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Abstract: This paper proposes a new neural machine translation model of electrical engineering that
combines a transformer with gated recurrent unit (GRU) networks. By fusing global information
and memory information, the model effectively improves the performance of low‑resource neural
machine translation. Unlike traditional transformers, our proposed model includes two different
encoders: one is the global information encoder, which focuses on contextual information, and the
other is thememory encoder, which is responsible for capturing recurrent memory information. The
model with these two types of attention can encode both global and memory information and learn
richer semantic knowledge. Because transformers require global attention calculation for each word
position, the time and space complexity are both squared with the length of the source language
sequence. When the length of the source language sequence becomes too long, the performance of
the transformerwill sharply decline. Therefore, we propose amemory information encoder based on
the GRU to improve this drawback. Themodel proposed in this paper has amaximum improvement
of 2.04 BLEU points over the baseline model in the field of electrical engineering with low resources.

Keywords: neural machine translation; memory information; gated recurrent unit; electrical
engineering; low resource

1. Introduction
With the rapid development of the information age, virtual connections across various

fields around the world have been established through the internet [1]. The application
of various scientific fields has gradually increased, and communication between different
fields has become more frequent. The language barrier between different scientific fields
has become a bottleneck for academic communication, which has greatly hindered the
development of technology. Machine translation is a field in natural language processing,
which is defined as the process of translating words, sentences, paragraphs, and entire
texts from one language to another [2], and it plays a crucial role in the development of
various scientific fields.

In 2013, Nal Kalchbrenner and Phil Blunsom proposed a new end‑to‑end
encoder–decoder structure for machine translation, which gave rise to neural machine
translation [3]. In the following years, recursive neural networks [4], convolutional neural
networks [5], and transformers [6] were successively proposed, among which the trans‑
formers have the most comprehensive performance and have become the focus of many
researchers in recent years.

Research has shown that transformers have achieved great success on large corpora,
but their performance is relatively poor on language pairs with limited training data (also
known as low resource) [7]. The main reason for this phenomenon is that models trained
on general corpora cannot correctly translate specialized semantics in some specific fields,
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and the same word often has vastly different meanings in different fields. Therefore, de‑
signing suitable neural machine translation models for specific fields is extremely neces‑
sary. This paper focuses on English‑to‑Chinese translation in the field of electrical engi‑
neering, which is a typical low‑resource neural machine translation task. Many scientific
fields require the application of knowledge related to electrical engineering, and design‑
ing a translation model that is adapted to the field of electrical engineering can facilitate
academic communication between different countries and promote technological develop‑
ment. Considering that the traditional transformer may result in ambiguity when translat‑
ing complex sentences with strong specialization, this paper proposes a memory informa‑
tion encoder to improve this situation.

The main contributions of this paper are as follows:
In order to optimize the performance of the transformer in translating complex sen‑

tences and compensate for its weakness in capturing long‑term dependencies in language
sequences, a new encoder structure is proposed by combining a GRU with an attention
mechanism and integrating it into the model structure. This effectively improves the trans‑
lation quality and enhances the translation performance of the model.

Different fusion methods are explored and analyzed to find the most suitable fusion
method for memory information and global information.

Ablation experiments are designed to investigate the impact of key components on
themodel’s performance. Comparative experiments are also designed to test the proposed
model on a dataset in the field of electrical engineering and compare it with baseline mod‑
els and other advanced models under the same experimental conditions, proving the su‑
perior performance of the proposed model.

2. Related Works
Low‑resource neural machine translation has long been an area of interest in natural lan‑

guage processing, and many researchers have made significant efforts to address this prob‑
lem. Common improvement methods include data augmentation, introducing prior knowl‑
edge, and structural improvements. Tonja used monolingual source‑side data to improve
low‑resource neural machine translation and achieved significant results on the Wolaytta–
English corpus [8]. Mahsuli, MM proposed a method of modeling based on the length of
the target sentence to improve Arabic‑to‑English translation [9]. Pham, NL; Nguyen, V; and
Pham, TV used back‑translation to enhance the parallel database of English–Vietnamese ma‑
chine translation, significantly improving the translation quality of the model [10]. Laskar,
SR improved English–Assamesemachine translation through pretrainingmodels and applied
the pretrainedmultilingual context embedding alignment technology to themodel, achieving
good results [11]. Park, YH enhanced low‑resource neural machine translation data through
EvalNet and used data augmentation techniques to evaluate data quality [12]. While these
methods have achieved good results, they often require significant time and cost in the data
preprocessing stage and have certain drawbacks.

