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Featured Application: This work focuses on achieving a weather-agnostic approach for the real-
world deployment of object recognition algorithms. Particularly object recognition conducted on
thermal data exposed to long-term thermal drift.

Abstract: Deployments of real-world object detection systems often experience a degradation in
performance over time due to concept drift. Systems that leverage thermal cameras are especially
susceptible because the respective thermal signatures of objects and their surroundings are highly
sensitive to environmental changes. In this study, two types of weather-aware latent conditioning
methods are investigated. The proposed method aims to guide two object detectors, (YOLOv5 and
Deformable DETR) to become weather-aware. This is achieved by leveraging an auxiliary branch that
predicts weather-related information while conditioning intermediate layers of the object detector.
While the conditioning methods proposed do not directly improve the accuracy of baseline detectors,
it can be observed that conditioned networks manage to extract a weather-related signal from the
thermal images, thus resulting in a decreased miss rate at the cost of increased false positives. The
extracted signal appears noisy and is thus challenging to regress accurately. This is most likely a
result of the qualitative nature of the thermal sensor; thus, further work is needed to identify an
ideal method for optimizing the conditioning branch, as well as to further improve the accuracy of
the system.

Keywords: thermal; object detection; concept drift; conditioning; weather recognition

1. Introduction

Deploying thermal image recognition deep-learning models for the long-term analysis
of a scene becomes increasingly difficult over time due to concept drift. Not only does the
visual signature of the scene and objects within it change with seasons, but it also changes
significantly between day and night. Thermal concept drift is an increasingly researched
topic [1,2], and it is crucial for real-world deployments of thermal vision systems. Typically,
the aim is focused on identifying distinct concept-drift factors or assuming the presence
of distinct distributions. Establishing effective methods through which to combat concept
drift is a vital component when deploying computer vision systems in real-world environ-
ments. Traditional evaluation methods do not provide accurate descriptions of the impact
concept drift has on performance during long-term deployments [1]. Changes in contextual
parameters, such as weather conditions, can be somewhat related to the degradation of per-
formance observed with long-term concept drift [1]. For example, the relationship between
the degradation of object detection models and changes in temperature and humidity is
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statistically significant [1]. As weather conditions are somewhat correlated with changes
in the visual appearance of captured thermal footage, they could be leveraged to guide
the model toward learning two different representations: one that varies with the weather
(weather-aware), and one that does not (weather-agnostic).

Multi-task learning has become an increasingly popular method for training general-
ized image-recognition models [2–7], but it mostly focuses on using auxiliary branches
that are somewhat task-adjacent, i.e., where an intuitive connection to the primary task
can be drawn. Each task contributes to converting the latent representation into a more
generalized representation, which often increases performance for all tasks [4,6]. Given
that the signals induced by the auxiliary tasks help to achieve a more robust representa-
tion, similar approaches could be leveraged to extract a contextually aware signal through
auxiliary conditioning.

1.1. Estimating Weather

Directly leveraging weather information would require a vision system to directly
infer weather conditions from the captured data [8,9]. By treating it as a classification
problem, deep learning methods have shown great promise at classifying categories of
weather [8–10]. This shows that a weather signal can be somewhat extracted from single
images and categorized into distinct classes. Most weather classification approaches focus
on the binary classification of distinct weather conditions (i.e., cloudy, sunny, raining,
etc.), and they lack the granularity observed during long-term deployment. To address
this, datasets like Rain Fog Snow (RFS) [11] and Multi-class Weather Dataset (MWD) [12]
propose treating it as a multi-label classification problem in order to capture the ambiguity
between different weather phenomena and transitive weather conditions [11,12]. When
estimating weather conditions from a single image, all regions are not created equal [12,13]:
thus, some methods isolate predetermined regions, such as the sky [9,14], or leverage
region-proposal networks [12,13] to extract region-specific features.

1.2. Adapting to Weather

Adverse weather conditions, particularly those that are not present in the training
dataset, present a real challenge for deployed computer vision systems that are exposed to
the weather. Typically, approaches to concept drift rely on detecting drift, and then adapting
accordingly [15,16]. With deep-learning-based approaches, this typically means a general
system will be trained to establish a baseline, and this would then subsequently be exposed
to unseen data. Depending on the task, an evaluation metric will be used as a method to
detect drift [17]. When adapting to weather-related drift, some have tried to remove the
distracting elements directly [18–22]; train weather-agnostic models by simulating various
weather conditions and including that in the training loop [23–26]; or train several models in
an ensemble and leveraging a weighted approach to determine the final prediction [27–30].
Moreover, in situations where an unsatisfactory amount of variation can be captured in the
training data, continual-learning [16,31] or domain-adaptation [15,16] approaches are often
leveraged in an attempt to obtain a consistent performance as the visual appearance of the
context changes.

