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Abstract: This article establishes a nonlinear flutter system for a long-span suspension bridge, aiming
to analyze its supercritical flutter response under the influence of nonlinear aerodynamic self-excited
force. By fitting the experimental discrete values of flutter derivatives using the least squares method,
a polynomial function of flutter derivatives with respect to reduced wind speed is obtained. Flutter
critical value is determined by the linear matrix eigenvalues of a state-space equation. The occurrence
of a supercritical Hopf bifurcation in the nonlinear system is determined by the Jacobian matrix
eigenvalues of the state-space equation and the system’s vibrational response at the critical state. The
vibrational response of the supercritical state is obtained through Runge–Kutta integration, revealing
the presence of stable limit cycle oscillation (LCO) and unstable limit cycle oscillation in the system,
and through analyzing the relationship between the LCO amplitude and wind speed. Considering
cubic nonlinear damping and stiffness, the effects of different factors on the nonlinear flutter system
are analyzed.

Keywords: flutter bifurcation; nonlinear aerodynamic self-excited force; nonlinear damping; nonlinear
stiffness; supercritical Hopf bifurcation; limit cycle oscillation (LCO)

1. Introduction

Since the issue of bridge flutter was put forward, numerous studies have been con-
ducted on aerodynamic vibrations in bridges. Flutter, as a form of aerodynamic instability,
is the most destructive type of vibration induced by wind. When wind speed is low,
structural vibrations caused by the interaction between the structure and the flow field
are dissipated by system damping, keeping the bridge in a stationary state. However,
when wind speed exceeds a critical value, the motion energy generated by the interac-
tion between the structure and the flow field cannot be completely dissipated by system
damping, resulting in flutter. Flutter is a self-excited vibration phenomenon of elastic
structures induced by their interaction with fluid in the flow field. This study investigates
the nonlinear flutter response when wind speed exceeds the critical value. The occurrence
of self-limiting flutter, known as limit cycle oscillations in bridges, has been indicated by
the Tacoma Narrows Bridge flutter event and recent research and experiments. This type of
limit cycle oscillation, often referred to as “hard flutter,” differs from linear divergence-type
flutter theories and does not always lead to divergence [1–5]. Notably, nonlinearity in the
aerodynamic self-excited forces of bluff body bridges is significant [6–9], and the nonlinear
phenomenon stands out under angle of attack conditions [10,11]. Moreover, there exists
a significant potential for advancing our assessment of the vibrational performance of
bridges through machine learning algorithms based on artificial neural networks. These
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algorithms employ geometric information and dynamic parameters as inputs to construct
vibrational models of bridges. The integration of computational fluid dynamics (CFD) with
machine learning models is used to predict wind loads, and it has demonstrated satisfactory
results in forecasting and evaluating the aerodynamic elastic responses of bridges [12–14].
This underscores the widespread attention garnered by the study of nonlinear flutter in
long-span bridges. Although bridge design still does not allow for situations beyond the
flutter critical wind speed, studying flutter behavior beyond the critical state contributes to
a deeper understanding of the structural responses of bridges under flutter conditions.

The flutter instability process caused by aeroelastic effects is generally analyzed using
the aerodynamic self-excitation theory proposed by Scanlan et al. [15]. Traditional studies
have established linear flutter equations based on this theory, but the limitations of linear
systems are evident. They can only solve the flutter critical state of the aerodynamic self-
excited system. For example, Náprstek et al. proposed stability conditions and unified
linear variables for bluff bridge deck sections under unsteady flow [16,17]. However, as the
span of suspension bridges increases, the vibration response of bridges after flutter becomes
increasingly important. Therefore, it is crucial to establish nonlinear motion equations for
self-excited flutter in suspension bridges.

