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Abstract: Capsule networks exhibit the potential to enhance computer vision tasks through their
utilization of equivariance for capturing spatial relationships. However, the broader adoption of
these networks has been impeded by the computational complexity of their routing mechanism and
shallow backbone model. To address these challenges, this paper introduces an innovative hybrid
architecture that seamlessly integrates a pretrained backbone model with a task-specific capsule
head (CapsHead). Our methodology is extensively evaluated across a range of classification and
segmentation tasks, encompassing diverse datasets. The empirical findings robustly underscore the
efficacy and practical feasibility of our proposed approach in real-world vision applications. Notably,
our approach yields substantial 3.45% and 6.24% enhancement in linear evaluation on the CIFAR10
dataset and segmentation on the VOC2012 dataset, respectively, compared to baselines that do not
incorporate the capsule head. This research offers a noteworthy contribution by not only advancing
the application of capsule networks, but also mitigating their computational complexities. The results
substantiate the feasibility of our hybrid architecture, thereby paving the way for a wider integration
of capsule networks into various computer vision tasks.

Keywords: capsule network; computer vision; equivariance; segmentation; pre-trained model

1. Introduction

State-of-the-art Networks: Convolutional neural networks (CNNs) have dominated
the field of computer vision for a decade, solving a wide range of tasks such as image
classification [1,2] and segmentation [3,4]. Their success can be attributed to several factors.
Firstly, CNNs leverage the translational invariance inductive bias [5], making them adept at
recognizing objects under different translations. Secondly, extensive research has focused
on developing efficient, high-performance CNN architectures [6–9]. Additionally, the
availability of pre-trained models has facilitated the practical adoption of CNNs in both
research and enterprise applications. While transformer models, with their self-attention
mechanism [10], have gained attention for their flexibility, it is worth noting that they often
require substantial amounts of data and computational resources for effective training [11].
Despite this, CNNs remain the preferred choice for smaller datasets due to their ability to
quickly adapt to new experiments.

Invariance vs. Equivariance: However, CNN models possess inherent limitations
that impede their effectiveness in recognizing features across different orientations and
encoding comprehensive spatial relationships. The pooling operations employed in CNNs
discard essential pose information, resulting in the loss of internal properties such as shape,
location, pose, and orientation [12,13]. Furthermore, CNNs rely on large, labeled datasets,
face challenges in encoding deformation information, and are vulnerable to unpredictable
shifts during testing. Moreover, CNNs tend to rely on memorization rather than compre-
hension, lacking the ability to capture intricate feature relationships. In contrast, capsule
networks (CapsNets) [14] overcome these limitations by incorporating pose, relationships,
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and robustness to affine transformations. CapsNets built on the concept of inverse graph-
ics [15] offer superior explanations compared to CNNs. CapsNets provide benefits such as
reduced parameter requirements, improved resilience against adversarial attacks [16–18],
enhanced interpretability [19], and the capability to handle affine transformation [20–22].

Challenges: Despite the promising advancements in CapsNets, several challenges
that need to be addressed remain. Training CapsNets continues to pose difficulties, as
they have yet to surpass the state-of-the-art benchmarks in a fair manner [20,23–26]. One
notable concern is the computational complexity associated with CapsNets, particularly
due to the routing algorithm, which necessitates additional memory space and leads to
a multiplicative increase in the number of computations, even for relatively small input
sizes. Another limitation lies in the specific structure of CapsNets, which inherently limits
their applicability primarily to vision-related tasks [27]. While the routing-by-agreement
mechanism [28] is strong in theory, its unsupervised clustering nature may not hold up
well under heavy input noise. Moreover, unoptimized implementations and a lack of com-
prehensive architectural understanding further impede researchers from fully harnessing
the potential of capsule networks. Additionally, CapsNets struggle with the absence of a
pooling mechanism commonly found in traditional CNNs, which results in attempts to
account for all aspects of an image, including background noise [29]. Addressing these
challenges and developing further improvements will be key to enhancing the robustness
and efficiency of capsule networks.