1.3. Leveraging Metadata for Recognition

In recent years, optimization, including auxiliary optimization, tasks has been shown
to greatly improve the performance of the downstream task, whether used as a pre-text task
(as often seen with vision transformers [32–35]) or as jointly optimized with the downstream
task [33,36]. Using auxiliary tasks to guide a primary task by introducing aspects that
cannot be properly captured in the downstream task’s optimization objective has shown
great promise in improving the performance and generalization of a downstream task [2,11].
Depending on the model architecture and desired purpose of this weather-conditioned
representation, it can be leveraged as a constraining parameter so as to enforce the inclusion
of the auxiliary representation directly, as shown in task-conditioned studies You Only Look
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Once (YOLO) [2], thereby forcing the network to adjust to being aware of the contextual
information induced. Alternatively, the auxiliary representation could be seen as purely
supplemental information, which potentially consists of redundant elements, and—as
such—should only be leveraged to indirectly guide the network.

1.4. Qualitative vs. Quantitative Thermal Cameras

Thermal cameras work by capturing the amount of infrared radiation emitted by
objects within a scene. Though they all aim to capture the same type of information
(namely heat), there are two types of thermal cameras. First is qualitative thermography
(sometimes referred to as “relative thermal imaging”), where the goal is to show the relative
differences of infrared radiation throughout the camera’s field of view. These are often used
for inspection and security purposes as they often provide distinct contrast between colder
and hotter elements in the field of view, regardless of absolute temperature. Second is
quantitative thermography (sometimes referred to as “absolute thermal imaging”), where
each sampling point in the field of view is mapped to an absolute temperature measurement.
This enables accurate capture of absolute thermal differences between elements in the scene,
as well as a consistent visual response for any thermal signature. In recent years, advances
in thermal imaging technology have made the use of thermal cameras increasingly popular,
either in isolation or in conjunction with traditional Closed Circuit TeleVision (CCTV)-
cameras. Quantitative thermal cameras could be seen as the ideal solution as they provide
essentially the same functionality as qualitative thermal cameras but with the added
benefit of accurate thermal readings. The technology required to construct an absolute
thermograph is significantly more complicated than that of relative thermography, and—as
such—is much more costly to produce and purchase. For the purpose of many tasks, the
absolute temperature readings are redundant for the purpose of the thermal camera, and as
such do not justify the cost, thus making qualitative thermal cameras much more common
in deployed vision systems.

In this paper, a methodology is detailed that employs predicting continuous weather-
related meta-variables for auxiliary guidance. In addition, an overview of the largest
thermal object detection dataset in a stationary surveillance context is provided. The
Long-term Thermal Drift (LTD) [1] dataset will be used to evaluate and train models as
it contains both object-centric annotations, as well as fine-grained weather information
for each sample. Further methods describe how fine-grained weather prediction can be
leveraged to condition the network during training to guide the network to become weather-
aware. Specifically, this will be divided into direct and indirect conditioning methods.
Finally, this is followed by a discussion of extensive experiments, which evaluated the
impact of the aforementioned methodology (conditioned on temperature, humidity, and
time-of-day) and the impact on performance metrics with respect to the respective weather
conditions. While the analysis does not show a direct improvement in accuracy metrics,
it does show that auxiliary conditioning in this way allows the networks to extract and
somewhat model the underlying weather signal.

2. Methodology

As weather conditions greatly alter the visual appearance of thermal imagery, infusing
this knowledge into the models during training could serve as useful guidance toward
weather-aware object detectors that outperform naively trained models. To achieve this,
a model must be able to accurately estimate the current weather conditions. While more
granular prediction schemes have become available for weather estimation, the methods
for predicting weather conditions found in the literature are still predominantly performed
using a binary scheme. Using a binary scheme as a conditioning method assumes that there
is a fixed amount of distribution to the model. In an uncontrolled environment, this is a
potentially false assumption as unknown variables could introduce noise to the signal that
would make it difficult to distinguish the ground truth close to the bin edges [37,38]. This is
potentially further exacerbated when processing thermal video from cameras with a relative
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internal thermograph. As detailed in Section 1.4, the prevalence of relative thermal cameras
make them a promising modality to investigate, particularly for a real-world context.

