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Abstract: The Sliding Safety Factor (SSF) is a crucial criterion for the sliding stability evaluation
of concrete dam structures. A concrete gravity dam subjected to strong earthquakes undergoes
progressive fractures, in addition to pre-existing fractures, at the dam—foundation interface, which
causes a reduction in the shear strength against sliding. In this study, a new SSF is suggested to
take account of the progressive fractured area at the dam—foundation interface. A contact and
sliding model for the dam-foundation system is also suggested to compute the dynamically varying
normal forces and sliding motions for the suggested SSE. To investigate the effect of the progressively
fractured area on the sliding safety evaluation, the conventional, improved, and newly suggested
SSFs are compared using the dynamic seismic analysis results of a concrete gravity dam. The
conventional formulation of the SSF, in which the fractured area is not represented, yields extremely
overestimated sliding safety judgements when a dam is subjected to strong earthquakes. On the other
hand, the newly suggested SSF with the proposed contact-sliding model provides more realistic and
conservative sliding safety evaluation results than the others.

Keywords: Sliding Safety Factor; fracture progress; contact-sliding model; seismic analysis; concrete
gravity dam

1. Introduction

Large concrete dams are crucial infrastructures generating backbone energy power
and controlling water resource distribution. The earthquake safety of those structures
is an important issue, since damaged large dams have an extremely negative impact
on social and economic systems across a sizable region, and often those damages are
irrecoverable. Especially, the possibility of sliding during an earthquake is important in the
safety assessment of a concrete gravity dam, in that sliding can cause the total failure of a
dam [1,2].

To quantify the chance of sliding as a whole dam structure, the concept of the Sliding
Safety Factor (SSF) has been used widely [3,4]. The SSF of a dam is generally defined
as the ratio between the shear strength of the dam-foundation interface and the external
shear force applied to the interface. The shear strength consists of the cohesive force, and
the multiplication of the vertical force and the coefficient of the internal friction. When
the external force exceeds the shear strength, in which the SSF is lower than unity, a dam
possibly slides. Since this definition of SSF is straightforward, major dam agents including
USACE and USBR have used them to evaluate the sliding stability of their dams [5,6].
However, the conventional SSF formulation cannot explain the sliding stability along the
dam-foundation interface, since it does not take into account the fractured area in the
interface [7,8]. A concrete gravity dam usually has a pre-existing fractured area due to the
hydraulic pressure at the heel area and/or past earthquakes [9,10]. In addition, when a dam
is subjected to strong earthquakes, the fracture initiates and gradually propagates at the
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bottom of a dam [10-12]. These pre-existing and progressive fractures reduce the resistant
shear strength against the external shear force [13-16]. Hence, if the fractured area is not
considered in the SSF evaluation, the shear strength can be exaggerated against sliding, and
this would have an adverse impact on the precision of the sliding safety evaluation. The
existing conventional SSF is not able to describe these important situations for the sliding
stability of a dam.

To overcome the shortcomings, an improved SSF has been proposed to consider the
fractured area in the dam—foundation interface [17,18], where the resistant shear forces at
the undamaged area and the fractured area are determined separately. However, in the
improved SSF formulation, the total vertical force is decomposed in proportion to the ratio
of those areas for simplicity, which produces inaccurate results in dynamic analysis of a
dam. In addition, the effect of fracture progression is not considered important in this
improved SSF, as well as in the conventional SSF.

In this study, a new SSF is suggested to take account of the progressive fractured area
at the dam-foundation interface. In order to use the suggested SSFE, a contact and sliding
model for the dam—foundation system is required to compute the dynamically varying
normal forces and sliding motions, which is presented in the context of the finite element
method. To investigate the effect of the fractured area progression on the sliding safety
evaluation, the conventional, improved, and newly suggested SSFs were computed using
the dynamic earthquake analysis results of a concrete gravity dam subjected to two artificial
earthquakes. After comparing the SSF values, there is a discussion about the possibility
that the conventional SSF significantly overestimates the resistant capacity of a dam against
sliding, and about the importance of an appropriate SSF formulation.