Contributions: This study is motivated by the observation that most existing studies
in the field of CapsNets have predominantly utilized basic architecture comprising a single
convolutional layer for low-level feature extraction, a primary capsule layer for mapping
from a feature space to the capsule space, and a class capsule layer for routing to predict
class activation and corresponding pose vectors [30–33]. However, this limited depth
with only two-to-three capsule layers inherently restricts the expressivity and potential of
CapsNets. In prior studies, it has been observed that incorporating dense connections [34]
and residual blocks [35,36] can be beneficial for CapsNets. However, these studies have
not fully extrapolated the idea due to a lack of comprehensive comparisons with the
original models. Additionally, some researchers have attempted to stack capsule layers by
simplifying the routing mechanisms [16,24,31,37–40], but this approach often results in a
non-faithful implementation of CapsNets. Building upon these insights, our study aims
to bridge these gaps by thoroughly investigating the deeper backbone within the context
of CapsNets. Furthermore, we strive to provide a faithful and comprehensive evaluation
by conducting thorough comparisons with the original models. Our contributions are as
follows:

• We explore deeper architectures to unlock the capabilities of CapsNets;
• By leveraging the strengths of various backbone models, we propose a capsule head

wrapping (CapsHead) approach and carefully experiment with modifications to the
capsule head and routing mechanism;

• We aim to enhance the expressivity and performance of CapsHead in tasks such as
classification, medical image segmentation, and semantic segmentation.

This paper follows a structured organization: Section 2 presents the methodology, then
Section 3 reviews related works, Section 4 showcases experimental results, and Section 5
concludes the study.

2. Related Works

Capsule network in vision tasks: Capsule networks have made significant strides in
various vision tasks across domains. They have been successfully applied to hyperspectral
image classification as spectral–spatial units [41]. In remote sensing image scene classifica-
tion, CNN–CapsNet architectures have achieved enhanced results on diverse datasets [42].
For action detection in videos, VideoCapsuleNet, a 3D capsule network, has demonstrated
superior performance with 3D capsule convolution [43]. In image synthesis, CapsuleGAN
and CapsGAN have excelled at modeling image data distribution and capturing geometric
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transformations [44,45]. Adversarial attacks on CapsHeads have been investigated, with
studies such as CapsAttacks and Capsule-FORENSICS focusing on vulnerability analysis
and detecting forged images and videos [17,18]. In the medical imaging domain, CapsNets
have shown promise in lung cancer screening and medical image segmentation [38,46]. Fur-
thermore, CapsNets have contributed to advancements in brain tumor type classification,
offering improved interpretability of learned features [47]. These advancements collectively
demonstrate the potential and versatility of CapsNets in computer vision applications.

Routing mechanism: Studies have explored various routing mechanisms in CapsNets.
Dynamic routing enables capsules to route information based on agreement scores [14],
while matrix capsules with EM routing use an iterative expectation–maximization process
for routing coefficients [28]. Alternative methods include inverted dot-product atten-
tion routing [48], shortcut routing for reduced complexity [21], and self-routing capsule
networks with subordinate networks [16]. Generalized capsule networks train coupling
coefficients for flexibility [32]. Efficient routing algorithms like self-attention routing and
weighted kernel density estimation improve speed and efficiency [22,49]. Max–min normal-
ization allows for independent values within bounds [50], and spectral capsule networks
employ singular value decomposition for routing [51]. These studies advance routing
mechanisms, addressing computational efficiency, attention-based routing, and coefficient
optimization.

Deep capsule network: Numerous research efforts have focused on enhancing Cap-
sNets for complex data analysis. Investigations into model modifications, dynamic routing
algorithms, and the use of convolutional capsule layers (Conv-Caps Layers) have been pro-
posed to improve performance [39,52,53]. Dense capsule networks (DCNets) and diverse
capsule networks (DCNets++) replace standard convolutional layers with densely con-
nected convolutions [34], and DeepCaps introduces a novel 3D convolution-based dynamic
routing algorithm [52]. The diverse enhanced capsule network (DE-CapsNet) leverages the
advantages of DCNet++ and employs residual convolutional layers for diverse enhanced
primary capsules [35]. Neural network encapsulation approximates the routing process
with master and aide branches, while CapsNets with residual connections introduce skip
connections to facilitate training depth [24,36]. These studies collectively advance CapsNets
for complex data analysis, augmenting their efficacy in various applications.