Prior work in auxiliary guidance have primarily leveraged multiple modalities [39–43],
or have focused on guidance in the RGB domain [4,6,44–46]. To our knowledge, the only
existing work that performs auxiliary conditioning for thermal-only object detection is the
task-conditioned study of YOLO [2]. The authors leveraged a direct conditioning approach
(detailed in Section 2.3) on the KAIST Multispectral Pedestrian Detection (KAIST) dataset [47],
and managed to detect the objects overlooked by the baseline. However, the KAIST dataset
contains thermal images from an absolute thermal camera, thereby resulting in a fairly similar
thermal signature to that of pedestrians (as seen in Figure 1). Additionally, it can be observed
in Figure 1 that this consistent thermal signature results in very low contrast between objects
in certain scenes. Contrast-enhanced versions are available in Figure A1.

(a) Daytime Example. (b) Nighttime Example.

(c) Daytime Example. (d) Nighttime Example.
Figure 1. Examples of thermal images in the KAIST [47] dataset, where a similar thermal signature
of people can be observed at different times of the day. This is due to the use of quantitative
thermography, as well as due to the limited periods of captured data.

In this section, an overview of the object-centric annotations of the LTD-Dataset [1]
and the associated meta-data are detailed. Furthermore, the method proposed in [2] can be
adapted for a prediction of a continuous auxiliary variable. Finally, the architecture of a
direct conditioning approach (similar to [2]), as well as an indirect conditioning approach
that uses a State of the Art (SotA) transformer-based model, is detailed.

2.1. Dataset

In the original LTD dataset benchmark [1], and the subsequent ChaLearn: seasons in
drift challenge [48], the performance impact concept drift has on object detectors is corre-
lated with the absolute change in detection accuracy across different concept drift-related
meta-variables (most notably temperature, humidity, and time of day). Subsequently, the
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dataset has been extended with additional object-centric annotations. The dataset was
uniformly sampled with a 0.5 frames per second sample rate (i.e., one frame every other
second), resulting in over 900,000 images with over 6,000,000 annotated objects.

As can be seen in Figure 2, the thermal signature of people varies significantly more in
the LTD dataset, as does the contrast between the objects and background.

(a) Daytime Example. (b) Nightime Example.

(c) Daytime Example (d) Nighttime Example
Figure 2. Examples of images containing people from the LTD Dataset [1], where drastically different
thermal signatures for objects can be observed. This is due to the use of qualitative thermography, as
well as due to the dataset spanning 9 months.

The LTD dataset is captured in a real-world, unconstrained context, and is thus sus-
ceptible to associated biases, such as skewed object distribution (seen in Figure 3a); frames
without objects of interest; highly varied object densities; and the uneven distribution of
weather conditions (as seen in Figure 4a–c). The objects in the dataset are categorized into
four classes—namely people, bicycles, motorcycles, and vehicles—spanning various shape
and size configurations. Furthermore, the sizes of objects are affected by the camera being
suspended roughly 6 m above the ground and being aimed downwards, which results in
most objects appearing smaller than they, in reality, are (as seen in Figures 3b and A2). How-
ever, this phenomenon should be expected for deployment in a real-world security context.
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(a) (b)

Figure 3. In (a), the total amount of instances from each of the given classes can be observed.
Meanwhile, in (b), the average size for each class visualized in (a) can be seen marked as a dot. The
surrounding circles visualize the span of object’s height and width, as well as the 1 and 2 standard
deviations, respectively.

Furthermore, as shown in Figure 3b, while each class has its own unique distribution,
the distributions predominantly contain very small objects, with the exception of the vehicle
class. This adds an additional degree of difficulty as most object detectors tend to struggle
with smaller objects [32,49,50]. Additionally, a visualization of class-specific object size
distribution can be found in Figures A4 and A5, thereby showing object sizes across the
entire dataset, as well as in the training and validation splits.

(a) (b) (c)

Figure 4. Histograms showing the distribution of meta-variables across the entire dataset. Visualizing
the number of samples of a given humidity (a), temperature (b), and time-of-day (c).

Performance on the LTD [1] and KAIST [47] datasets are typically measured as the
mean of the Average Precision (AP) across each class, denoted as mean Average Precision
(mAP). Furthermore, a detection can only be considered a true positive, with respect to the
joint area of both prediction and ground truth, if the predicted area intersecting with the
ground truth is greater than a selected threshold. This is referred to as an Intersection over
Union (IoU) threshold. Most commonly, the Pascal Visual Object Challenge (VOC) [51]-
and Microsoft Common Objects in COntext (MS COCO) [52] variants of mAP are used.
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2.2. From Discrete to Continuous Meta-Prediction

In the KAIST dataset, the data falls into two distinct categories, daytime and nighttime.
However, in a real-world deployment, the system would observe a gradual change between
daytime and nighttime, which is not accurately represented by such a binary grouping.
However, in the LTD dataset [1], each clip has an extensive, highly granular set of metadata.
This allows us to evaluate the impact of auxiliary task conditioning in real-world scenarios
with more diverse samples. Furthermore, the distillation of this knowledge through
conditioning could serve to make the model weather-aware, thus allowing it to adjust to
weather-induced visual changes.