Dhar, P introduced bilingual dictionaries to improve Sinhala–English, Tamil–English,
and Sinhala–Tamil translation, and introduced a weighted mechanism based on small‑
scale bilingual dictionaries to improve the measurement of semantic similarities between
sentences and documents [13]. Gong, LC achieved good results on several low‑resource
datasets by guiding self‑attention with syntactic graphs [14]. Hlaing, ZZ added an ad‑
ditional encoder to the transformer to introduce part‑of‑speech tagging, improving Thai‑
to‑Myanmar, Myanmar‑to‑English, and Thai‑to‑English translation [15]. By assisting the
transformer in learning from the corpus through prior knowledge, the translation model
can learn more accurate and rich semantic knowledge during continuous training, thereby
improving the accuracy of the translation results. However, the process of annotating and
extracting prior knowledge from the corpus is complex and difficult, and integrating prior
knowledge into the transformer often results in information incompatibility. Therefore,
the focus of this paper is on structural improvements, attempting to integrate gated recur‑
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rent units to extract memory information from the data during training and avoid infor‑
mation disorder.

3. Methods
This paper improves upon the baselinemodel transformer proposed byAshishVaswani

in 2017. The improved model consists of five parts: input layer, memory information en‑
coder, global information encoder, decoder, and output layer. Compared with the tra‑
ditional transformer, it can integrate the memory information from different time steps,
capturing the complete past and future context information at the current time step in the
input sequence, which makes up for the drawback of the transformer’s inability to handle
longer sequences. The global information encoder and decoder both consist of i = 6 iden‑
tical layers stacked together, and the memory information encoder is also stacked with N
identical layers. Absolute position encoding is used to obtain positional information for
the source and target languages.

The improved model is shown in Figure 1. To ensure that memory information can
be integrated into the transformer in a highly adaptive manner, we propose a memory in‑
formation encoder based on the GRU [16] and integrate it into the right side of the global
information encoder. In addition, we add a multi‑head attention mechanism to the de‑
coder unit to receive the output from the memory information encoder so that memory
information and global information can be fused in the vector fusion layer.Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 15 
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Themain advantage of the transformerwith fusion ofmemory information compared
with other models is that it can directly extract memory information from the source lan‑
guage sequence through the memory information encoder without the risk of information
incompatibility in the subsequent fusion process. If we first extract the memory informa‑
tion from the original corpus and then fuse it into the transformer, information disorder
and incompatibility may occur during the fusion process, which not only wastes time but
also has a negative impact on the model’s performance. To maximize the model’s perfor‑
mance, we propose four different fusion methods in Section 3.4 of the paper and conduct
experiments and analysis on different fusion methods in Section 4.2, selecting the most
suitable fusion method for integrating global and memory information.

3.1. Global Information Encoder
Each encoder consists of two sublayers: an attention layer and a feed‑forward neural

network. Both sublayers have residual connections and normalization for data regular‑
ization. The global information encoder takes Si−1 as the input vector, performs a global
self‑attention calculation on it (Equation (1)), integrates the extracted global information
with the source language passed through residual connections, and then performs normal‑
ization (Equation (2)):

Ssel f−attention = Multihead(Si−1, Si−1, Si−1) (1)

Sout = Addnorm(Ssel f−attention + Si−1) (2)

Si−1 represents the output of the i‑th layer of the encoder. Each layer uses the out‑
put of the previous layer as the input of the next layer. The input of the first layer of the
encoder is the source language after embedding and encoding. Multihead() represents
the multi‑head attention mechanism, and Addnorm() represents the residual connection
and normalization.