3. Methods
3.1. Preliminaries

Capsule Network: In the context of CapsNets, the fundamental idea is to introduce
capsules that encapsulate pose information along with other instantiation parameters,
such as color and texture, for different parts or fragments of an object. This structure is
characterized by being deep in width rather than height, resembling a parse tree [13] where
each active capsule selects a parent capsule in the next layer. The underlying principle
is that as the viewpoint of an object changes, the corresponding pose matrices should be
coordinated to maintain the voting agreement.

A CapsNet typically consists of three key components: a stack of convolutional layers
responsible for extracting features, a primary capsule layer that transforms these features
into capsule representations, and a stack of capsule layers that incorporate the routing
mechanism. In CapsNets, capsules in a lower layer Li (children) are routed to capsules in
a higher layer Lj (parents), creating a connection between the two layers. In every layer,
there are multiple capsules, each characterized by an instantiation parameter pose vector
Si ∈ RP [14] or matrix Si ∈ RP×P, and an activation probability ai [28]. The pose in each
capsule encodes the relationship of an entity to the viewer, while the activation probability
represents its presence. Using its pose matrix, Si, each lower-level capsule contributes a
vote to determine the pose of a higher-level capsule. This is achieved by multiplying the
pose with a trainable viewpoint-invariant transformation weight matrix.

Vj|i = SiWij (1)
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In essence, the trainable weights, Wij, enable the capsules to learn affine transforma-
tions, allowing them to capture and represent the part–whole relations within the data.

Routing Methods: Routing-by-agreement is a dynamic information flow through the
network by determining connections between successive layers of capsules at runtime.
Unlike traditional neural networks, where cross-layer connections are determined solely
by network parameters, routing enables the adjustment of magnitudes and relevance
from lower capsules to higher capsules, ensuring the activation of relevant higher-level
counterparts and effective transmission of pattern information. The concept of routing can
be likened to clustering logic [28,49] where higher-level parent capsules receive votes from
multiple lower-level child capsules within their receptive fields. However, capsule routing
differs from regular clustering as each cluster has its own learnable viewpoint-invariant
transformation matrix, enabling a unique perspective on the data and facilitating faster
convergence by breaking symmetry. Different approaches to routing have been explored in
CapsNets [16,21,22,32,49,50,54].

The pre-activation of a capsule, j, is computed as the sum of the association coefficients,
cij, multiplied by the predictions, Vj|i, of the lower-level capsules i.

Sj = ∑
i

cijVj|i (2)

These association coefficients are determined through iterative routings, with examples
outlined below.

1. Dynamic routing [14]: The agreement is measured by cosine similarity, and the
coupling coefficients are updated as follows:

cij ← ebij

∑j ebij

bij ← bij +
〈

Sj, Vj|i

〉 (3)

2. EM routing [28]: This refers to using an EM algorithm to determine the coupling as a
mixture coefficient with cluster assumption that the votes are distributed around a
parent capsule.

cij ←
aj pj

∑j aj pj

pj ← 1√
∏h 2π

(
σh

j

)2
exp

(
−∑

h

(
Vh

j|i−Sh
j

)2

2
(

σh
j

)2

)
(4)

Activation of a parent capsule, j, occurs when there is a substantial consensus among
the votes with the parent capsule. This consensus leads to the formation of a compact
cluster ( σj → 0) in the D-dimensional space.