In [2], the authors proposed guiding the conditioning branch with a binary classifi-
cation head (i.e., classifying day or night). However, to perform fine-grained, continuous
weather prediction, the auxiliary optimization task and loss must be adjusted accordingly.
The problem with binary classification is that it treats all false positives equally, regardless
of the magnitude of the error. For continuous classifications, however, the severity of
the misclassification can be assessed by determining the absolute difference between the
prediction and the ground truth. Naively, an L1 loss can be used to punish/reward the
network based on the difference in absolute distance. However, due to the data being
captured by a relative thermal camera, identical visual appearance cannot be guaranteed
between calibrations. During the capture of the data for the LTD dataset, the camera would
routinely undergo automatic calibration, thus resulting in an inconsistent profile over time.
This induces a noise signal that could result in the optimization converging toward a global
mean rather than an acceptable guess. We combat this by employing an exponential L1
that is tuned to allow a pre-determined degree of deviation, and this is conducted before
approaching the values of the primary task loss or losses.

We employed a variation of an exponential L1 loss, inspired by a naive exponential
L1 loss [53], with a novel exponent-based soft reduction for losses lower than a specified
deviation. Denoted as k, the accepted variance reduces the punishment as long as the
absolute L1 distance to the ground truth is closer than k.

L1e(x, y) ≡ L ≡ {l1, . . . , lN}, ln ≡ |xn − yn|
k

|xn−yn | (1)

L1e(x, y) denotes the total loss L given the prediction x and ground truth y. The sum of
losses in a given batch of size N is the sum of the individual loss’ ln at each position n. The
individual losses ln are normalized with respect to k over the absolute L1 distance, thus
resulting in an exponent <1 for samples within the accepted deviation and an exponent >1
for samples exceeding the accepted deviation.

When establishing the baseline performance for each model, the minimum, maximum,
and standard deviation of the primary loss was noted down for the final epoch. A corre-
sponding k that would approach the expected loss values of the primary task was selected.
This is where the resulting weighting of the auxiliary in the optimization process would be
approximately equal to that of the primary task at the border of the desired deviation k, all
the while exponentially increasing when deviating further from the allowed k.

Due to the thermal images of the LTD dataset being recorded with a relative thermal
camera, the visual appearance of a scene might be slightly different, even under similar
meta-conditions. Thus, predicting the exact values from visual data would be an ill-posed
problem, as any given state inherits some degree of variance from the calibration of the
relative thermograph.

To evaluate the accuracy of the auxiliary module, we reported the Mean Average Error
(MAE), Mean Average Percentage Error (MAPE), and Standard Deviation (Std.) to provide
insights into the average error across all weather-related predictions; the percentage average
error to access the magnitude of the error; and the standard deviation of the predictions
around the target ground truth.



Appl. Sci. 2023, 13, 10295 8 of 22

2.3. Direct Conditioning

In [2], the authors proposed a method of directly conditioning the latent representation
of each predictive branch through a conditioning layer. The conditioning element is part of
an auxiliary classification network, one that is aimed at predicting whether the given sample
belongs to the daytime distribution or the nighttime distribution. The latent representation
used for this auxiliary prediction is derived from an intermediate representation of the
entire image. Thus, the representation must be able to extract a notion of day and night,
which can make the network ‘aware’ and adapt accordingly.

In task-conditioned YOLO [2], the overall mAP does not improve significantly at
higher IoUs; however, the weather-conditioned network shows a reduction in object Miss-
Rate (MR). By directly conditioning the intermediate representation, the network is forced
to directly incorporate the weather information in its semantically rich representation. We
employ the original implementation of the YOLOv5 model. As shown in Figure 5a, the
standard YOLO architecture is extended with an auxiliary branch, and it is extracted from
one of the early stages of the feature extractor. Subsequently, a series of fully connected
layers condense the representation to feed it to a prediction head. In addition, the prediction
head produces a single value that is regressed following the exponential L1 loss described
in Section 2.2. Individual fully connected layers feed the representation to the conditioning
layer in the different stages of the network, and this occurs prior to the given stage’s
prediction head. The conditioning layer (shown in Section 2.3) takes in the set of feature
maps, as well as an element-wise multiplication and summation with separated auxiliary
representations αn and βn, respectively. Thus, the latent representation used for predicting
the weather-related variable is directly enforced into the intermediate representation used
by the object detector, which forces it to adjust accordingly.