In the conventional Scanlan aerodynamic self-excited force model, the interaction
between the bridge cross-section and aerodynamic forces is represented by a linear multi-
plication of flutter derivatives and motion components. The higher-order terms of flutter
derivatives are disregarded. However, the aerodynamic self-excited force is inherently non-
linear. Considering the critical post-flutter of bridges, it becomes essential to formulate the
appropriate equations to describe this nonlinear motion. Numerous scholars have delved
into the study of nonlinear flutter. Building upon Scanlan’s research, they have demon-
strated a strong correlation between the flutter derivatives related to torsional motion and
nonlinearity. They have determined a functional relationship between nonlinear flutter
derivatives, reduced wind speed, and flutter amplitudes [2,11]. Furthermore, through wind
tunnel experiments with box girder models, they have proposed a nonlinear aeroelastic self-
excited force model, coupling bridge lift and torsion [18]. Additionally, investigations into
complex nonlinear fluid–structure interaction phenomena in turbulent flow around bluff
bodies have been conducted through wind tunnel tests and numerical simulations [19–21].
It has been found that the presence of a strong shear layer flow separation contributes
significantly to the nonlinearity of aerodynamic self-excited forces, manifested in variations
in the amplitude of the first harmonic and the appearance of higher harmonics. As for
the nonlinear motion system of bridge flutter, researchers have focused on the critical
bifurcation state and post-bifurcation behavior. Research has mainly centered on analyzing
various mechanical and aerodynamic characteristics (such as mechanical damping ratio,
natural frequency, initial angle of attack, and flutter derivatives) and their influence on the
motion behavior of a given cross-section after the critical flutter state [22–24]. Moreover,
the critical state between static and flutter behavior of nonlinear systems is represented
by Hopf bifurcations [25]. Measures to suppress the occurrence of flutter motion require
attention, primarily in terms of optimizing and controlling the placement of tuned mass
dampers [26,27]. However, previous studies have often concentrated on specific local
aspects of nonlinear motion systems, such as establishing wind tunnel models correspond-
ing to bridge structures to analyze flutter motion states, exploring the acquisition and
identification of high-order flutter derivatives in nonlinear aerodynamic self-excited forces,
and investigating effective energy dissipation and vibration suppression measures post
flutter. There remains a relatively limited amount of research focused on establishing
nonlinear motion equations for bridge flutter systems and studying critical flutter states
and post-flutter motion behaviors.

Based on the status of current research, it is evident that nonlinear aerodynamic self-
excitation exists, and the discrete values of the nonlinear components of flutter derivatives
can be obtained through wind tunnel section model tests. Therefore, this study considers
the effect of nonlinear aerodynamic self-excited force on bridges, establishes nonlinear
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flutter equations for long-span suspension bridges, and fits the function expression of
flutter derivatives with respect to reduced wind speed based on the discrete values of
flutter derivatives obtained from the literature. Subsequently, the nonlinear bifurcation
and limit cycle oscillation phenomena are investigated based on the motion equations,
analyzing and determining the bifurcation types and studying the properties of LCO, as
well as predicting the development of the relationship between LCO and wind speed.
Finally, on this basis, the effects of nonlinear damping and structural nonlinear stiffness on
flutter LCO are further considered.

2. Framework of Nonlinear Flutter Analysis

In this section, motion equations for a long-span suspension bridge under the influence
of nonlinear aerodynamic self-excited force are established. Flutter equations are obtained
by fitting the discrete values of flutter derivatives in the nonlinear aerodynamic force model
using the least squares method. The framework also considers the nonlinear stiffness and
nonlinear damping of the structure, and four computational analysis cases are set up.

2.1. Flutter Motion Equations for Suspension Bridges

The current research on flutter utilizes the motion expression proposed by Scanlan [28].
This model considers bridges as Euler–Bernoulli beams, thereby neglecting shear defor-
mations. Furthermore, it assumes that the plane (cross-section), which is perpendicular
to the beam’s central axis before deformation, remains planar after deformation, and that
regardless of pre- and post-deformation processes, the plane of the cross-section remains
perpendicular to the beam’s axis. Because the centroid of the bridge’s cross-section co-
incides with its shear center, the vibration equation for the beam, derived based on the
Euler–Bernoulli beam theory and the method of separation of variables, can be expressed in
terms of its natural modes, mass, and stiffness. The first-mode response of the bridge con-
tributes significantly to its vibration, resulting in a two-degree-of-freedom cross-sectional
motion model consisting of a first-order vertical bending and torsional frequencies of the
bridge, along with their corresponding masses and stiffness.