3. Max–min routing [50]: Instead of using SoftMax, which limits the range of routing
coefficients and results in mostly uniform probabilities, this study proposes the uti-
lization of max–min normalization. Max–min normalization ensures a scale-invariant
approach to normalize the logits.

cij ←
bij−min

j
bi

max
j

bi−min
j

bi

bij ← bij +
〈

Sj, Vj|i

〉 (5)

4. Fuzzy routing [21]: To address the computational complexity of EM routing, Vu et al.
introduce a routing method based on fuzzy clustering, where the coupling between
capsules is represented by fuzzy coefficients. This approach offers a more efficient
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alternative to EM routing, reducing the computational demands, while still enabling
effective information flow between capsules.

cij ←
wm

ij
∑k wm

kj

wij =
1

∑k

( ∥∥∥Vj|i−Sj
∥∥∥

‖Vk|i−Sk‖

) 2
m−1

(6)

In the Fuzzy C-means algorithm, the parameter m controls the degree of fuzziness in
the clustering process. Larger values of m lead to fuzzier clusters, where the membership
values wij can approach either 0 or 1. When m is set to 2, the objective of Fuzzy C-means
aligns with that of the traditional K-means algorithm.

Routing in CapsNets filters out contributions from submodules with noisy information,
suppresses output capsules with high variance predictions, and promotes consensus among
capsules. However, the assumption of spherical or normal distribution of prediction vectors
may not hold in real-world data with variability and noise. It also has inherent weaknesses,
the unsupervised clustering nature of routing requires repeated computations, increasing
computational complexity compared to one-pass feed-forward CNNs.

3.2. Hybrid-Architecture Capsule Head

Our proposed architecture incorporates several design elements, with a focus on uti-
lizing a backbone model and stacking a task-driven capsule head over the extracted feature
maps. We present various design demonstrations, showcasing different configurations for
the integration of CapsHead within the architecture, shown in Figure 1.

(1) In the first design, we add adaptive average pooling to reduce the feature maps’
dimension and a fully connected capsule layer. This configuration enables the trans-
formation of backbone features into capsules through the primary caps layer, followed
by routing through the FCCaps layer.

(2) In the second design, we again employ average pooling after the backbone feature ex-
traction, followed by a projection operation to enhance the capacity of the embedding
space. Then, we split by channel dimension to aggregate the capsules. Subsequently,
routing is applied to these capsules to get the next-layer capsules.

(3) In the third design, we remove the average pooling, but keep the projection and
channel splitting. By adopting these modifications, the routing layer can effectively
capture spatial information, making it well-suited for segmentation tasks. However,
for classification tasks, we extend the functionality by incorporating capsule pooling,
which allows us to reduce the number of class capsules to the desired target.

(4) Lastly, the fourth design directly explores the splitting of feature maps, followed by
projection and adaptive capsule routing. This configuration enables a more adaptive
and flexible routing mechanism based on the spatial characteristics of the feature
maps.
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Figure 1. Proposed architecture with four configurations. The architecture comprises three key
components: a backbone network, a primary capsule layer, and a capsule routing layer. We focus on
modifying the primary capsule layer by introducing different settings, such as non-linear projection,
and toggling between channel split and feature map split.

These design demonstrations illustrate the versatility and flexibility of our proposed
architecture, showcasing different configurations for integrating CapsHead within the
backbone model. Each design offers unique advantages and possibilities for improving the
performance and capabilities of capsules in various vision tasks.

Our designed architectures are developed based on three key criteria which allow us
to tailor the CapsNets to a specific task and size of dataset.

- Firstly, we consider whether the feature maps extracted from the backbone model are
before or after the pooling layer. For one-dimensional feature maps, after the pooling
layer, which represent high-level features condensed into a single vector, they can be
directly used for linear evaluation and analysis. On the other hand, two-dimensional
feature maps, before the pooling layer, capture rich contextual information, particu-
larly beneficial for interpreting the entire model or visualizing the learned features.

- The second criterion pertains to the interpretation of capsules. Capsules can be seen
as encapsulating either channels or feature maps. In the channel-based interpretation,
a capsule represents a pose vector constructed at a specific 1-pixel location, with
the channel dimension serving as the capsule pose. The total number of capsules is
determined by the number of pixel locations. Alternatively, in the feature map-based
interpretation, each feature map constitutes a capsule, and we utilize average adaptive
pooling to obtain the desired dimension of the capsule pose. In this case, the channel
size corresponds to the number of capsules.

- Lastly, we consider the mapping of feature vectors to the primary capsule space. We
provide the flexibility of either directly using the feature space spanned by the back-
bone model or incorporating a non-linear projection head to map the feature vectors
to the primary capsule space. This allows for a more tailored and optimized repre-
sentation of capsules. In this study, we craft the projection head using a multi-layer
perceptron with two-to-three layers, incorporating non-linear activation functions like
ReLU.