(a) YOLOv5 with a conditioning branch. (b) Conditioning layer

Figure 5. YOLO-styled conditioning network (Figure 5) and the internals of the conditioning layer
(Section 2.3). Red, purple, and blue denote the auxiliary branch, mapping, and conditioning layers,
respectively. The term ‘1024 FC’ denotes the fully connected layers that project the latent representa-
tion to a single 1× 1024 tensor. These latent representations are denoted as αn and βn when inputted
to the conditioning layer portrayed in Section 2.3. The white blocks denote convolutional bottleneck
layers, where the channel depth (i.e., 32, 64, etc.) is denoted above the kernel size of the convolution.

2.4. Indirectly Imposed Conditioning

Vision transformers have proven to effectively leverage global reasoning to solve vari-
ous vision tasks. By calculating an all-to-all affinity mapping (self-attention) between input
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elements (tokens), transformers can effectively relate to elements, even when they belong to
separate modalities. For classification, this is often employed with an additional learnable
element, which is then mapped to a prediction head. The repeated self-attention allows the
classification token to extract information from the entire input without directly imposing
changes to other inter-token relationships. DEtection TRansformer (DETR) [32,49,54] is a
common state-of-the-art transformer-based object detector. Subsequent variants have been
shown to greatly improve convergence and the stability of optimization [49,54], and this
is achieved by extending the deformable-DETR [54] with a learnable classification token
and using the encoding of the classification token to perform predictions of the auxiliary
task, namely weather condition prediction. While the optimization could potentially drive
the transformer to learn embeddings that are optimized toward affinity with the classi-
fication token, the network should be able to disregard weather-related embeddings in
cases where the weather does not provide any significant optimization benefit. Unlike the
directly-imposed approach, the network could learn to dynamically disregard regions of
the image that do not provide contextual information.

Inspired by the use of a classification token, i.e., ‘[CLS]’, which was proposed in the
original BERT [55] paper, we included an additional token with every input sample, and
this was propagated through every encoder layer of the transformer. In this way, the global
information from a given sample can be continuously aggregated in a single representation.
Prior to reaching the decoder layers, the [CLS] token is separated and passed to an auxiliary
branch (as seen in Figure 6). The auxiliary branch consists of a series of fully connected
layers (sizes; 512, 512, and 1), thus acting as a mapping from latent representation to a single
value that can be regressed. This method allows for the integration of visual information in
the weather-related [CLS] token, which is achieved by extracting information directly from
the visual input without directly enforcing the subsequent decoder to process the weather-
related information. This disjointed approach theoretically should allow the network to
disregard information that does not contribute to the weather prediction, unlike the direct
conditioning approach.

Figure 6. DETR-style transformer network with indirect conditioning. Red modules and tokens
denote components used for auxiliary prediction. ‘FC 512’ denotes the fully connected layers that
project the latent representation to a single 1× 512 tensor.

3. Results
3.1. Experimental Setting

To establish a baseline, the models were trained as described in their respective papers
and implementations. Since none of the models contained a thermal variant, they were all
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trained from scratch. This required increased training time in order to expect convergence
as “standard” configurations are implemented by loading an image-net pre-trained feature
extraction network. For this reason, we set the maximum allowed epochs to 250 for all
models. The batch size for all models was also set to 8 per GPU, resulting in 3.8 total
iterations. All models were trained in the same pytorch environment (torch 1.7, torchvision
0.8.1), on two Nvidia RTX 3090 cards. Class-wise losses were weighted to reflect the
frequency of each class in their respective subsets. The complete dataset was split into
roughly 3 equal parts. Two were employed for training and validation, and the third test
set remained hidden to allow for future challenges similar to [48]. Further information on
data availability is described in the Data Availability section at the end of the paper.

3.2. Evaluating Weather Conditioning

Due to the auxiliary branch being trained in a supervised manner, it has to be exposed
to the variety observed in the training set. As such all clips in the dataset were evenly
distributed across equally-sized training, test, and validation sets. Because this potentially
allows a naive approach to generalize easily, due to the inclusion of the full variation present
in the dataset, the proposed method is compared to an equally trained naive approach
without the auxiliary meta-prediction branch.

To evaluate the potential impact of each of the three meta-conditions (namely, tem-
perature, humidity, and time of day), each model was trained naively (i.e., according to
the training loop described in the respective paper [2,54]), as well as with the auxiliary
conditioning branch (direct and indirect conditioning for YOLO- and DETR-variants, re-
spectively). To allow for fair optimization, each model was trained for the same amount of
epochs as their respective baseline.

Likewise, we observed the performance when comparing the temperature and object
size to investigate if any of the categories potentially suffered. This was conducted in order
to reach a more general improvement of the system. While these correlations might not be
intuitively tied to the weather, the latent representation learned could inadvertently favor
certain aspects of the object distributions.

