack; steel plate reinforcement; maintenance effect;
field maintenance

1. Introduction

Orthotropic steel decks (OSDs) have been widely used in steel structure bridges due
to their light weight, strong load-bearing capacity, convenient construction and other
advantages [1,2]. However, due to their complex structure and large number of welds,
OSDs can be prone to fatigue cracking under repeated cyclic vehtable icle loads [3,4].
Fatigue cracks can occur in various forms in OSDs, such as in the diaphragm-to-rib weld,
the rib-deck weld, and the arc notch [5]. Among them, fatigue cracks formed in diaphragm-
to-rib welds have attracted a lot of attention in recent years.

As fatigue cracking in OSDs has become a continuous and serious problem, related
research on the mechanism of fatigue cracking and maintenance methods has been car-
ried out constantly. At present, several maintenance methods have been developed by
researchers to repair fatigue cracks in OSDs, for instance, cold reinforcement [6,7], drilling
stop-holes [8,9], weld repair [10,11], and impact crack closure retrofit [12–14]. Cold rein-
forcement is used to bond or bolt steel or fiber reinforced polymer (FPR) plates to cracked
zones to bear loads together, thereby reducing the stress distribution and hindering crack
propagation. Cold reinforcement methods were evaluated via fatigue testing, numerical
simulations, and case studies. The results indicated that the methods of bonding and bolt-
ing steel plates obviously improved the local stiffness and decreased the local stresses [6].
An improved method combining drilling stop-holes and bonding carbon fiber-reinforced
polymer (CFRP) strips was proposed and proved markedly effective at improving the
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fatigue life [15]. Compact tension (CT) models under different methods were established
for type I, II and III fatigue cracks; maintenance effects were then compared, and the results
showed that steel plate reinforcement had a better effect [16]. However, reports on the
influence of steel plate size and shape on the maintenance effect and the stress distribution
in non-reinforced parts of component are still scarce.

In this paper, numerical methods were used to analyze the variations in stress intensity
factors at the crack tip and stresses on the non-reinforced side after reinforcement via
different-shaped steel plates, in relation to diaphragm-to-rib fatigue cracks on a real steel
bridge. Based on the numerical simulations, the reinforcement scheme using a polygonal
steel plate was determined and field maintenance was conducted. The maintenance effect
was evaluated via analyzing strain data and stress distribution. The results could provide a
reference for the repairing of diaphragm-to-rib fatigue cracks in OSDs.

2. Finite Element Model

Cyclic vehicle loads result in the deflection of U-ribs in OSDs, which causes the out-
of-plane deformation of the diaphragm. Consequential stress concentration occurs at the
diaphragm-to-rib weld, and fatigue cracking propagates obliquely upward form the bottom
of the weld between the diaphragm and the U-rib on the real steel bridges, as shown in
Figure 1.
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Figure 1. Fatigue cracks formed from the diaphragm-U-rib weld.

The finite element model was established using ABAQUS, based on the dimensions
of the real bridge. The thickness of the deck and the diaphragm was 12 mm and 8 mm
respectively. The section size of the U-rib was 324 × 262 × 6 mm. The finite element model
is shown in Figure 2.

The material of the finite element model was Q345qD steel, with an elastic modulus of
2.06 × 105 MPa and a Poisson’s ratio of 0.3. The model was meshed with hexagonal solid
element type C3D8R and tetrahedral solid element type C3D10 with a global mesh size of
20 mm. The meshes of the two sides of the diaphragm-to-rib welds were refined with a
mesh size of 1 mm; the transition region was meshed with tetrahedral element type. The
deck was fixed constraint. The roof of the model was fixed constraints with full degrees
of freedom. The loading area was set on the surface of the diaphragm with an area of
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2 mm × 164 mm × 45 mm, directly below the arc notch [4]. The reference point was set at
10 mm from the weld toe in the horizontal and vertical directions with a nominal stress of
100 MPa. A rectangular extended finite element method (XFEM) crack was set to the left
of the diaphragm-to-rib weld, with a plane size of 90 × 8 mm and an angle of 45◦ in the
horizonal direction.
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Several studies on cold reinforcement were conducted. One type of rectangular steel
plate was employed to attach to the diaphragm-to-rib weld toe for reinforcement [17].
One type of polygonal steel plate was used for the U-rib crack retrofitting via the FEM
method [18]. Based on existing studies, two shapes of steel plates were designed to repair
diaphragm-to-rib fatigue cracking in this study, as seen in Figure 3. As shown, the size of
the polygonal steel plate was 120 × 190 mm, with triangular cuts in both corners, and the
hypotenuse of the chamfer fitted the weld in the model. In the same way, the size of the
rectangular steel plate was 120 × 190 mm with the long edge of plate fitting the weld too.
Considering the coordination between the size of the steel plates and the bridge component,
the thickness of these plates was set to 8 mm, the same as that of the diaphragm in the
model. Binding constraints were adopted to connect the steel plates with the diaphragm.
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3. Comparisons of Maintenance Effect
3.1. Stress Intensity Factors at the Crack Tip