As shown in Figure 1, the cross-section of the bridge deck of the Nansha Bridge over
the Nizhou Channel is allowed to undergo motion in the vertical bending and torsional
degrees of freedom. It experiences aerodynamic self-excitation forces in a uniform flow
field, including aerodynamic lift and aerodynamic torque, acting at the centroid of the
cross-section [15,28]. Therefore, flutter motion equations can be expressed as follows. On
the left side of the equation lies the motion equation representing the characteristics of the
bridge, while on the right side lies the aeroelastic self-exciting force exerted on the bridge:

mh
..
h + 2ξhmhωh

.
h + mhω

2
hh = ρU2B

(
KH∗1

.
h
U

+ KH∗2
B

.
α

U
+ K2H∗3 α + K2H∗4

h
B

)
(1)

I
..
α + 2ξα Iωα

.
α + Iω2

αα = ρU2B2

(
KA∗1

.
h
U

+ KA∗2
B

.
α

U
+ K2 A∗3α + K2 A∗4

h
B

)
(2)

where m and I are mass and moment of inertia per unit length of the bridge deck, respec-
tively. h,

.
h, and

..
h represent the displacement, velocity, and acceleration of the vertical

bending degree of freedom, while α,
.
α, and

..
α represent the angular displacement, angular

velocity, and angular acceleration of the torsional degree of freedom. ξh and ξα are the
damping ratios of the suspension bridge in the vertical bending and torsional modes,
respectively. ωh and ωα are the first-order circular frequencies of vertical bending and
torsion, respectively. On the right-hand side of Equation (1) is the aerodynamic lift, and on
the right-hand side of Equation (2) is the aerodynamic torque. ρ is air density, U is fluid
flow velocity, B is the width of the cross-section of the stiffened beam, and K is reduced
frequency, defined as K = Bω/U. H∗i and A∗i are eight flutter derivatives, which are
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dimensionless quantities related to the reduced frequency or reduced wind speed and can
be expressed as functions.

H∗i , A∗i = f (Vr) = f (K) (3)

where Vr is the reduced wind speed, defined as Vr = U/B f . This study focuses on the
Nansha Bridge over the Nizhou Channel, which is a suspension bridge with a main span
of 1688 m and a bridge deck width of 41.7 m. The relevant design parameters of the bridge
are listed in Table 1 [29].
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Table 1. Parameter values of the suspension bridge.

Parameter Value

m 65,649 (kg/m)
I 7,808,150 (kg·m)
B 41.7 (m)
ξh 0.005
ξα 0.005
ωh 0.45497 (rad/s)
ωα 1.33285 (rad/s)

2.2. Cubic Damping and Cubic Torsional Stiffness

Taking into account the structural nonlinearity of the bridge’s stiffness and the pos-
sibility of obtaining strong nonlinear damping using tuned mass dampers, the vibration
equations of the abovementioned flutter motion Equations (1) and (2) are expressed in the
following form:

mh
..
h + Ch

( .
h
)
+ khh = F(L) (4)

I
..
α + Cα

( .
α
)
+ kα(α) = F(M) (5)

where Ch

( .
h
)

and Cα

( .
α
)

represent the nonlinear damping values of the flutter system in the
vertical bending and torsional degrees of freedom, kα(α) is structural nonlinear stiffness,
and F(L) and F(M) are self-excited forces of flutter.

The strong nonlinear damping in the vertical bending and torsional degrees of freedom
is expressed as a function of vertical velocity h and angular velocity

.
α; then, the vertical

and torsional damping value ch and cα are written as follows:

Ch

( .
h
)
= ch1

.
h + ch2

.
h

3
(6)

Cα

( .
α
)
= cα1

.
α + cα2

.
α

3 (7)

In the equation, linear damping coefficients are given by ch1 = 2ξhmhωh
and cα1 = 2ξα Iωα.
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Considering the nonlinear stiffness in the torsional degree of freedom of the suspension
bridge, the bending and torsional stiffness are expressed as follows:

khh = mhω2
hh (8)

kα(α) = kα1α + kα2α3 (9)

In the equation, stiffness kh in the vertical degree of freedom is set as a linear function
of vertical displacement h. kα, kα1 represent the first-order coefficient of torsional stiffness,
while kα1 = Iω2

α, and kα2 represent the cubic term coefficient of torsional stiffness.
The cubic damping coefficient and cubic torsional coefficient are determined in Table 2.

Table 2. Values of cubic damping and stiffness terms for each case.