Because conditions are quantified using different metrics, the ground truth ranges
varied significantly. To normalize their representation, the values were remapped so that
the observed values fell roughly within the range of [−2, 2]. This range was chosen to avoid
the network having to also learn a mapping between arbitrary ranges while keeping in line
with the normalization that is conducted internally in the networks (which is performed to
avoid unstable variances in the activations [32,33,50]).

3.3. Accuracy

Table 1 details the overall mAP and MR for all of their models across the validation set.
This is used as a similar metric of overall object detection performance to what is commonly
performed for other object detection datasets, as well as to retain a fair comparison with the
original LTD dataset evaluation [1]. Additionally, Table 2 details the MAE of the auxiliary
prediction branch, as well as the Std. of the the prediction error. This is listed to provide
insight into the performance of the auxiliary branch. We report on the accuracy following
the common VOC and MS COCO dataset metrics (particularly MS COCO, which also
delineates between objects sizes). Thus, in Table 1 mAPVOC denotes mAP where IoU is at
least 0.5, and mAPCOCO denotes the mAP at varying IoUs (i.e., {0.50, 0.55, 0.60, . . . , 0.95}).
mAPL, mAPM, and mAPS denote the mAP of the objects with {area < 322, area > 322 < 962,
and area > 962}, respectively.

As can be seen in Table 1, the baseline models that are naively trained without any
auxiliary guidance tend to perform better on primary task metrics (mAP); however, weather-
conditioned variants (particularly temperature variants) display reduced miss rates, in-
dicating that—while their accuracy is generally lower—they recognize more objects than
their baseline counterpart.
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Table 1. In this table, the mAP and MR of the direct (YOLOv5) and indirect conditioning (DETR)
variants are detailed. Highlighted with bold is the best performing model across all of the models,
and highlighted with underline is the best performing model for a given architecture. Temperature,
humidity, and time of day are abbreviated as Temp., Hum., and ToD, respectively.

Model mAPvoc mAPcoco mAPL mAPM mAPS MR

YOLOv5 (Baseline) 0.604 0.465 0.825 0.640 0.491 0.342
YOLOv5 (Pretrain) 0.600 0.454 0.831 0.621 0.489 0.324
YOLOv5 (Temp.) 0.584 0.410 0.796 0.590 0.468 0.322
YOLOv5 (Hum.) 0.493 0.293 0.675 0.560 0.268 0.357
YOLOv5 (ToD) 0.549 0.439 0.805 0.566 0.431 0.356

DN-DETR Baseline 0.378 0.348 0.123 0.344 0.563 0.421
DN-DETR (Temp.) 0.225 0.148 0.100 0.190 0.682 0.389
DN-DETR (Hum.) 0.191 0.132 0.100 0.160 0.671 0.415
DN-DETR (ToD) 0.219 0.142 0.00 0.169 0.661 0.410

Def. DETR Baseline 0.332 0.202 0.005 0.051 0.637 0.383
Def. DETR (Temp.) 0.297 0.184 0.001 0.045 0.620 0.351
Def. DETR (Hum.) 0.213 0.114 0.000 0.020 0.517 0.416
Def. DETR (ToD) 0.289 0.178 0.001 0.040 0.619 0.395

Table 2. In terms of the accuracy of the predicted auxiliary prediction value, Dir. and Indir. denote
the direct and indirect conditioning models, respectively. Meanwhile, the model row denotes the
variant used.

Model MAE MAPE Std.

D
ir.

Temperature 7.1 18% 3.7
Humidity 18.9 49% 9.4
Time of Day 7.3 19% 7.1

In
di

r. Temperature 5.1 14% 2.9
Humidity 15.3 43% 8.9
Time of Day 8.3 22% 7.9

3.4. Accuracy Compared to Weather

To evaluate the impact of the conditioning branch on the performance with respect to
the different weather conditions used for auxiliary prediction and optimization, Figures 7–9
detail the relation between mAP and the three meta-variables chosen (namely temperature,
humidity, and time of day). Visual examples to accompany the accuracy overview of
Tables 1 and 2 can be seen in Figures 10 and 11 (ground truth labels and the image without
bounding boxes can be found Figure A3), while visualizations of accuracy with respect to
the different weather variables can be seen in Figures 7–9.