2. Dam Sliding Model
2.1. Conventional and Improved Sliding Safety Factors

To evaluate the dynamic sliding stability of concrete gravity dams subjected to earth-
quakes, the concept of Sliding Safety Factor (SSF) has been used as the ratio of the shear
strength to the shear force on a dam tending to slide along its base [3]. When the SSF is
larger than unity during the entire duration of an earthquake, it is supposed that the dam
structure is stable against rigid-body sliding. The conventional formulation of the SSF is
defined as:
cA+ N(t) tan¢;

V(1)

where c is the cohesive strength of the dam—foundation interface, A is the total area of the
dam bottom face, N is the total vertical force at the dam base as a function of time ¢, ¢; is
the internal friction angle of the dam—foundation interface, and V is the absolute value of
the external shear force along the dam base, which is also a function of time t. This sliding
criterion represents a simple ratio between the shear strength of the interface at the dam
base and the force to slide a dam body.

Although, mainly due to its simplicity, the SSF in Equation (1) is popularly used in
static and dynamic stability evaluation, it only accounts for the sliding stability of a dam
under the assumption of undamaged dam-foundation interface, and becomes inaccurate
or invalid once the fracture propagates along the dam-foundation interface.

To address this problem, the improved SSF has been proposed [17,18]. In the formula-
tion, it is considered that the total shear strength of the interface area is divided into two
parts, the shear strength of the undamaged area and one from the fractured (so, damaged)
area. Each of them follows Coulomb’s friction law with different friction angles, and the
SSF is written as:

SSF = 1)

(1—n)(cA+ N(t) tan¢;) +yN(t) tan ¢s

SSF = 70

@

where 7 is the ratio of the damaged area to A, the total area of the dam bottom face,
N is the vertical force at the dam-foundation interface, ¢; is the internal friction of the
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undamaged interface region, and ¢y is the coulomb friction angle along the fractured
surface of the dam—foundation interface. While the internal friction angle is a material
property [19], the coulomb friction angle, ¢¢, represents the surface friction caused by
roughness and interlocking along the fractured dam-foundation interface. The ratio
is assumed to be constant to represent a pre-existing fractured region caused by strong
uplift hydro-pressure or a preceding earthquake. In Equation (2), it is assumed that the
total vertical force at the dam base is divided into the undamaged and the fractured region
components in proportion to the ratio of their areas. When a structure is dynamically
excited with horizontal and vertical loads, the vertical reaction at its base region cannot
be decomposed in proportion to subregional areas. Hence, the vertical force of each area
should be evaluated separately for the precise frictional force computation.

2.2. New Sliding Safety Factor

In Figure 1, a dam—foundation system having a partially fracture-damaged condition
at the dam base interface is depicted. Assuming that the fractured area exists as shown in
Figure 1b, the total normal force against the external force is the sum of the normal forces
at the undamaged and the fractured areas. However, since the normal force distribution
is not uniform, as shown in Figure 1c, the normal force cannot be simply calculated in
consideration of the ratio of the fractured area [20,21]. In Figure Ic, it is shown that the
magnitude of the vertical force at the toe is larger than the vertical force at the heel, and
the distribution varies with time. When a dam is subjected to real earthquakes, the actual
distribution of the vertical force will be more irregular.

| dam-foundation interface |

I ]

DA AR
I N N|
fractured area (n4)  undamaged area (1 — )4

o (b)
dam-foundation interface DA
[ | |
dam monolith | N;‘ tangy I (1 —mecA + N,tang; !
LSS S
rigid foundation N,
N,

(a) (o)

Figure 1. Dam-foundation interface in the partially fractured condition: (a) a schematic dam-
foundation model; (b) partially fractured dam—foundation interface; (c) conceptual normal force
distribution along the fractured and undamaged areas.

The engineering guideline of FERC [20] states that the cohesion of the fractured
concrete-rock foundation interface should be assumed to be zero. Also, CDA [22] specifies
that the cohesion is assumed to be considered within an undamaged concrete structure.
Hence, it is reasonable that the cohesive strength in SSF evaluation vanishes to zero at
the damaged area where the fracture is severely developed, which is already applied in
Equation (2).