3.2. Memory Information Encoder
The reason for building the memory information encoder on the basis of the GRU is

that it not only can extract memory information but also has a simpler model structure and
fewer model parameters. Compared with long short‑term memory (LSTM) networks, the
GRU consists of only an update gate and a reset gate, which can store memory informa‑
tion of longer sequences and not clear it over time. This mechanism can complement the
transformer reciprocally, enabling the improved model to effectively learn memory infor‑
mation. The memory information encoder consists of a reset gate, an update gate, and an
attention layer, with an internal structure as shown in Figure 2.
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3.2.1. Update Gate
The reset gate captures the memory information of the source language in a short pe‑

riod, determining how to combine new input information with previous memory informa‑
tion. If the reset gate is closed, historical information will be ignored to prevent irrelevant
information from affecting future outputs. The update gate adds the linearly transformed
si−1

t and ht−1, and applies an activation function for a nonlinear mapping, compressing the
result between 0 and 1 (Equation (3)),

Zt = Sigmoid(W(z)st + W(z)ht−1) (3)

where st represents the input vector at time step t, and it undergoes a linear transformation
(multiplied by the weight matrix W(z)); ht−1 represents the information from the previous
time step of t − 1, which also undergoes a linear transformation; Sigmoid represents the
activation function; and Zt is the gating coefficient of the update gate, which controls the
flow of memory information.

3.2.2. Reset Gate
The update gate defines the amount of previously stored memory at the current time,

which extracts memory information over a longer period, controls the influence of histori‑
cal information on the current time output, and passes the long‑termmemory information
down. The calculation process of the reset gate is similar to that of the update gate, except
that the parameters of the linear transformation (weightmatrix) are different (Equation (4)),

Rt = Sigmoid(W(r)si−1
t + W(r)ht−1) (4)

where Rt is the gate coefficient of the reset gate, which determines the forgetting and re‑
tention of information. For example, if the gate value corresponding to an element is 0, it
means that the information of this elementwill be completely forgotten. The st and ht−1 are
multiplied, respectively, by the weight matrixes W and U. The Rt undergoes a Hadamard
operation with the linearly transformed ht−1 to determine the current information that
needs to be retained and the historical information that needs to be forgotten. The update
gate adds the results of these two parts, and then applies a hyperbolic tangent activation
function to nonlinearlymap the addition result, obtaining the currentmemory information
h′t (Equation (5)),

h′t = tanh(Wst + Rt ⊙ Uht−1) (5)

where⊙ represents theHadamardproduct. Then, zt and (1− zt) are separatelyHadamard‑
multiplied with ht−1 and h′t, respectively, to obtain the memory information retained from
the previous time step t and the memory information retained from the current time step
t, which are both kept until the final time step. Finally, these two parts of information are
added to obtain the final integrated memory information h′t (Equation (6)):

ht = zt ⊙ ht−1 + (1 − zt)⊙ h′t (6)

3.2.3. Attention Layer
The attention layer consists of multiple attention mechanisms and normalization lay‑

ers, which enable themodel to fully learn the dependency relationship ofmemory informa‑
tion at different times through the attention calculation process, ensuring that the model
can obtain compatible memory information.

After obtaining thememory information, it undergoes an attention calculation through
amulti‑head self‑attentionmechanism. The resulting attentionweights are thenmultiplied
by the memory information and summed up to obtain the attention output. The attention
output is then added to the output of the residual network to obtain the result of the mem‑
ory information encoder (Equation (7)),

Mmemory−attention = Multihead(ht, ht, ht) (7)
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Mout = Addnorm(Mmemory−attention + ht) (8)

where Mmemory−attention represents the output of the multi‑head self‑attention mechanism,
and Mout represents the output of the memory information encoder.

3.3. Decoder
Because the memory information needs to be fed into the decoder, a multi‑head at‑

tention mechanism needs to be added to the original decoder structure to receive the out‑
put from the memory information encoder. In addition, a vector fusion layer needs to be
added after the attention layer for the fusion of global andmemory information. Therefore,
the improved decoder consists of four parts: a masked self‑attention sublayer, an attention
sublayer composed of a context‑decoder andmemory‑decoder, a vector fusion layer, and a
fully connected feed‑forward network sublayer. The internal structure ofmasked‑decoder,
encoder‑decoder, and memory‑decoder is the same, and they all use dot product for cal‑
culation. The main difference lies in the query vector Q, key vector K, and value vector V.

Themasked‑decoder is responsible for learning the dependency relationship between
the target language sequences and preparing for the association between the target lan‑
guage andmemory information/global information. The maskmechanism inside is to pre‑
vent the overfitting caused by the model using the results of the previous decoder round
during training. Because the masked‑decoder performs attention calculation only on the
target language, its Q, K, and V vectors are Ti−1, and the calculation process is as follows:

TMasked−Decoder = Addnorm(MaskedMultihead(Ti−1, Ti−1, Ti−1)) (9)

Ti−1 represents the output of the i‑th layer of the decoder, and for each layer, the
output is the previous layer of the decoder. MaskedMultihead() represents the masked
attention mechanism.