In Figure 7, it can be observed that training models with a temperature-focused
auxiliary branch do not change the performance of said model in any significant way
(other than a generally lowered mAP). It can be seen that all models follow a curve that
is similar to the distribution of samples seen in Figure 4b, and it can be expected that this
is happening as the model optimization is simpler when regressing to the mean of the
dataset. In addition, it can be observed that the indirect conditioning method is generally
more agnostic to variation in the meta-variables. Similarly to the temperature-focused
auxiliary branch, humidity- and time-of-day conditioning do not seem to improve the
overall performance of the models. However, interestingly, the models seem to be generally
agnostic to the distribution of samples (shown in Figure 4a,c). This indicates that the model
has trouble extracting meaningful information with regard to the auxiliary optimization
task. This is also present in Table 2, which is where it can be seen that the networks
have difficulty with accurately predicting their respective weather conditions (specifically
humidity and the time of day), whereas temperature prediction is rather accurate and falls
close to the acceptable deviation of the L1e loss.
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(a) (b)

Figure 7. mAP of (a) YOLO and (b) DETR variants, with respect to temperature of samples in the
test-set. Please note the Y-axis ranges differ between architectures.

(a) (b)

Figure 8. mAP of (a) YOLO and (b) DETR variants, with respect to the humidity of samples in the
test-set. Please note the Y-axis ranges differ between architectures.

(a) (b)

Figure 9. mAP of (a) YOLO and (b) DETR variants, with respect to time-of-day of the samples in the
test-set. Please note the Y-axis ranges differ between architectures.
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(a) Baseline (b) Temperature

(c) Humidity (d) Time of Day
Figure 10. Example of direct conditioning performance for each conditioned model. Bound-
ing boxes marked in green, red, yellow are considered true positives, false positives, and false
negatives, respectively.

(a) Baseline (b) Temperature

(c) Humidity (d) Time of Day
Figure 11. Example of indirect conditioning performance for each conditioned model. Bounding
boxes marked in green, red, yellow are considered true positives, false positives, and false
negatives, respectively.
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4. Discussion

Previous work has shown that traditional Convolutional Neural Networks (CNNs) is
able to predict weather categories, and—in some contexts—it can help guide the network to
be aware of the distribution a given sample belongs to and to adjust accordingly. While this
has not been shown to increase the accuracy in terms of mAP, it has been shown to decrease
false negative predictions. Thermal images with significant concept drift could introduce
artifacts that would look appropriate for a given object in one distribution but would
be undesired for another. Intuitively, during training, the model would either adjust to
over-predict (i.e., increased false positives), or under-predict (i.e., increased false negatives)
when concept drift occurred. Essentially, the model was tasked with learning an unknown
set of distributions, and it was optimized toward learning to recognize patterns common to
the mean of the cumulative distribution. Therefore, one could hypothesize that guiding
the network toward being aware of a variable correlated with the observed concept drift
would allow the network to potentially establish connections between the conditioning
representation and the semantic representation used for object prediction.

While it can be observed in Table 1 that the mAP scores do not improve over baseline
when conditioned with the auxiliary branch, the change in MR indicates that the auxiliary
branch is enforcing a signal that relates to the auxiliary task. In particular, the temperature-
conditioned variant managed to detect objects that the baseline failed to detect. However,
the weather-conditioned method also produced an increase in false positives. Because
the visual appearance changes were gradual, resulting in lower accuracy, the weather-
conditioned model potentially learned a more varied representation of given objects, which
allowed it to detect more objects at the cost of false activations in other places. Additionally,
it can be observed (in Figure 7) that the transformer-based model performed significantly
more uniformly across temperatures. However, it was not certain that this is entirely an
aspect of the auxiliary predictive branch or due to the nature of the transformers’ input-
dependent attention. Another surprising detail can be found in Table 1, which showed that
the DETR-variants, in general, seemed to work really well on small objects, which is counter
to what is observed in the original and subsequent papers [32,49,54]. We might reasonably
conclude that this is partially due to the decoder module, which has a fixed amount of
learnable query tokens and should naturally converge toward spatial and latent features
that are the most prominent, i.e., the person class. Initially, an experiment was conducted
with regard to the number of queries to produce, and while increasing them drastically
(300->600) would improve performance by roughly 0.3%, the performance would also
increase significantly. The increased amount of query tokens could have been kept as a
baseline. However, for the sake of keeping baseline models (i.e., YOLOv5 and Deformable
DETR) somewhat comparable with other work, the hyperparameters described in their
respective repositories and paper were kept.