In our proposed architecture, we introduce an adaptive routing layer that facilitates
the routing of capsules to class-level capsules, regardless of the size of the feature maps.
This idea is inspired by the concept of capsule pooling introduced in [16,52]. If the size
of the feature maps is different from 1× 1, we first perform routing to capture the spatial



Appl. Sci. 2023, 13, 10339 7 of 15

relationships, and then apply capsule pooling to achieve the desired output size, which is
typically 1× 1, and flatten its capsule activations which are used for the classification task.

The proposed architecture combines a backbone model with CapsHeads to leverage
their respective strengths and enhance the overall performance. The backbone model [1–4,11],
which can be a pre-trained deep neural network, serves as a feature extractor, capturing
high-level features from the input data. These features are then fed into the CapsHead,
which introduce capsule layers to capture spatial relationships and enable richer represen-
tations. The combination of the backbone model and CapsHead offers several advantages.
Firstly, the backbone model provides a strong foundation of feature extraction, leveraging
its ability to learn complex patterns and representations from large-scale datasets. This
allows our model to benefit from the informative features extracted by the backbone model,
enhancing their discriminative power. Additionally, capsules encapsulate pose information
and activation, allowing them to capture spatial relationships between features. This makes
them well-suited for tasks requiring the understanding of object orientation, pose, and
spatial arrangements.

4. Experiments
4.1. Dataset

We considered four datasets.

- CIFAR10: CIFAR10 is an image classification dataset that contains a total of 60, 000
images. It consists of 10 different classes, with 6000 images per class. Each image
is a 32× 32 color image, making it a widely used benchmark for evaluating image
classification algorithms.

- CIFAR100: CIFAR100 is an extension of CIFAR10, offering more fine-grained labeling.
It comprises a total of 60, 000 images across 100 classes, with 600 images per class.
This dataset provides a challenging task for fine-grained image classification, enabling
researchers to evaluate algorithms with increased specificity.

- LungCT-Scan: The LungCT-Scan dataset is designed specifically for lung image
analysis in medical imaging research. It consists of computed tomography (CT) scan
images of the lungs. The purpose of the dataset is for image segmentation. We used
213 images for training and 54 images for validation.

- VOC-2012: VOC-2012, or the PASCAL VOC dataset, is a benchmark dataset for object
detection, segmentation, and classification. It consists of approximately 11, 540 images
in total. The dataset includes annotations such as object bounding boxes and pixel-
level segmentation for various object categories. In this study, we use 1464 images for
training and 1449 images for validation.

4.2. Configurations

All experiments used the same settings, where the cross-entropy loss was utilized.
The metric used for evaluation was accuracy. The training was conducted for 100 epochs
with a batch size of 64. The input images were resized to a size of 224× 224 pixels. The
training was performed on two Titan V GPUs for the classification task and two 3090
GPUs for the segmentation task. The optimizer used was Adam, and a step-based learning
rate scheduler was employed with an initial learning rate of 0.001. The learning rate
was reduced by a factor of 0.8 every 5 epochs. Early stopping was applied to prevent
overfitting during training. Implementation in the PyTorch framework is available at
https://github.com/Ka0Ri/Capsule-Network (accessed on 4 September 2023).

In the CapsHead architecture, we maintained a consistent dimension of 4 for the
capsules, performed 3 routing iterations, and incorporated a projection head with a hidden
dimension of 512, resulting in 32 capsule styles. During fine-tuning, we utilized a pre-
trained model from the ImageNet1K dataset provided by the PyTorch hub and enabled
gradient updates for all layers. Additional specific configurations for each experiment will
be elaborated upon in their respective sections.

https://github.com/Ka0Ri/Capsule-Network
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4.3. Results
4.3.1. Linear Evaluation of the Classification Task

In the context of linear evaluation experiments, the primary objective is to provide
evidence supporting the superiority of the capsule head as a classifier over the conventional
fully connected (FC) layer. This advantage can be attributed to the unique “Routing
Mechanism” employed in CapsNet. To initiate the evaluation process, we first extract
feature maps from a pre-trained ResNet18 model. These feature maps are obtained from the
output of the fourth block, situated just before the average pooling layer. It is worth noting
that this specific feature map is instrumental in encapsulating all relevant information from
preceding receptive fields, making it a valuable tool for model interpretation. Consequently,
our evaluation framework comprises two key inputs for our model: before average pooling,
dimensions of 512× 7× 7 because the input size is 224× 224, and feature vector after
average pooling with dimensions of 512.