The stress intensity factor K is a significant parameter for characterizing the stress field
at the crack tip of an elastic object under an external force [19]. With the increase in K, the
crack is more likely to propagate. According to linear elastic fracture mechanics, the stress
intensity factors can be divided into three types: KI (under in-plane tension), KII (under
in-plane shear), and KIII (under out-of-plane shear) [20]. The values of the stress intensity
factors were extracted using ABAQUS software [21]. Comparing the stress intensity factors
at the crack tip before and after the reinforcement is an important method for evaluating
the maintenance effect. Then, based on vector accumulative theory [22], the effect stress
intensity factor of Keq can be obtained via Equation (1).

Keq =

√
K2

I + K2
II +

K2
III

1 − v
(1)

where Keq is the effect stress intensity factor, and v is Poisson’s ratio, which was 0.3 in
this case.

The stress intensity factors obtained via the finite element method are shown in
Figure 4. It was seen that the stress concentration at the crack tip was obvious before
reinforcement. After the steel plate reinforcement, the stress concentration was reduced,
and the stress intensity factors fell by more than 93%. Keq before the reinforcement reached
813.68 MPa·mm1/2, which decreased to 31.75 and 37.70 MPa·mm1/2 respectively after being
reinforced with polygonal plate and rectangular plate. The values of the stress intensity
factors after polygonal plate reinforcement were slightly higher than those after rectangular
plate reinforcement. The results indicated that, both polygonal plate reinforcement and
rectangular plate reinforcement had a significant effect on hindering crack propagation. In
addition, before reinforcement, the crack that grew obliquely from the diaphragm-to-rib
weld was shown as a mixed mode crack.
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3.2. Stress on Reinforced Side

Steel plates took part in bearing loads with the component, while the local stiffness of
the structure changed. Stresses at the arc notch on the reinforced side were extracted. The
stress path and calculations are shown in Figure 5.
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As depicted, after reinforcement, an obvious increase in stress at the arc notch on
the reinforced side occurred. Compared with the non-reinforced model, the maximum
stress along the path was 68.49 MPa and 91.76 MPa respectively, for the polygonal steel
plate and rectangular steel plate, which are increases of more than six times. The stress
at the arc notch increased in a parabolic manner when using the rectangular steel plate.
Both the polygonal steel plate and the rectangular steel plate caused an increase in stress
at the arc notch on the reinforced side. As the crack top bore the majority of the load
before reinforcement, the crack continued to propagate under the external force. After
reinforcement, the steel plate bore part of the load and the rest was distributed to the
arc notch causing a stress concentration at this location. The arc notch was also a typical
fatigue detail in OSDs. Compared to the rectangular plate, the stress increase caused by the
polygonal plate was smaller.

3.3. Stress on Non-Reinforced Side

Since the local stiffness of the structure changed after the steel plate reinforcement, the
stress distribution on the non-reinforced side also changed; thus, it was crucial to analyze
the effect on other locations of the component after the steel plate reinforcement. Therefore,
the stresses at the weld toe and the arc notch on the non-reinforced side were extracted and
are illustrated in Figure 6.

As seen in Figure 6, after steel plate reinforcement, the stresses at the diaphragm-
to-rib weld toe and the arc notch on the non-reinforced side increased significantly. The
maximum stress at the weld toe increased by more than 99 MPa; the maximum stress at
the arc notch increased by more than 87 MPa. The calculations revealed that although the
stress concentration at the crack tip improved, the change in local stiffness of the structure
led to new high-stress situations at the diaphragm-to-rib weld toe on the non-reinforced
side, which can cause fatigue cracking. Moreover, compared with the rectangular plate, the
stress increment caused by the polygonal plate reinforcement was smaller, and the degree
of stress concentration was lower.
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4. Field Maintenance
4.1. Maintenance Schedule

Based on the numerical simulations above, a polygonal steel plate with a thickness
of 8 mm was used in the field maintenance and the maintenance was conducted on a real
bridge; the plane size is given in Figure 7a. The material of the polygonal steel plate was
Q345qD steel, which is the same as that of the real bridge.