In the encoder‑decoder, the output of themasked self‑attention sublayer is used as the
Q vector, the output of the global information encoder is used as the K and V vectors, and
through the attention calculation process, the model learns the dependency relationship
between the target language sequence and the source language sequence during training,
further establishing the contextual information correlation:

TEncoder−Decoder = Addnorm(Multihead(Tsel f−decoder, Sout, Sout)) (10)

The main function of the memory‑decoder is to receive the output from the mem‑
ory information encoder, establish the association between the memory information and
the target information through the attention mechanism, and ensure that the model can
learn semantic knowledge containingmemory information during training. Therefore, the
memory‑decoder uses the output of the masked attention sublayer as the Q vector and the
output of the memory information encoder as the K and V vectors, and the specific calcu‑
lation process is as follows:

TMemory−Decoder = Addnorm(Multihead(Tsel f−decoder, Mout, Mout)) (11)

3.4. Fusion Method
After obtaining the decoded global information TEncoder−Decoder and the memory in‑

formation TMemory−Decoder, the two types of decoded information need to be fused in the
fusion layer. This article compares and selects four fusion methods, including attention fu‑
sion, balance coefficient fusion, concatenation fusion, and arithmetic average fusion, and
selects the most effective one as the final fusion method for the model. The following
sections analyze these four fusion methods, and the final experimental results are shown
in Table 1.
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Table 1. BLEU scores for different fusion methods.

Model BLEU/% σ

Baseline 34.25 –
  Our + mean 35.48 1.23↑
  Our + gate 35.82 1.57↑
  Our + attention 35.18 0.93↑
  Our + cat 36.29 2.04↑

where: σ = (BLEU value of our model—BLEU value of baseline model) × 100; “Our” represents our model; and
“mean”, “gate”, “attention”, and “cat” represent arithmetic average fusion, gate fusion, attention fusion, and
concatenation fusion, respectively.

3.4.1. Attention Fusion
The attention mechanism in deep learning is a method that imitates the human vi‑

sual and cognitive systems, allowing neural networks to focus on relevant parts of the
input data. The basic idea of the attention mechanism is that each element in the sequence
data can establish a relationship with other elements in the sequence, not just rely on
adjacent elements:

Fattention = Addnorm(MultiHead(TEncoder−Decoder, TMemory−Decoder, TMemory−Decoder)) (12)

Using the attention mechanism to fuse global information and memory information
can allow themodel to assign different weights to different positions of the input sequence,
adaptively capture the dependency relationship between global information and memory
information by calculating the relative importance between elements, and obtain the most
important semantic information. Setting the Q vector in the multi‑head attention mecha‑
nism as TEncoder−Decoder, and the K and V vectors as TMemory−Decoder, the attention calcula‑
tion is performed to obtain the fused vector.

3.4.2. Gate Fusion
Influenced by previous works [17–19], first, TEncoder−Decoder and TMemory−Decoder are

concatenated along the last dimension of TEncoder−Decoder. Then, the Sigmoid function is
used to normalize them and obtain the gate coefficient y. W∂t and b∂t are parameters, and
y is a number between 0 and 1.

y = Sigmoid(W∂t([TEncoder−Decoder : TMemory−Decoder] + b∂t),dim = −1) (13)

Finally, a simpleweightedoperation is performedonTEncoder−Decoder andTMemory−Decoder
to obtain the fused vector of the fusion layer,

Fgate = y ∗ TEncoder−Decoder + (1 − y) ∗ TMemory−Decoder (14)

3.4.3. Concatenation Fusion
Concatenation fusion is a relatively simple process. Mout is concatenated along the

last dimension of Sout, and then a linear layer is used to process the concatenated vector’s
dimension to prevent it from affecting the subsequent calculation process:

Fcat = W(cat([TEncoder−Decoder : TMemory−Decoder],dim = −1)) (15)

where W() represents the linear layer used to process and update the parameters’ dimen‑
sions, and cat() represents the concatenation fusion, with “b” concatenated along the
last dimension.