While the ratio of the damaged area to the total area, 7, is given as a fixed value in
Equation (2), for realistic evaluation of the sliding stability of a concrete dam, it is more
reasonable that 77 varies with time as the fracture progresses along the dam—foundation
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interface. Considering those observations, a modified formulation of SSF is suggested in
this study as:

(1—n(t))cA+ Ny (t) tang; + Ny (t) tang¢
V(t)

where N;, is the vertical force at the undamaged area, N is the vertical force at the fractured
area. In Equation (3), it is noted that #, N, and N;, as well as V, are functions of time. It
is also noted that the two vertical forces, N;, and N; in Equation (3), are computed by a
nonlinear finite element analysis considering the nonlinearity of sliding-contact problems,
described in Section 2.3, while those vertical forces are inaccurately assumed as the linear
proportions of the area, (1 —#)N and 7N, respectively, in Equation (2). To evaluate the
suggested SSF, a contact-sliding model for the dam—foundation interface is necessary for
the computation of the fractured area and corresponding vertical forces, which is explained
in the following section.

SSF =

®)

2.3. Interface Contact-Sliding Model

A contact and sliding model for the dam—foundation interface is implemented in
the context of the finite element mesh. In this study, it is assumed that the pre-existing
or newly generated fracture propagates along the dam—foundation interface plane and
the propagation criterion is dominated by the shear mode (mode II) fracture. In addition,
the dam base and its corresponding rock-foundation surfaces are assumed to contact and
separate vertically along the fractured region.

The dam side of the interface is defined as a slave surface and the foundation side
is defined as a master surface. The fracture extension starts from the heel of a dam, since
the crack initiation occurs from the heel of a dam due to the hydraulic pressure. The
contact surface is defined by the vertical direction and the horizontal direction. As shown
in Figure 2, in the vertical direction, mesh penetration between the master and slave surface
is controlled [23]. The principle of minimum total potential energy, which is the basis of the
finite element method, is applied to the dam—foundation contact model. The basic form of
the principle can be represented as:

ST =6U — W =0 (4)

where I1 is the total potential energy, U is the strain energy, W is the work done by the
external force. Equation (4) is applied to the contact constraint in the vertical direction that
controls mesh penetration. The contact constraint is formed by the Lagrange multiplier
method and virtual work as:

OIT = oph + péh ®)

where /1 is the clearance between contact interfaces, p is the pressure delivered through
the interfaces. Equation (6) shows that the pressure delivered through the interface is zero
when there is a positive clearance between the foundation (master) and dam base (slave)
surfaces. In case of zero clearance, it is defined that the foundation and dam base surfaces
are regarded as contacted and the contact pressure can be delivered through the interface
as shown in Equation (7).

h>0,p=0 (6)

h=0,p#0 @)
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Contact pressure

Any pressure possible when in contact

Zero pressure when no contact

Penetration
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Figure 2. Schematic contact pressure—clearance relationship in contact interface [23].

In the horizontal direction, the fracture progression along the dam—foundation inter-
face is modeled by the stick-slip phenomenon. The Lagrange multiplier method is applied
to the minimum total potential energy principle to enforce exact stick—slip conditions [23].
In the i-th iteration, the augmented virtual work can be expressed as:

STT = /S T + AyiAdS ®)

where T is the friction force at the interface, 7, is the sliding displacement, A is the Lagrange
multiplier, and S is the interface surface region. In the stick state, when the external shear
force T exceeds the friction force 7;, the state is changed to sliding as shown in Equation (9).
Meanwhile, Equation (10) shows that if the direction of the friction force and the direction
of sliding are opposite in the sliding state, the state is changed to stick.

T>T (9)

Ayt <0 (10)

By this mechanism, the dam—foundation model follows exact stick-slip conditions.
The relationship between stress and strain is depicted in Figure 3. Here, the critical shear
force 1,; is the sum of the cohesive forces and the frictional forces of the interface, which
is the same as the numerator in Equation (3). There is no additional sliding in the stick
state (Ay = 0). When the absolute value of an external shear force exceeds the critical shear
force, the existing state is changed to sliding.