A fatigue crack on the diaphragm-to-rib weld on the real bridge was chosen as the test
object for this study. The crack was located on the upstream low lane, and its length was
approximately 60 mm, as shown in Figure 7b. When a vehicle passed, apparent dislocations
could be observed on the crack surface.
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During field maintenance, the upstream side of the diaphragm was selected as the
reinforced surface, and the downstream side was the testing surface. The polygonal steel
plate was pasted onto the reinforced surface with a structural adhesive, that would not
cause damage to the original structure. Before bonding the steel plate, the surface was
polished to remove the coating. The hypotenuse of the chamfer was fitted to the diaphragm-
to-rib weld toe, as shown in Figure 7c.

The stress data at the crack tip were recorded with a pasting strain rosette; its layout
is shown in Figure 8a. As depicted, the rosette contained three gauges named as CD1
(i.e., perpendicular to the crack), CD2 (i.e., 45◦ direction to the crack), and CD3 (i.e., parallel
to the crack). Before pasting the strain rosette onto the base metal, the crack tip on the
testing side was polished to remove the anticorrosive coating, as seen in Figure 8b. The
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geometric size of the strain rosette was 10 mm × 10 mm. The resistance of the strain rosette
was 120 Ω, while the sensitivity ratio was 2.0 ± 1.0%. Strain data before and after the
reinforcement were recorded. The monitoring schemes for both tests were carried out from
5 p.m. to 6 p.m. This period was chosen as the traffic flow during this time was relatively
large; the measurement time was about one hour.
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4.2. Strain–Time Curves

Figure 9 plots the strain records. Before reinforcement, the strain values of CD1 mainly
ranged from −125 µε to 9 µε, and the strain values of CD2 mainly ranged from −6 µε to
17 µε, while the strain values of CD3 ranged from −27 µε to 9 µε. As shown, the measuring
point area was under tension-compression cyclic loading, which was the main reason for
fatigue crack growth.

After reinforcement, the strain values recorded in three directions were reduced
significantly. The strain values of CD1 ranged from −30 µε to 8 µε, the strain values of CD2
ranged from −4 µε to 2 µε, and the strain values of CD3 ranged from −9 µε to 3 µε. It was
observed that the deformation caused by vehicle passing over the crack was suppressed
and that the crack propagation was hindered.

Based on the strain data obtained with a strain rosette, the maximum principal stress
at the crack tip were calculated using Equation (2).

σmax =
E

2(1 − v2)

[
(1 − v)(εa + εc) + (1 − v)

√
2
{
(εa − εb)

2 + (εc − εb)
2
}]

(2)

where σmax is the maximum principal stress, and E is the Young’s modulus; here the value
was 2.06 × 105 MPa, v is Poisson’s ratio, in this case 0.3. εa corresponds to the strain of CD1,
εb corresponds to the strain of CD2, and εc corresponds to the strain of CD3.
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Strain data within 30 min were processed and the results are given in Figure 10. Since
negative principal stress indicates compression at the crack tip, the data with negative
principal stress were excluded. As shown in Figure 10, the values of σmax decreased. σmax at
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the crack tip was significantly reduced after maintenance, and the maximum recorded σmax
before reinforcement was 301.12 MPa. This decreased to 32.55 MPa after reinforcement,
which was a decline of 89.4%. The stress concentration at the crack tip was improved
with the steel plate reinforcement, fatigue performance was enhanced, and the fatigue life
was prolonged.
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4.3. Stress Range Spectrum

To achieve the stress range spectrum, the rain-flow counting method was adopted to
handle the random stress time-history [23]. The data collected with a strain rosette before
and after the reinforcement were processed and the final result is presented in Figure 11.

It was observed that, after polygonal steel plate reinforcement, the number of cycles
at high stress ranges disappeared obviously. Meanwhile, the low stress ranges increased
significantly, and the number of cycles within the [0, 5] MPa range increased a lot. This
indicated that polygonal plate reinforcement improved the stress distribution at the crack
tip, and the high–stress amplitudes were transformed to low stress amplitudes, resulting in
the retardation of crack propagation.
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4.4. Fatigue Damage Degree

During the process of bridge operation, each passing vehicle can impose different
stress amplitudes, and the cumulative contribution to fatigue damage caused by these
stress amplitudes can also vary. In general, a high–stress amplitude can cause a major
fatigue damage increase, but the number of cycles with high–stress amplitudes is lower.
Conversely, a low–stress amplitude makes a very small contribution to fatigue damage.
Fatigue damage degree refers to the accumulation of fatigue damage during the cyclic
vehicle loads.