For the CIFAR10 dataset, the performance of CapsHeads with dynamic routing and
settings (3), using the max–in normalization technique, achieved an accuracy of 89.18%.
This outperformed the baseline classifiers, such as support vector machine (SVM), with
an accuracy of 89.2%, and fully connected (FC) networks with two hidden layers and
one layer, which achieved accuracies of 89.1% and 87.97%, respectively. Similarly, for
the CIFAR100 dataset, the CapsHeads with dynamic routing and settings (3) attained an
accuracy of 69.47%, surpassing the SVM classifier with an accuracy of 68.02%, and the
FC networks with two hidden layers and one layer, achieving accuracies of 66.82% and
66.43%, respectively. The results in Table 1 demonstrate that CapsHeads with setting 3
perform competitively against traditional classifiers, such as SVM and FC networks, on
both CIFAR10 and CIFAR100 datasets. The CapsHeads approach leverages the benefits
of capsule vector in capturing intricate spatial relationships, and the utilization of routing
with specific settings further enhances their classification performance.

Table 1. Linear evaluation performance of CapsHeads (dynamic routing with setting (3) and no
projection) compared to baseline models on the classification task.

Dataset Classifier Settings Accuracy

CIFAR 10

SVM 89.2
FC 2 hidden layers 89.1
FC 1 layer 87.97

CapsHead Max-Min, setting (3) 89.18

CIFAR 100

SVM 68.02
FC 2 hidden layers 66.82
FC 1 layer 66.43

CapsHead Dynamic, setting (3) 69.47

4.3.2. Performance on Segmentation Task

In this study, we aim to test the efficacy of the capsule head in solving segmentation
tasks, specifically in the third setting. Our design is optimized to preserve the spatial size
required for making predictions at each pixel, making it suitable for segmentation.

Table 2 provides a comprehensive comparison between CapsHead (setting (3) with
dynamic routing and no projection) and traditional CNN baselines (with one hidden layer)
on the segmentation task for two distinct datasets: CT-Lung-Scan and VOC-2012. For
the CT-Lung-Scan dataset, CapsHead demonstrates remarkable performance, achieving
a Dice score of 97.59, surpassing the results of the CNN baselines. Specifically, the FCN
model achieves a Dice score of 96.06, while Deeplab achieves 97.69. Similarly, on the
VOC-2012 dataset, CapsHead showcases its proficiency by achieving a Dice score of 86.58.
In comparison, the FCN baseline only manages a Dice score of 80.24, and Deeplab obtains
80.27. These findings further validate the efficacy of CapsHead in segmentation tasks and
illustrate their ability to outperform traditional CNN models.
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Table 2. Performance of CapsHead compared to the CNN baselines on segmentation tasks.

Dataset Backbone Head Dicescore

CT-Lung-Scan

FCN
CNN

96.06
Deeplab 97.69

FCN CapsHead 97.59
Deeplab 97.70

VOC 2012

FCN
CNN

80.24
Deeplab 80.27

FCN CapsHead 86.58
Deeplab 86.11

The results presented in Table 2 underscore the advantages of utilizing the CapsHead
architecture to enhance segmentation performance. CapsHead, with its inherent capacity
to capture intricate spatial relationships and process hierarchical visual parts in an image,
emerges as well-suited for image segmentation tasks, as shown in Figure 2. This finding
highlights the tremendous potential of CapsNets in the domain of image segmentation.
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4.3.3. Pretrained and Fine-Tuned Evaluation

In this study, our main objective is to investigate whether CapsNet can enhance
the fine-tuning model in a downstream task. We aim to assess the potential benefits of



Appl. Sci. 2023, 13, 10339 10 of 15

incorporating capsule structures in mainstream CNNs. We conduct experiments involving
two variations of CapsNet configurations:

- CapsNet with a pre-trained backbone: The pre-trained model serves as the starting
point, and we subsequently fine-tune the entire network, including the CapsHead.