Previous work, namely task-conditioned YOLO [2], evaluated performance on the
KAIST dataset, which has two distinct thermal distributions (day and night clips). Our
approach assumed that, during real-world deployment, a more continual representation
would be present and thus could be learned. However, the results indicated that, while
a signal can be extracted, there still is an underlying need for an additional proxy to
guide the formation of sub-distributions of similar visual appearance. The challenge of
regressing an exact numerical value for weather conditions can also be observed in the
field of weather forecasting [8,12,56], where the choice of optimization strategy varies
despite the task being similar, and the non-linear increase in loss the further the prediction
strays from the ground truth is quite prominent. Adjacent computer vision approaches,
however, tend to leverage a binned classification approach [9,11,13], which can simplify
the prediction tasks significantly. While the loss proposed in Section 2.2 attempts to find a
good medium between binned and continuous prediction, it perhaps provides an unstable
signal due to the exponential growth when exceeding the accepted deviance k. While the
proposed conditioning methods force the object detectors to take visual information related
to weather into account, it does not seem to directly improve primary metrics such as mAP;
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thus, explicitly modeling the weather in this manner could be considered ineffective when
optimizing for mAP.

The appearance shift induced when the thermal camera calibrates to adjust the internal
thermograph, perhaps, induces some noise into the signal, thus making it difficult to learn a
robust approximation of the signal. It could be the visual noise induced partially obfuscates
clear delineations between visual groups of visually similar samples, thus resulting in a
regression to the mean being the simplest convergence or perhaps the optimal solution
for the downstream task. In such a situation naively training without the auxiliary branch
would be the optimal solution if the goal is simply to optimize accuracy. While the auxiliary
task does seem to induce noise, both methods (direct and indirect conditioning) seem
to also somewhat guide the network toward containing a more continual representation,
as seen by the reduction in MR. Perhaps trying to construct distributions as a series of k
overlapping distributions, and leveraging a model-soup [57]-style approach could provide
a more distinct learning of each sub-distribution, while still achieving a generalized model
of all distributions.

5. Conclusions

Thermal concept drift poses a challenging hurdle to overcome when deploying object
recognition systems. Drawing from contextual clues that impact the visual appearance of
the scene could be beneficial. Using auxiliary metrics to condition a network directly or
indirectly does not seem to improve the overall performance of the system with regard
to mAP. However, it does result in a consistent decrease in MR. While not resulting in
a direct improvement, this shows that a signal can be extracted from the conditioning
meta-variable, which can guide the representations learned. The difficulty in accurately
modeling the objects across thermal signatures seems to prefer, similar to a naively trained
baseline, representations that favor the most frequent representations; as such, this could
be simply seen as a regression to the mean. However, due to the networks consistently
being able to extract a signal related to the auxiliary task, it could imply that deliberately
splitting the data into a set of K distributions based on a combination of meta-variables or
visual appearance could provide more stable guidance.
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The following abbreviations are used in this manuscript:

AP Average Precision 6
CCTV Closed Circuit Television 3
CNN Convolutional Neural Network 14
DETR Detection Transformer 9–11, 14
IoU Intersection over Union 6, 8, 10
KAIST KAIST Multispectral Pedestrian Detection 4, 6, 7, 14, 17
LTD Long-term Thermal Drift 3–7, 10
MAE Mean Average Error 7, 10
mAP Mean Average Precision 6, 8, 10, 11, 13–15
MAPE Mean Average Percentage Error 7
MR Miss Rate 8, 10, 11, 14, 15
MS COCO Microsoft Common Objects in Context 6, 10
MWD Multi-class Weather Dataset 2
RFS Rain Fog Snow 2
SotA State of the Art 4
Std. Standard Deviation 7, 10
VOC Pascal Visual Object Challenge 6, 10
YOLO You Only Look Once 2, 4, 8, 10, 14

Appendix A. Contrast-Enhanced KAIST Examples

(a) Daytime Example. (b) Nighttime Example.

(c) Daytime Example. (d) Nighttime Example.
Figure A1. Contrast-enhanced variants of the examples visualized in Figure 1, showing examples of
of the thermal signature of objects in the KAIST dataset.
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Appendix B. Additional Dataset Figures

Class-Wise Object Distributions

(a) Object Size heatmap for the person class. (b) Object Size heatmap for the bicycle class.

(c) Object Size heatmap for the motorcycle class. (d) Object Size heatmap for the vehicle class.

Figure A2. (a–d) show a detailed heatmap of the object size distributions for each class individually.
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(a) (b)

Figure A3. The example image used in Figures 10 and 11 is shown without bounding boxes (a) and
with bounding boxes (b). In Figure 10 green, yellow, and red refer to person, bicycle, and vehicle
classes, respectively.

(a) Object Size heatmap for the person class. (b) Object Size heatmap for the bicycle class.

(c) Object Size heatmap for the motorcycle class (d) Object Size heatmap for the vehicle class.

Figure A4. Heatmaps of object size distributions for each class in the training set.
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(a) Object Size heatmap for the person class. (b) Object Size heatmap for the bicycle class.

(c) Object Size heatmap for the motorcycle class (d) Object Size heatmap for the vehicle class.

Figure A5. Heatmaps of object size distributions for each class in the validation set.
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