3.4.4. Arithmetic Average Fusion
Arithmetic average fusion is amethod that takes the arithmeticmean of TEncoder−Decoder

and TMemory−Decoder to obtain the fused vector. This method can make the calculation re‑
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sults smoother and reduce the overfitting phenomenon. Considering that global informa‑
tion and memory information should be fused with an appropriate and uniform propor‑
tion, in this section, the means of the output from the six layers of the global information
encoder and the means of the output from the two layers of the memory information en‑
coder are fused, and the calculation results are as follows:

Smean =
TEncoder−Decoder

6
(16)

Mmean =
TMemory−Decoder

6
(17)

Fmean = Cat(Smean : Mmean,dim = −1) (18)

where Smean represents themean of TEncoder−Decoder, TMemory−Decoder represents themean of
the memory information, and Fmean represents the result of the arithmetic average fusion
of Sout and Mout.

4. Experiment
In this part, we conducted experiments and research about the models proposed in

this paper on the Chinese–English parallel corpus in the field of electrical engineering.

4.1. Dataset and Parameter Settings
As this article focuses on low‑resource neural machine translation in the field of elec‑

trical engineering, the data used in the experiment must have strong specificity and pro‑
fessionalism. Therefore, we collected 190,000 parallel bilingual corpora from professional
books [20–23], equipment manuals, references, and related papers in the relevant field as
the dataset for the experiment.

We used the open‑source system OpenNMT [24] to implement the baseline model
transformer. Regarding data preprocessing, we limited the sentence length in the corpus
to within 100, meaning that sentences longer than 100 were filtered out. The vocabulary
size of both the source and target languages was set to 44,000. Jieba and NLTK were used
for Chinese and English word segmentation, respectively. The training and testing sets
each contained 2000 pairs of bilingual parallel sentences. During the training process, the
word vector dimension and the hidden layer dimension of the encoder and decoder were
set to 512, the batch size was set to 64, the Adam optimization algorithmwas used, and the
dropout probability of the neurons was set to 0.1. A total of 25,000 steps was trained in this
experiment, and the model was validated every 1000 steps. The beam search method was
used during decoding, with a beam size of five and the remaining parameters using the
default settings of OpenNMT. All parameters in the experiment were consistent, and the
translation results were evaluated using BLEU [25]. The input and output channels of the
GRUwere both set to a dimension of 512. This means that the input and output vectors are
both 512‑dimensional, ensuring consistency and compatibility. The choice of this dimen‑
sionwas based on experimental considerations and the specific requirements of ourmodel
architecture. The number of layers in the GRUwas kept consistent with the number of lay‑
ers in the encoder. This ensured that the information flow and transformations between
the layers remained synchronized throughout the model. The activation functions used
for the update gate and reset gate in the GRU were sigmoid and tanh, respectively. The
sigmoid function was employed to calculate the update gate, which determines howmuch
of the previous hidden state should be retained, while the tanh function was utilized for
the reset gate, which controls how much of the previous hidden state should be forgotten.

4.2. Impact of Fusion Methods
To select the most suitable fusion method for the GRU, we experimented with mod‑

els using concatenation fusion, gate fusion, attention fusion, and arithmetic average fu‑
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sion, and compared them with the baseline model. The experimental results are shown
in Table 1, and the column chart of training data of different fusion methods is shown in
Figure 3. (The horizontal axis represents the training rounds, while the vertical axis repre‑
sents the BLEU value.)
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Figure 3. The bar chart of training data.

The baseline model achieved a BLEU score of 34.25, whereas all the models incor‑
porating memory information achieved higher scores. The concatenation fusion method
had the highest BLEU score of 36.29, which is 2.04 points higher than the baseline. The
arithmetic average fusion, gate fusion, and attention fusion methods also outperformed
the baseline model, but to a lesser extent.

These results suggest that incorporating memory information into the transformer
model can improve translation performance, and themost effectiveway to do so is through
concatenation fusion. Through our exploration and analysis, we believe that the reason
for this result may be that the other three fusion methods may lose some useful informa‑
tion when fusing global information and memory information. Arithmetic average fusion
loses some information when calculating the means of the two types of information. Gate
fusion loses informationwhen controlling and selecting the incoming information through
the gate coefficient. Attention fusion discards some information based on the weight of the
memory information vector. Concatenation fusion concatenates the memory information
vector directly to the last dimension of the global information vector, reducing the possi‑
bility of losing information. Therefore, the model using the concatenation fusion method
has better performance than the other three models.