Teri

“Teri

Figure 3. Stick-slip motion with Lagrange multiplier in Ay — 7 plane.
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3. Numerical Analysis
3.1. Finite Element Model for a Concrete Gravity Dam

To verify the validity of the proposed SSF in Equation (3) and compare it with the other
SSF formulations in Equations (1) and (2), the seismic analysis of a 70 m concrete gravity
dam is performed as depicted in Figure 4. The dam is modeled by a finite element program,
Abaqus. The model consists of 685 eight-node isoparametric plane stress elements. The
concrete properties are the elastic modulus E. = 28.1 GPa, Poisson’s ratio v = 0.12, and the
density p, = 2300 kg/m?3. The cohesive force of the concrete is suggested to be 10 percent
of its compressive strength. The compressive strength of the concrete is from 20.7 MPa to
34.5 MPa [24]. In this study, the cohesive force of the concrete dam—foundation interface
is assumed as 2.07 MPa, which is 10 percent of the minimum compressive strength. The
friction coefficients tan ¢; and tan ¢ ¢ are derived from USACE [25] and ACI [26]. According
to USACE [25], the coefficient of the internal friction tan ¢; is set as 0.7. In ACI [26], the
coulomb friction coefficient tan ¢ is prescribed as 0.6.

6m
<>
A
—Z
58.5m |
52.2m
80m
A
37.2m " HEEE J
v yh8ss’ 53.7° 2\ ¥ 400m
VIl
< >
47.13m
(a) (b)

Figure 4. Numerical model for a dam—foundation system: (a) non-overflow monolith geometry;
(b) finite element mesh.

The hydrostatic and hydrodynamic pressures are applied, and the uplift pressure is
ignored in this numerical analysis to avoid unnecessary complexity. The hydrodynamic
pressure is applied according to the simplified added-mass formulation of Westergaard [27],

defined as: ;
m = gpw hw(hw - ]/)A (11)

where m is the added mass acting as the hydrodynamic pressure, py, is the density of water,
hy is the depth of the upstream reservoir, y is the vertical height from the surface of water,
and A is the area per vertical height.

3.2. Test Cases

There are three different models used for tests, as shown in Table 1: Case 1 is the
dam-foundation single-body model, which assumes the undamaged state of the dam.
Case 2 is the dam-foundation contact model with a fixed pre-existing fractured area at the
upstream dam base, as depicted in Figure 1b. Case 3 is the dam-foundation contact model
with a pre-existing fractured area which can be dynamically propagated along its entire
dam—foundation interface to the downstream toe. In Cases 2 and 3, pre-existing fractures
at the dam base are set to consider the strong hydraulic pressure or earthquakes of the
past. The initial ratio of the fractured area to the total area of the dam base is assumed as
50 percent in Cases 2 and 3. Before being fractured, the undamaged area resists against the
external force by the shear strength of the dam—foundation interface. After being fractured,
the resistant force against the external force follows Coulomb’s friction law.
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Table 1. SSF equation, initial fractured area ratio, and progress availability for each test case.

Test Case SSF Initial Ay (%) Fracture Progress
1 Equation (1) 100 No
2 Equation (2) 50 No
3 Equation (3) 50 Yes

In Table 2, there is a list of Peak Ground Acceleration (PGA) data from the recent
strong earthquakes [28-30]. The highest PGA of an earthquake is 3 g and the lowest one is
0.5 g. In this study, two artificial earthquakes are used, in which the PGAs are 0.64 g and
0.7 g, respectively, as depicted in Figure 5. The effective duration of Artificial earthquake I
is 15 s and Artificial earthquake ITis 20 s.

Table 2. Significant high-PGA earthquakes.