Cases Name ch2 cα2 kα2

Reference case 0 0 0
Case A 0 10cα1 0
Case B 0 10cα1 1000mhω2

α

Case C 10ch1 10cα1 1000mhω2
α

2.3. Expression of Nonlinear Aerodynamic Self-Excited Force
Based on the aerodynamic self-excited force model proposed by Scanlan (Equations (1) and (2)),

Gao et al. proposed a nonlinear aerodynamic self-excited force model [18]. The expressions
for the nonlinear self-excited forces F(L) and F(M) in this model are as follows:

F(L) = ρU2B

[
KH∗1

.
h
U

+

(
KH∗2 + KH∗2,02

B
∣∣ .
α
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U

)
B

.
α

U
+
(
K2 H∗3 + K2 H∗3,02|α|

)
α + K2 H∗4

h
B
+ K2 H∗4,01|α|+ K2 H∗4,02α2

]
(10)

F(M) = ρU2B2

[
KA∗1

.
h
U
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KA∗2 + KA∗2,02

B
∣∣ .
α
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U
+ KA∗2,03

B2 .
α

2

U2

)
B

.
α

U
+ K2 A∗3α + K2 A∗4

h
B

]
(11)

where FL represents aerodynamic lift force, FM represents aerodynamic torque, ρ is air
density, U is fluid velocity, B is the cross-sectional width of the girder, K is the reduced
frequency, K = Bω/U. H∗i and A∗i are flutter derivatives, and H∗2,02, H∗3,02, H∗4,01, H∗4,02, A∗2,02,
A∗2,03 are small perturbation flutter derivatives. These flutter derivatives are dimensionless
quantities that depend on the reduced frequency or reduced wind speed. Similarly, these
flutter derivatives can be expressed as functions of the reduced wind speed or reduced
frequency. For computational convenience, in this study, these flutter derivatives are
expressed as functions of the reduced wind speed.

H∗i , A∗i = f (Vr) = f (K) = H, A∗i1 ·Vr + H, A∗i2 ·V2
r (12)

H∗2 ∨ A∗2 = f (Vr) = f (K) = H∗i1 ∨ A∗i1 ·Vr + H∗i2 ∨ A∗i2 ·V
2
r + H∗i3 ∨ A∗i3 ·V

2
r + H∗i4 ∨ A∗i4 ·V

2
r (13)

Nonlinear flutter self-excited forces (10) and (11) not only include linear first-order
components but also nonlinear second-order components. In the nonlinear self-excited
force model proposed by Gao et al., the discrete results of flutter derivatives were obtained
through wind tunnel tests on a bridge deck section model [18]. In the flutter motion
equation proposed by Scanlan, the flutter derivatives in the flutter self-excited forces are
only related to the cross-sectional shape of the bridge deck panel. Therefore, it can be
assumed that the numerically obtained results of the box girder section model by Gao
et al. can be used to analyze the nonlinear self-excited forces of the Nansha Bridge over
the Nizhou Channel in this study. To facilitate a continuous solution of the flutter motion
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equation, the flutter derivatives are fitted as a function of the reduced wind speed using
the least squares method, as shown in the form of (12). The discrete values of the first-order
flutter derivatives and the corresponding function graph are shown in Figure 2, where
the black dots represent the discrete flutter derivative values obtained from wind tunnel
tests, and the black solid line represents the fitted flutter derivative function curve obtained
through the least squares method.
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Appl. Sci. 2023, 13, 10272 7 of 19

The discrete values of the second-order flutter derivatives are shown in Figure 3, where
the red color represents the second-order flutter derivatives H∗2,02, H∗3,02, H∗4,01, H∗4,02, A∗2,02,
A∗2,03. The red dots represent the discrete values obtained from wind tunnel tests, and the
red solid line represents the continuous function curve obtained through fitting.
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aero self-excited force.

The coefficients of the function expressions for the continuous curves of flutter deriva-
tives shown in Figures 2 and 3 are listed in Tables 3 and 4.

Table 3. The coefficients in the curve of the fitting quadratic function of the flutter derivative.

H*
i1 H*

i2 A*
i1 A*

i2

H∗1 0.04374 −0.05154 A∗1 0.06288 −0.00187
H∗3 0.26574 −0.08902 A∗3 −0.01230 0.01217
H∗4 −0.27729 0.02632 A∗4 −0.01665 7.49839 × 10−4

H∗2,02 −3.76111 0.70966 A∗2,02 0.95929 −0.13286
H∗3,02 5.81372 −0.74839 A∗2,03 −9.99665 1.13183
H∗4,01 0.06882 −0.00366
H∗4,02 6.52151 −0.82327
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Table 4. The coefficients in the curve of the fitting quartic function of the flutter derivative.