4.3. Ablation Experiment
To demonstrate the effectiveness of the memory information, we conducted an abla‑

tion experiment on models with memory information encoders of different depths, and
the experimental results are shown in Table 2.

Table 2. BLEU scores for models with memory information encoders of different depths.

Model BLEU/% σ

Baseline 34.25 –
Our methods‑layer = 1 34.66 0.41↑
Our methods‑layer = 2 34.82 0.57↑
Our methods‑layer = 3 35.07 0.82↑
Our methods‑layer = 4 35.48 1.23↑
Our methods‑layer = 5 35.93 1.68↑
Our methods‑layer = 6 36.29 2.04↑
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The results are shown in Figure 4 and demonstrate that the BLEU score increases
with the number of layers in the memory information encoder, reaching a maximum of
36.29 when themaximum number of layers is used. This suggests that incorporatingmem‑
ory information into the transformer model can improve translation performance. These
results also highlight the importance ofmemory information in the transformermodel and
support the effectiveness of the proposed method for incorporating memory information
through integrating the memory information encoder.
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Figure 4. The curve plot of the BLEU value.

4.4. Comparative Experiment
To further demonstrate the effectiveness of our method, we conducted comparative

experiments with baseline models, vector fusion [26], and key information fusion [27] on a
dataset in the field of electrical engineering. The experimental conditions were kept consis‑
tent, and the results are shown in Table 3 and the translation samples are shown in Table 4.

Table 3. BLEU scores for comparative experiment.

Model BLEU/% σ

Baseline 34.25 –
Vector fusion 35.83 1.49↑

Key information fusion 34.97 0.72↑
Our methods 36.29 2.04↑

Vector fusion: proposed in 2023 by Hong Chen et al., this method improves low‑
resource neural machine translation by using weight fusion.

Key information fusion: proposed in 2023 by Shije Hu et al., this method uses a dual
encoder structure to integrate key information from the text into the transformer, thereby
improving its performance.

Based on the experimental results provided, it appears that the proposedmethod out‑
performs the baseline and the other two comparative methods, vector fusion and key in‑
formation fusion. The baseline method achieved an accuracy of 34.25, while the vector
fusion achieved an accuracy of 35.83, an improvement of 1.49. The key information fu‑
sion achieved an accuracy of 34.97, an improvement of 0.72. In contrast, the proposed
method achieved the highest accuracy of 36.29, an improvement of 2.04 compared with
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the baseline. These results suggest that the proposed method is more effective than the
other methods in improving the performance of the model on the given dataset in the field
of electrical engineering.

Table 4. Translation samples.

Source text
A design based on a microcontroller for a digital pulse counting module
and digital display module was developed, and a design proposal for the
hardware circuit and software program of the instrument was presented.

Reference 设计了基于单片机的数字脉冲计数模块和数字显示模块，并提出了该
仪表的硬件电路和软件程序的设计方案。

Translation of our model

设计了基于单片机的数字脉冲计数和数字显示模块，提出了该电表的硬件电路和软件程序的设计方案。

Translation of Vector fusion

在单片机的基础上设计了数字脉冲计数和数字显示模块，给出了该电表的硬件和软件的设计。

Translation of Key information fusion

设计了关于单片机的数字脉冲计数器和数字显示板块，提出了该电表的硬件和软件程序的电路设计。

4.5. Experimental Analysis
Based on the analysis of the results from the ablation experiments, fusion method

experiments, and comparative experiments, the following conclusions can be drawn:
Concatenation fusion is the most suitable fusion method among the four fusion ap‑

proaches for the proposed method in this paper. It minimizes the loss of information dur‑
ing the fusion of global andmemory information, enabling the transformer to obtain more
rich and beneficial semantic information.

Memory information is beneficial for the translation task of the transformer. It helps the
transformer learn sequence information from different time steps, strengthens the model’s
understanding of dependencies between sequences, and improves the overall performance of
the model.

Compared with the vector fusion model and the key information fusion model, the
proposed model in this paper demonstrates superior performance on electrical engineer‑
ing datasets. It further assists the transformer in translating specialized electrical language
into the corresponding target language. The results of both the ablation experiments and
the comparative experiments prove that the transformer integrated with the memory in‑
formation encoder can achieve further improvements in translation accuracy with the help
of memory information.