]

Name Country Year Magnitude PGA (g)
Kaikoura New Zealand 2016 7.8 3
Tohoku Japan 2011 9.0 2.7
Canterbury New Zealand 2010 7.1 1.26
Kobe Japan 1995 6.8 0.8
Chile Chile 2010 8.8 0.78
Athens Greece 1999 6.0 0.6
Zarand Iran 2005 6.4 0.51
Haiti Haiti 2010 7.0 0.5
+ i 8 10 12 14
Time (s)
(a)
4 6 8 10 12 14 16 18 2.0

Time (s)

(b)

Figure 5. Artificial earthquake accelerations: (a) Artificial earthquake I, PGA = 0.64 g; (b) Artificial
earthquake I, PGA =0.7 g.
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3.3. Response Results

In Figure 6, horizontal crest displacement of the upstream side from the bottom of
the dam and the sliding displacement in Case 3 are shown when the dam is subjected to
Artificial earthquakes I and II. Positive values indicate the downstream direction. Since
the dam—foundation interfaces are fixed in Cases 1 and 2, the crest displacement and stress
distributions of Cases 1 and 2 are mostly identical. However, the SSFs in Cases 1 and 2 are
different, and this is described in Section 4.

E —Case |
=] ] —Case 3
S s |
AN AN - un oL
2 o ' ‘ , \ ‘ l' ’ ' T ' w
f L |
2 |
w
-4
]
10
2 4 6 8 10 12 14
Time (s)
05y
o4
2
503
£02
o
201
@
0
0 2 4 6 8 10 12 14
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(a)
_ 107
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E s ‘ l | ‘ | ‘ — Case 3
] tll { I "Il‘l‘l | ||l‘ 1N
i, IR A LA A
g |
] | .
g
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Figure 6. Horizontal crest displacements in Cases 1 and 3, and sliding displacements at heel and toe
in Case 3: (a) subjected to Artificial earthquake I; (b) subjected to Artificial earthquake II.

There is a difference in the crest displacement between Cases 1 and 3 due to the
progressive fractured area. There is no sliding in Case 1, whereas the sliding behavior is
included in Case 3. When the sliding behavior is observed, the energy dissipation caused
by the sliding friction occurs. The crest displacement in Case 3 is affected by the energy
dissipation and its amplitude of the crest displacement is relatively smaller than the crest
displacement of Case 1 when the sliding behavior is observed. While the sliding behavior is
not observed, the crest displacement in Case 3 is mostly identical to the crest displacement
in Case 1. Relative displacement contours from the bottom of the dam in Cases 1 and
3 when the largest sliding displacement is observed are shown in Figure 7. According
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to Figure 7, the sliding behavior affects the overall crest displacement. The overall crest
displacement in Case 1 is larger than the crest displacement in Case 3. Also, the difference
in the stress distribution can be observed in Figure 8, which depicts the tensile principal
stress distribution in Cases 1 and 3. Compared with Case 1, the overall principal stress
values in Case 3 are smaller due to energy dissipation from the sliding.

Displacement {m)
2 30%1073
2.10x1073
1.90% 1073
1.70x1073

Displacement {m)
0

—3.00%1074
~6.00x1074
_9.00x107%
—1.20%1073
~150x1073
—1.80%1073
—2.10%107%
—240%1073
—2.70%107%
—3.00%107%
_3.30%1073
_3.60%1073

()

Displacement {m)
2.30x 1073
2.10x1073
1.90x1073
1.70%1073
1.50%1073
L40x1073
1.20%1073
1.00x1073
01074
oox 1074
oox1074
2.00x1074
0

Displacement {m)
0

_3.00x1074
~6.00x10~%
—9.00x107%
—L20x 1073
_L50x 1073
—180x1073
—2.10x107
—2.40x1073
—2.70 107
~3.00x1073
_3.30x107%
_3.60x1073

(b)

(d)

Figure 7. Horizontal displacement contours, relative to the dam base, when the largest sliding
displacements are observed: (a) Case 1 subjected to Artificial earthquake I (t = 3.76 s); (b) Case 3
subjected to Artificial earthquake I (t = 3.76 s); (c) Case 1 subjected to Artificial earthquakeII (t = 1.86 s);
(d) Case 3 subjected to Artificial earthquake II (t = 1.86 s).
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Stress, Principal (Pa) Stress, Principal (Pa)
7.47x10° 7.47x10°
5.55x10° 5.55x10%
3.62x10° 3.62x10%
1.70x105 1.70x10%
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~2.16x10° ~2.16x10°
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(c) (d)