- CapsNet without a pre-trained backbone: Here, the entire network, including the
capsule structures, is trained from scratch on the target downstream task.

For CIFAR10, when CapsHead is trained from scratch, it achieves an accuracy of 83.7%
with ResNet18 and 86.03% with DenseNet. However, with a pre-trained backbone, the
performance significantly improves to 94.08% with ResNet18 and 94.97% with DenseNet.
Similarly, for CIFAR100, CapsHead with a pre-trained ResNet18 backbone achieves an accu-
racy of 73.03%, which is notably higher than the 54.29% achieved when trained from scratch.
Additionally, CapsHead with a pre-trained DenseNet backbone achieves a significant ac-
curacy of 79.91%. The results in Table 3 indicates that leveraging a pre-trained backbone
significantly boosts the performance of CapsHead in both CIFAR10 and CIFAR100 datasets,
indicating the importance of transfer learning in enhancing the capabilities of CapsNets
for vision tasks. Figure 3 also clearly shows that Pretrained backbones outperform scratch
training and DenseNet backbones are better than ResNet backbones. By utilizing the
knowledge learned from a large-scale dataset, CapsHead can effectively capture intricate
spatial relationships and achieve impressive accuracy for image classification tasks.

Table 3. Performance of CapsHead (setting (1), dynamic routing) with a pre-trained backbone and
from scratch.

Dataset Backbone Scratch With Pre-Trained

CIFAR 10
ResNet18 83.7 94.08
DenseNet 86.03 94.97

CIFAR 100
ResNet18 54.29 73.03
DenseNet 55.08 79.91
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4.3.4. Ablation Study

In essence, the strength of the pre-trained backbone model provides a solid foundation,
enabling us to concentrate on the hyperparameters specific to our design. In this section, we
focus on investigating the type of routing method and the structure of the primary capsule
layer, among other parameters, across four different settings. These experiments allow us
to gain insights into the impact of these architectural choices on the overall performance
of the CapsNet. During this experiment, unless specified otherwise, we adhered to the
default setting as follows: the first (1) architecture was utilized, where capsules are directly
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constructed from the feature map of the ResNet18 backbone model, and the routing method
employed was dynamic routing.

Table 4 presents an ablation study on the capsule head’s performance for the classifica-
tion task using the CIFAR10 dataset. In the primary capsule configuration, four designs are
investigated: architecture (1) with a single routing layer with 200K parameters, achieving
an accuracy of 83.7%; method (2) with the projection of two hidden layers with 800 K
parameters, resulting in an accuracy of 83.21%; method (3) with two hidden layers with
5.1 M parameters and keeping spatial dimension, yielding an accuracy of 84.02%; and
(4) capsule styles are constructed from feature maps, with 500 K parameters, achieving the
highest accuracy of 84.26%. The accuracy scores for each configuration demonstrate the
trade-offs between parameter counts and model performance. Additionally, we evaluate
four routing methods: dynamic with an accuracy of 83.7%, max–min with an accuracy of
80.64%, EM with an accuracy of 80.1%, and Fuzzy with an accuracy of 82.18%.

Table 4. Ablation study on CapsHead with classification tasks on the CIFAR10 dataset.