Overall, the integration of the memory information encoder into the transformer en‑
hances its performance, particularly in the domain of electrical engineering datasets. It
enables the transformer to capture and utilize memory information effectively, leading to
improved translation accuracy.

5. Conclusions
To address the poor performance of the transformer model on electrical engineering

datasets, this paper proposes a memory information encoder based on the GRU and in‑
tegrates it into the overall structure of the transformer. The GRU is capable of extracting
memory information from the source language sequence, and the attention mechanism
learns from the extracted information. By combining the advantages of the GRU and the
attention mechanism, the improved model enhances its performance and compensates for
the baseline model’s weakness in translating complex and lengthy sentences.

To ensure that the transformer can effectively fuse global and memory information
in the fusion layer of the decoder, this paper explores and analyzes four fusion methods.
Ultimately, the concatenation fusion method is selected as the fusion approach for global
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and memory information, laying a solid foundation for the model to acquire richer se‑
mantic knowledge. The results of the ablation experiments demonstrate that the model
integrated with the memory information encoder improves the translation quality of the
transformer and steadily enhances the model’s performance. The results of comparative
experiments further validate the effectiveness of the proposed method, showing that the
model proposed in this paper is not inferior to the comparative models.

The experimental results confirm the effectiveness of the proposedmethod andmodel,
achieving amaximum improvement of 2.04 percentage points in the BLEU score compared
with the baseline model on electrical engineering datasets. Compared with other methods,
integrating memory information into the transformer ensures that the extracted memory
information is compatible and complementary to the global information, saving time and
effort required for data processing.

Author Contributions: Research conceptualization and model building: Z.L.; Data collection: Z.L.,
Y.C.; Experiment design: Z.L., Y.C., J.Z.; Manuscript preparation: Z.L.; Manuscript review: Z.L.,
Y.C., J.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This researchwas funded by J.Z., grant number U2004163, and the APCwas funded by J.Z.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Datasets are not published. Please contact the author if necessary.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Karyukin, V.; Rakhimova, D.; Karibayeva, A.; Turganbayeva, A.; Turarbek, A. The neural machine translation models for the

low‑resource Kazakh–English language pair. PeerJ Comput. Sci. 2023, 9, e1224. [CrossRef] [PubMed]
2. Maučec, M.S.; Donaj, G. Machine translation and the evaluation of its quality. Recent Trends Comput. Intell. 2019, 143.
3. Kalchbrenner, N.; Blunsom, P. Recurrent convolutional neural networks for discourse compositionality. arXiv 2013,

arXiv:1306.3584.
4. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the

ICLR, San Diego, CA, USA, 7–9 May 2015.
5. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional sequence to sequence learning. In Proceedings of

the ICML, Sydney, Australia, 6–11 August 2017.
6. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need.

arXiv 2017, arXiv:1706.03762, 2017.
7. Araabi, A.; Monz, C. Optimizing transformer for low‑resource neural machine translation. arXiv 2020, arXiv:2011.02266.
8. Tonja, A.L.; Kolesnikova, O.; Gelbukh, A.; Sidorov, G. Low‑Resource Neural Machine Translation Improvement Using Source‑

Side Monolingual Data. Appl. Sci. 2023, 13, 1201. [CrossRef]
9. Mahsuli, M.M.; Khadivi, S.; Homayounpour, M.M. LenM: Improving Low‑Resource Neural Machine Translation Using Target

Length Modeling. Neural. Proc. Lett. 2023, 1–32. [CrossRef]
10. Pham, N.L.; Pham, T.V. A Data Augmentation Method for English‑Vietnamese Neural Machine Translation. IEEE Access 2023,

11, 28034–28044. [CrossRef]
11. Laskar, S.R.; Paul, B.; Dadure, P.; Manna, R.; Pakray, P.; Bandyopadhyay, S. English–Assamese neural machine translation using

prior alignment and pre‑trained language model. Comput. Speech Lang. 2023, 82, 101524. [CrossRef]
12. Park, Y.H.; Choi, Y.S.; Yun, S.; Kim, S.H.; Lee, K.J. RobustDataAugmentation forNeuralMachine Translation throughEVALNET.

Mathematics 2022, 11, 123. [CrossRef]
13. Dhar, P.; Bisazza, A.; van Noord, G. Evaluating Pre‑training Objectives for Low‑Resource Translation intoMorphologically Rich

Languages. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, Marseille, France, 13 June 2022;
pp. 4933–4943.