Figure 8. Tensile principal stresses contours when the largest sliding displacements are observed:
(a) Case 1 subjected to Artificial earthquake I (t = 3.76 s); (b) Case 3 subjected to Artificial earthquake I
(t=3.76 s); (c) Case 1 subjected to Artificial earthquake II (t = 1.86 s); (d) Case 3 subjected to Artificial
earthquake II (t = 1.86 s).

Sliding is the main source of nonlinearity in this study, since the effects of the rocking
and the deformation at the bottom of the dam on the sliding behavior of a concrete dam are
negligible compared to the effect of the base sliding [31,32]. In Figure 6, it can be observed
that sliding displacements at the heel and toe of the dam are nearly identical and coincide
with each other in the plot. Hence, it is justified that the rocking and the local deformation
of the bottom of a dam can be ignored in sliding analysis.

4. SSF Evaluation

In Figures 9 and 10, reciprocal values of the SSF and the lowest SSF (or highest
reciprocal of SSF) point at each test case are shown when the dam model is subjected to
Artificial earthquakes I and II. In this study, the reciprocal of the SSF is used in the plot
rather than SSF values in order to avoid unimportant high peak values of the SSF generated
by the nearly zero external shear force. The red dashed line denotes where the SSF is unity,
which indicates the threshold for sliding of a dam structure.
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Figure 9. Cont.
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Figure 9. Reciprocal of SSF subjected to Artificial earthquake I: (a) Case 1 (SSF at A = 2.070); (b) Case
2 (SSF at B = 1.548); (c) Case 3 (SSF at C = 0.413).
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Figure 10. Reciprocal of SSF subjected to Artificial earthquake II: (a) Case 1 (SSF at A = 2.227);
(b) Case 2 (SSF at B = 1.658); (c) Case 3 (SSF at C = 0.442).

In Case 1, the cohesive force is applied to the overall dam—foundation interface.
In Case 2, the cohesive force is only applied to the undamaged area. In Case 3, the
cohesive force is also applied to the undamaged area, and when the SSF is below unity, it is
considered that the dam—foundation interface is fractured, and the cohesive force decreases
to zero. In Figure 9, the lowest SSF of Case 1 is 2.070, Case 2 is 1.548, and Case 3 is 0.413,
while in Figure 10, the lowest SSF of Case 1 is 2.227, Case 2 is 1.658, and Case 3 is 0.442.
The SSF of Case 3 is relatively lower than Cases 1 and 2, since, in the newly fractured
region during the fracture propagation, the cohesive force is considered to be zero, the
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coefficient of the internal friction changes to the coulomb friction coefficient, tan ¢ £ and
consequently, the friction force and SSF decrease. Depending on the ratio of the fractured
area, the resistant force against the external force highly changes.

According to the results in Table 3, for both artificial earthquakes, the minimums of
the SSF in Case 2 are about 75 percent of those in Case 1. Furthermore, the minimums of the
SSF in Case 3 show much smaller values, about 20 percent of those in Case 1. Considering
that partial fractures at a dam base can exist due to the hydraulic pressure acting at the
upstream heel and/or past earthquakes, the SSF in Equation (1), which is widely used as
a sliding criterion, significantly overestimates the sliding stability of a dam. It is noted
that Cases 1 and 2 show safety satisfaction if unity is used for the safety factor threshold,
while only Case 1 passes the sliding safety condition if the safety factor becomes two. The
SSF formulation, Equation (3), used in Case 3 produces no satisfaction for the unity safety
threshold, which means the other two SSFs possibly result in incorrect judgements on
sliding safety.

Table 3. Minimum SSF values for test cases and their ratios.