H*
i1∨A*

i1 H*
i2∨A*

i2 H*
i3∨A*

i3 H*
i4∨A*

i4

entry 1 0.29832 −0.17132 0.03441 −0.00224
entry 2 0.00214 −0.00314 3.55170 × 10−4 0

3. Flutter Critical State and Hopf Bifurcation

According to the findings of Andronov et al., if a linear expression of a system’s motion
considers the critical point as a saddle point, a node, or a focus of the critical state, then for
the original nonlinear system, the critical point is also a saddle point, a node, or a focus [30].
The determination of the critical point properties of a nonlinear system can be made by
examining the Jacobian matrix of the motion equations and the motion states in the vicinity
of the critical values. In this section, using the values of the reference case in Table 2, the
calculation methods for the critical state, bifurcation determination, and bifurcation limit
cycle of the nonlinear self-excited flutter system of the suspension bridge are presented.

3.1. Flutter Critical Wind Speed Solution

Flutter Equations (4) and (5) can be written in the form of state-space equations, i.e.,
.
x = f (x). Let x =

[
h, α,

.
h,

.
α
]T

; thus, the state-space equations of this nonlinear flutter
system can be written in the following form:

.
x = F(U, ω, x) = FLinear · x + FNonlinear(x) (14)

where FLinear is the linear coefficient matrix of the flutter equations, and FNonlinear is the
nonlinear term of the flutter equations. Based on the analysis and calculations of the non-
linear system equations in the previous sections, the critical flutter state can be computed
using the linear part of Equation (14), and then the complete state-space equations can be
used to analyze the nonlinear flutter response. The coefficients of the linear and nonlinear
parts of Equation (14) are given as follows:

FLinear = ρU2B


0 0 1 0
0 0 0 1

K2 H∗4
Bmh
− kh

mh

K2 H∗3
mh

KH∗1
Umh
− ch

mh

KH∗2 B
Umh

K2 A∗4
I

BK2 A∗3
I − kα

I
BKA∗1

UI
B2KA∗2

UI −
cα
I

 (15)

FNonlinear(x) =


0
0

ρU2B
mh

(
KH∗2,02

B2| .α| .α
U2 + K2H∗3,02|α|α + K2H∗4,01|α|+ K2H∗4,02α2

)
ρU2B2

I

(
KA∗2,02

B| .α|
U + KA∗2,03

B2 .
α

2

U2

)
B

.
α

U

 (16)

The critical point of a nonlinear motion system can be obtained by solving its linear
expression. According to the Theodorsen method, as the wind speed Vr of the system
parameters changes, when the eigenvalues of the matrix (15) have positive real parts, the
corresponding wind speed VCr is the critical value of the system [31]. Therefore, the critical
flutter state can be obtained through the following steps:

1. Assume a small value of frequency ω0 and substitute it into the matrix (15). Grad-
ually increase the reduced wind speed Vr until the first pair of complex conjugate
eigenvalues of the matrix have zero real parts. Record the imaginary part Imag(λ) of
this eigenvalue as frequency ωi = Imag(λ);

2. Take ωi as the new frequency value and substitute it into the matrix (15). Again,
gradually increase the reduced wind speed Vr until the first complex eigenvalue of
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the matrix has zero real parts. Record the imaginary part Imagi(λ) of this eigenvalue
as the new flutter frequency ωi+1 = Imagi(λ).;

3. Compare ωi and ωi+1. Repeat step 2 until |ωi+1 −ωi| approaches zero. At this point,
the frequency value is the critical flutter frequency ωC of the system, the reduced
wind speed value is the critical reduced wind speed VCr of the flutter, and the flutter
critical wind speed UC can be obtained using the relationship Vr = 2Uπ/Bω .

Through the above steps, the parameter Vr that causes the eigenvalues of the matrix
FLinear to change from negative to positive is obtained, and the flutter system reaches the
critical state. At this critical state, the matrix eigenvalues are given by:

λ|Vr=7.2673 =


−0.0593 + 0.4754i
−0.0593− 0.4754i
0.0000 + 1.1888i
0.0000− 1.1888i


The flutter system’s critical flutter frequency is ωC = 1.1888 rad/s, the critical reduced

wind speed is VCr = 7.2673, and the critical flutter wind speed is UC = 57.3374 m/s.

3.2. Proof of Hopf Bifurcation

The Jacobian matrix of the state-space Equation (14) is obtained according to the rule
in Equation (17).