Tunning Value Accuracy Params of Capsule
Head

Primary Capsule

(1) 83.7 700 K
(2)—2 hidden layers 83.21 1.5 M
(3)—2 hidden layers 84.02 5.6 M
(4)—2 hidden layers 84.26 1 M

Routing Method

Dynamic 83.7
Max–Min 80.64

EM 80.1
Fuzzy 82.18

Figure 4 illustrates the outcomes of our ablation studies. We observe that there is
no distinct trend or significant variation between different primary capsule architectures
and routing types. Nevertheless, approaches employing cosine similarity and vector
length, such as dynamic and max–min routing, appear to yield better results compared
to those utilizing clustering assumptions, such as EM and fuzzy routing. Furthermore,
methods (3) and (4), which leverage more spatial information to construct capsules, demon-
strate higher effectiveness compared to approaches solely relying on feature vectors. These
findings shed light on the strengths and limitations of various capsule configurations and
routing techniques, guiding future developments in the CapsNet architecture design.
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Table 5 present a comprehensive comparison of the performance of CapsHead, our
proposed method, against several prior works on both the CIFAR10 and CIFAR100 datasets.
For the CIFAR10 dataset, the baseline model accuracies range from 73.3% (HitNet) to
95.45% (Encapsulation). Among the various approaches, CapsHead achieves an impressive
accuracy of 94.97%, positioning it as a competitive and effective solution for the CIFAR10
classification task. Similarly, on the CIFAR100 dataset, the Encapsulation method serves
as the baseline, with an accuracy of 73.33%. In this context, CapsHead demonstrates its
capability to achieve a notable accuracy of 79.91%, showing its potential for handling more
complex datasets.

Table 5. Performance of CapsHead compared to prior works.

Dataset Study Accuracy (%)

CIFAR 10

HitNet [20] 73.3
Two-phase routing [37] 75.82
KDE Routing [49] 84.6
DCNET++ [34] 89.32
Self-Routing [16] 92.14
DeepCaps [52] 92.74
DE-CapsNet [35] 92.96
Encapsulation [24] 95.45
CapsHead (ours) 94.97

CIFAR 100 Encapsulation [24] 73.33
CapsHead (ours) 79.91

The results in Table 5 showcase the superior performance of CapsHead in comparison
to several prior works on both the CIFAR10 and CIFAR100 datasets. For CIFAR10, the
CapsHead accuracy is only slightly below the state-of-the-art Encapsulation model, em-
phasizing its robustness and effectiveness in handling image classification tasks. Moreover,
CapsHead outperforms all other baseline methods listed on CIFAR10, further solidifying
its position as a promising approach. For CIFAR100, CapsHead again shows its ability to
excel, surpassing the baseline Encapsulation method. While the difference in accuracy is
not as substantial, it is noteworthy that CapsHead maintains its competitiveness across
diverse datasets.

4.3.5. Limitation

Our study indeed acknowledges several limitations. Firstly, our study’s limitations
are linked to the scope of experimentation. While we tested our model on the CIFAR10
and VOC2012 datasets, they might not comprehensively represent the diversity and scale
of contemporary computer vision challenges. Emerging methods are often evaluated on
extensive and varied datasets, and our focus on these specific datasets could impact the gen-
eralizability of our model. Additionally, the increasing attention toward transformer-based
backbones highlights a limitation in our study, as we predominantly centered on CNN
backbones. The shifting landscape of backbone architectures underscores the need for a
more comprehensive exploration that encompasses transformer-based architectures. More-
over, while our approach shows promise, we acknowledge that we could not conclusively
establish the efficiency of CapsHead with augmented data. Further investigation in this
area is necessary. Last is the absence of a robust theoretical exploration of the equivariance
property of CapsHead. This theoretical foundation remains a future avenue of inquiry for
our work.

5. Conclusions

This study introduces a pioneering hybrid architecture for capsule networks, seam-
lessly integrating a pre-trained backbone model with a dedicated capsule head tailored
to the task. Through extensive experimentation, our approach demonstrates superior
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performance in a range of vision tasks, delivering particularly notable advancements in
pixel-level tasks like segmentation.

However, it is important to acknowledge the limitations of our study. While our
hybrid architecture showcases promising results, further optimization is needed to address
its computational complexity, which could hinder its scalability to larger and more intricate
datasets. Additionally, the trade-offs between performance gains and potential increased
training times should be explored in more depth. Furthermore, we did not explicitly
demonstrate the equivariance property of the proposed architecture, both theoretically
and practically. While the potential for equivariance exists within our framework, a
comprehensive theoretical exploration within the representation learning context is a
direction we intend to pursue in future studies.
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