Based on the stress range spectrums, Miner’s linear damage accumulating theory was
used to calculate the fatigue damage degree using Equation (3) [24].

D =
∞

∑
i=1

ni

2 × 106 ×
(

σ0
σx,i

)3 (3)

where D is the fatigue damage degree; fatigue failure is considered to occur on the compo-
nent when the value of D reaches to 1. σ0 is the designed value of fatigue strength of the
diaphragm-to-rib weld, here the value is 80 MPa, according to the Chinese standard [25].
σx,i is the variable stress amplitude. In this case, the value refers to the median of each
interval, for example, if the stress amplitude range is [5, 10] MPa, then the stress amplitude
value is 7.5 MPa. ni is the corresponding cycle number of stress amplitude.

The fatigue damage degrees before and after reinforcement were obtained and are
listed in Table 1. It appeared that the fatigue damage degree at the crack tip decreased
sharply by 84.7% within one hour after reinforcement. Fatigue life before reinforcement
was only 0.81 years, which rose to 5.28 years after reinforcement with an increase of more
than five times. The result indicated that bonding a polygonal steel plate could significantly
improve the stress concentration at the crack tip, hinder crack propagation effectively and
prolong the fatigue life. The maintenance effect of polygonal steel plate reinforcement
was proven.

Table 1. Cumulative fatigue damage degree and fatigue life before and after reinforcement.

Before Reinforcement After Reinforcement Reduction Rate

Fatigue damage degree D 1.41 × 10−4 2.16 × 10−5 84.7%
Fatigue life (year) 0.81 5.28
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5. Conclusions

In this work, numerical methods were used to compare and investigate the mainte-
nance effects of two steel plate shapes. A field maintenance scheme was designed based
on the simulated results. Steel plate reinforcement on a real bridge was conducted, and
the maintenance effect was evaluated through analyzing stress distribution and fatigue
damage degrees. The following conclusions can be drawn:

(1) Both polygonal steel plate and rectangular steel plates can significantly reduce
the stress intensity factor and basically eliminate the stress concentration at the crack tip.
Steel plate reinforcement causes changes in the stress distribution in other parts of the
component, and a certain degree of stress concentration can occur in the diaphragm-to-rib
weld on the non-reinforced side. Compared with the rectangular plate, the adverse effect
caused by the polygonal plate is less.

(2) After reinforcement on a fatigue crack on a real bridge, the stress concentration
at the crack tip was effectively improved. The number of cycles in high–stress ranges
decreased significantly, whereas the number of cycles in low–stress ranges increased. Field
monitoring demonstrated that the fatigue damage degree at the crack tip was reduced after
reinforcement, indicating the effectiveness of polygonal steel plate reinforcement.

(3) The stiffness change caused by the steel plate reinforcement can lead to the risk
of new fatigue cracks occurring on other parts of the bridge structure, emphasizing the
importance of follow-up monitoring to verify the effect of the reinforcement.

Author Contributions: Conceptualization: X.D., Y.Z. and X.Z.; methodology: X.D., X.Z. and Z.Y.;
software: C.M. and Z.Y.; testing: Y.G., C.M. and Y.Z.; validation: Y.G. and C.M.; formal analysis:
X.Z. and Y.Z.; investigation: X.D. and Y.G.; resources: X.D. and Y.Z.; data curation: X.D., Y.G. and
Y.Z.; writing—original draft: X.D.; writing—review and editing: X.Z. and C.M.; visualization: C.M.
and Z.Y.; supervision: X.D.; project administration: X.D.; funding acquisition: X.D, Y.Z. and Z.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: The research reported herein was conducted as part of the research projects granted by
the Academician Project Foundation of CCCC (grant No. YSZX-03-2020-01-B), the Youth Project
Foundation of CCCC (grant No. 2021-ZJKJ-QNCX03), the Academician Project Foundation of CCCC
(grant No.YSZX-03-2021-01-B), the National Key Research and Development Project (grant No.
2017YFE0128700) and the Natural Science Foundation of Jiangsu Province (grant No. BK2020042014).
The assistances are gratefully acknowledged.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
OSD Orthotropic steel deck
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