JF(x) =


0 0 1 0
0 0 0 1
∂

..
h

∂h
∂

..
h

∂α
∂

..
h

∂
.
h

∂
..
h

∂
.
α

∂
..
α

∂h
∂

..
α

∂α
∂

..
α

∂
.
h

∂
..
α

∂
.
α

 (17)

Based on the results of the critical values of the flutter, taking the reduced wind speeds
Vr = 7, Vr = Vcr = 7.2673, and Vr = 7.5, they are substituted into the Jacobian matrix to
calculate the corresponding eigenvalues, as shown below:

λ|Vr=7 =


−0.0543 + 0.4782i
−0.0543− 0.4782i
−0.0022 + 1.2001i
−0.0022− 1.2001i



λ|Vr=7.2673 =


−0.0593 + 0.4754i
−0.0593− 0.4754i
0.0000 + 1.1888i
0.0000− 1.1888i



λ|Vr=7.5 =


−0.0638 + 0.4725i
−0.0638− 0.4725i
0.0023 + 1.1785i
0.0023− 1.1785i


The obtained eigenvalues from the three sets of results above indicate that the Jacobian

matrix consistently has pairs of complex conjugate eigenvalues. Moreover, as the system
parameter Vr surpasses the flutter critical value from small to large, the Jacobian matrix
exhibits a pair of complex conjugate eigenvalues with a change in the real part from negative
to positive. This characteristic satisfies the definition of Hopf bifurcation. Therefore, the
aforementioned process demonstrates that the nonlinear flutter system experiences Hopf
bifurcation at the flutter critical state.

Furthermore, Hopf bifurcation encompasses three types of critical bifurcations. Next,
the nonlinear flutter response in the intervals on both sides of the Hopf bifurcation point
will be analyzed through calculations to further prove the Hopf bifurcation type. The
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Runge–Kutta methods will be used to compute the motion response of this nonlinear flutter
equation [32]. The flutter equations, as established in this paper, have been formulated into
a first-order ordinary differential equation represented as Equation (14). Consequently, for
the purpose of solving this equation, the adoption of the fourth-order Runge–Kutta method
is appropriate. By carefully selecting an appropriate time step, the temporal response of the
flutter can be obtained, thereby facilitating a more in-depth analysis of nonlinear vibrations.

• Wind speed: U = 75 m/s (beyond the critical state)

Initial state of motion:
(

h,
.
h, α,

.
α
)T

1
= (0, 0, 0.001, 0)T (small perturbation).

Taking wind speed U = 75 m/s, setting the system vibration frequency ω = 1.888 rad/s,

and using the initial conditions for numerical integration
(

h,
.
h, α,

.
α
)T

1
= (0, 0, 0.001, 0)T ,

the vibration time history response is obtained as shown below. Additionally, the vibration
limit cycle is plotted.

From Figures 4 and 5, it can be observed that when the wind speed U = 75 m/s, the
vibration response of the nonlinear flutter system begins to diverge. This indicates that at
this point, the focus of the flutter system, i.e., the zero point, becomes unstable. It becomes
an unstable focus, and flutter occurs under the influence of a small perturbation α=0.001
rad. The motion trajectory gradually moves away from this unstable focus. After a certain
period of time, the flutter tends towards a stable state known as limit cycle oscillation.
Figure 6 represents the phase portraits of Figures 4 and 5 in the velocity and displacement
planes, illustrating the occurrence of stable limit cycle oscillation in the system at the current
wind speed.
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Figure 6. Phase trajectory diagram of LCO in vertical and torsional DOF at wind speed of 75 m/s

and initial state of motion
(

h,
.
h, α,

.
α
)T

1
= (0, 0, 0.001, 0)T .

• Wind Speed: Wind speed U = 75 m/s (beyond the critical state),

Initial state of motion:
(

h,
.
h, α,

.
α
)T

2
= (0, 0, 0.2, 0)T .

To demonstrate that the LCO vibration is stable and repetitive, it is necessary to select
initial conditions with amplitudes greater than the stable amplitude. Therefore, when
the wind speed U = 75 m/s, the initial condition for the motion integration is set as(

h,
.
h, α,

.
α
)T

2
= (0, 0, 0.2, 0)T . The system’s time response is computed and shown below.