14. Gong, L.; Li, Y.; Guo, J.; Yu, Z.; Gao, S. Enhancing low‑resource neural machine translation with syntax‑graph guided self‑
attention. Knowl. ‑Based Syst. 2022, 246, 108615. [CrossRef]

15. Hlaing, Z.Z.; Thu, Y.K.; Supnithi, T.; Netisopakul, P. Improving neural machine translation with POS‑tag features for low‑
resource language pairs. Heliyon 2022, 8, e10375. [CrossRef] [PubMed]

16. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical evaluation of gated recurrent neural networks on sequence modeling.
arXiv 2014, arXiv:1412.3555.

https://doi.org/10.7717/peerj-cs.1224
https://www.ncbi.nlm.nih.gov/pubmed/37346576
https://doi.org/10.3390/app13021201
https://doi.org/10.1007/s11063-023-11208-1
https://doi.org/10.1109/ACCESS.2023.3252898
https://doi.org/10.1016/j.csl.2023.101524
https://doi.org/10.3390/math11010123
https://doi.org/10.1016/j.knosys.2022.108615
https://doi.org/10.1016/j.heliyon.2022.e10375
https://www.ncbi.nlm.nih.gov/pubmed/36033261


Appl. Sci. 2023, 13, 10279 13 of 13

17. Gulcehre, C.; Firat, O.; Xu, K.; Cho, K.; Barrault, L.; Lin, H.C.; Bengio, Y. On using monolingual corpora in neural machine
translation. arXiv 2015, arXiv:1503.03535.

18. Wang, Y.; Xia, Y.; Tian, F.; Gao, F.; Qin, T.; Zhai, C.X.; Liu, T.Y. Neural machine translation with soft prototype. Adv. Neural
Informat. Process. Syst. 2019, 32.

19. Cao, Q.; Xiong, D. Encoding gated translation memory into neural machine translation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, Brussels, Belgium, 31 October–4 November 2018; pp. 3042–3047.

20. Bimal, K.Modern Power Electronics and AC Drives; Prentice‑Hall: Hoboken, NJ, USA, 2001.
21. Bimal, K. Modern Power Electronics and AC Drive; Wang, C.; Zhao, J.; Yu, Q.; Cheng, H., Translators; Machinery Industry Press:

Beijing, China, 2005.
22. Wang, Q.; Glover, J.D. Power System Analysis and Design (Adapted in English); Machinery Industry Press: Beijing, China, 2009.
23. Glover, J.D. Power System Analysis and Design (Chinese Edition); Wang, Q.; Huang, W.; Yan, Y.; Ma, Y., Translators; Machinery

Industry Press: Beijing, China, 2015.
24. Klein, G.; Kim, Y.; Deng, Y.; Senellart, J.; Rush, A.M. Opennmt: Open‑Source Toolkit for Neural Machine Translation. arXiv 2017,

arXiv:1701.02810.
25. Papineni, K.; Roukos, S.; Ward, T.; Zhu, W.‑J. Bleu: A method for automatic evaluation of machine translation. In Proceedings

of the 40th Annual Meeting on Association for Computational Linguistics, Association for Computational Linguistics (2002),
Philadelphia, PA, USA, 6–12 July 2002; pp. 311–318.

26. Chen, H.; Chen, Y.; Zhang, J. Neural Machine Translation of Electrical Engineering Based on Vector Fusion. Appl. Sci. 2023,
13, 2325. [CrossRef]

27. Hu, S.; Li, X.; Bai, J.; Lei, H.; Qian, W.; Hu, S.; Yang, S. Neural Machine Translation by Fusing Key Information of Text. CMC‑
Comput. Mater. Cont. 2023, 74, 2803–2815. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/app13042325
https://doi.org/10.32604/cmc.2023.032732

	Introduction 
	Related Works 
	Methods 
	Global Information Encoder 
	Memory Information Encoder 
	Update Gate 
	Reset Gate 
	Attention Layer 

	Decoder 
	Fusion Method 
	Attention Fusion 
	Gate Fusion 
	Concatenation Fusion 
	Arithmetic Average Fusion 


	Experiment 
	Dataset and Parameter Settings 
	Impact of Fusion Methods 
	Ablation Experiment 
	Comparative Experiment 
	Experimental Analysis 

	Conclusions 
	References