Artificial SSF
Earthquake Case 1 Case 2 Case 3 Case 2/Case 1 (%) Case 3/Case 1 (%)
1 2.070 1.548 0.413 74.78 19.95
II 2.227 1.658 0.442 74.50 19.85

5. Discussion

In this study, it is verified that considering the fractured area and its progressive
modeling at the dam—foundation interface is crucial in the sliding safety evaluation of a
concrete gravity dam. In the numerical analysis study, the conventional formulation of
the SSE, in which the fractured area is not represented at all, shows extremely overesti-
mated sliding safety judgements when a dam is subjected to strong earthquakes. This
SSF formulation results in about five times safer side values than those evaluated by the
newly suggested SSF formulation with initial and progressive fractures, which is based on
a more realistic fracture-progress model. The so-called improved SSF formulation, with
the fixed fractured area and simplified computation of the vertical force at the fractured
area, also shows more than three times safer side values than those by the suggested SSF
formulation. Consequently, it can be observed that those existing SSF formulations could
provide wrongfully safe judgements on sliding stability checks, which implies that those
SSFs possibly exaggerate the sliding safety of dams.

From the numerical simulation, it is shown that the proposed contact-sliding model
can reproduce fracture propagation along the dam—foundation interface, which is expected
during strong earthquake ground motions, including the two artificial earthquakes used in
the present numerical study. In the simulation results, the progressive fracture propagation
realistically starts and stops according to the intensity of ground motions. It was observed
in the simulation that the concrete gravity dam, subjected to a strong earthquake, slides
monotonically toward the downstream due to the reservoir hydrostatic pressure. It is also
noted that the fracture rapidly propagates through the entire interface immediately after the
dam starts to slide. From these observations, it can reasonably be deduced that it is essential
to use an appropriate contact-sliding model for the fracture propagation in an accurate
evaluation of the sliding safety for concrete gravity dams. Otherwise, the shear resistance
capacity against sliding can become significantly overestimated, as aforementioned in this
section. The newly suggested SSF with the proposed contact-sliding model for the dam—
foundation interface shows more accurate and conservative sliding safety evaluation results
compared to the two existing conventional SSF formulations, since the degradation of the
overall shear strength along the dam—foundation interface can be realistically represented
in the dam—foundation model and its SSF evaluation.
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Although, in this study, the uplift pressure acting along the interface fracture is ignored
to avoid complexity, its effects on the SSF evaluation can be significant. The uplift force
reduces the vertical forces, which results in weakening the frictional shear resistance forces.
Additionally, it can cause mode I fracture propagation with other upward forces acting
on the dam body. Since the dynamic distribution of the uplift pressure and its effect on
the mode I and/or mixed mode fracture of a concrete dam-foundation interface are quite
different from the static one, they remain undergoing research topics, and their impacts on
the SSF evaluation should be addressed in a future study.

6. Conclusions

In the present study;, it is suggested to use the Sliding Safety Factor (SSF) while
considering pre-existing and progressive fractures along the dam foundation to evaluate
the sliding safety of a concrete gravity dam subjected to strong earthquakes. In order to
use the suggested SSF, it is necessary to implement an appropriate contact and sliding
model in the dynamic earthquake analysis, like the one described in this study. This
newly suggested SSF with the proposed contact-sliding model provides more realistic and
accurate sliding safety factors by considering fracture progression. As a result, it can help
avoid suppositional and ambiguous safety factor criteria in dam safety judgements, which
will contribute to advances in concrete gravity dam design and evaluation technology. It is
also suggested that if the conventional SSF formulation, or its simply improved version,
is unavoidably used for a safety analysis, the safety judgement must be made cautiously,
taking into account the possibility and impact of fracture progression.

In the current study;, it is assumed that the fracture at the dam—foundation interface
moves along the interface plane and that the fracture propagation is dominated by the
shear force, for simplicity. Although this assumption still gives reasonable and practical
results, further studies are needed that include the tensile mode fracture, as well as the
shear mode fracture and more general fracture propagation surfaces other than simple
planes into the SSF evaluation. Moreover, in order to validate and enhance the suggested
model, on-site measurement studies for the sliding displacement of concrete gravity dams
subjected to strong ground motions are desirable in future research.
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