From Figures 7 and 8, it can be observed that at the same wind speed U = 75 m/s, by
only changing the torsional displacement α in the integration initial conditions to a value
greater than the torsional amplitude of the limit cycle oscillation, the system’s vibration
response exhibits damping and eventually settles into a stable state after a certain period of
time. Additionally, it can be noticed that the amplitude of the limit cycle oscillation, once it
reaches the stable state, is the same as the stable limit cycle oscillation amplitudes shown
in Figures 4 and 5. The stable limit cycle oscillation observed in the steady-state vibration
response, after a period of time, is indeed a stable limit cycle. The phase plots of the two
degrees of freedom are illustrated in Figure 9, with the motion trajectory being clockwise.
The phase trajectory of the vertical bending degree of freedom starts at the origin, and
the trajectory curve indicates a gradual convergence towards a closed circular loop. The
phase trajectory of the torsional degree of freedom starts at

(
α,

.
α
)
= (0.2, 0); similarly, the

trajectory curve gradually approaches a closed circular loop. In comparison to the phase
plot shown in Figure 6, the closed circular loop that the limit cycle oscillation trajectory
converges towards is the same, proving that this closed circular loop is a stable limit cycle
exhibited by the nonlinear vibration system at a wind speed of U = 75 m/s.

From the aforementioned vibration of the limit cycle oscillation, it is evident that when
wind speed exceeds the critical state, the system exhibits stable limit cycle oscillations,
thereby demonstrating that the nonlinear vibration system undergoes a supercritical Hopf
bifurcation at the critical state.
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4. Analysis of Nonlinear Bifurcation and Limit Cycle Oscillation

Using the Runge–Kutta method discussed in the previous section, the LCO amplitude
at a specific wind speed can be obtained through integration. Therefore, by selecting wind
speed values within a certain range and substituting them into the reference case of the
nonlinear motion system, we can integrate them to obtain a set of correspondences between
wind speed and the stable LCO amplitude. This data can be used to plot the bifurcation
curve of the flutter, as shown in Figure 10, which illustrates the relationship between wind
speed and the stable LCO amplitude of the torsional degree of freedom for this particular
operating condition. In this context, the abscissa U signifies the actual wind speed, while
the ordinate A denotes the maximum amplitude of the limit cycle for the torsional degree
of freedom.
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At the flutter critical state Ucr = 57.3374 m/s, the nonlinear flutter system undergoes
a Hopf bifurcation, and a stable LCO bifurcation curve appears on the right side of the
bifurcation point. The LCO amplitude rises with the increasing wind speed. From the
graph, it can be observed that after the wind speed exceeds U = 77.7 m/s, the trend of
the limit cycle amplitude shows a steep increase, and stable limit cycle vibration cannot be
obtained at higher wind speeds. Therefore, for this operating condition of the nonlinear
flutter system, vibration divergence occurs when the wind speed exceeds U = 77.7 m/s.

Further research can be conducted on the bifurcation curve in Figure 10, which may
reveal the presence of unstable LCO within the range of wind speeds U < 77.7 m/s, with
amplitudes larger than the stable limit cycle. This can be investigated by setting larger
initial conditions and performing integration calculations.

• Wind Speed: Wind speed U = 75 m/s (beyond the critical state);

Initial state of motion:
(

h,
.
h, α,

.
α
)T

3
= (0, 0, 0.45, 0)T .

By selecting a wind speed of U = 75 m/s and initial conditions of(
h,

.
h, α,

.
α
)T

3
= (0, 0, 0.45, 0)T, the time response of the flutter system vibration can be computed.

As shown in Figures 11 and 12, under the given initial conditions, the vibration
amplitude of the system initially decays and eventually stabilizes into a LCO vibration
response after a period of time. Moreover, this stable LCO vibration response is consistent
with the stable limit cycle response shown in Figures 4 and 5. The phase portraits of these
two figures, representing the limit cycles, are plotted in Figure 13.

• Wind Speed: Wind speed U = 75 m/s (beyond the critical state);

Initial state of motion:
(

h,
.
h, α,

.
α
)T

4
= (0, 0, 0.452, 0)T .
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The selected initial conditions of motion are slightly greater than the previous inte-
gration initial values. The resulting time-domain response of the system is calculated and
shown in Figures 14 and 15.
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Figure 15. Continuous vibration of bridge flutter in torsional DOF at wind speed of 75 m/s and

initial state of motion
(

h,
.
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.
α
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The vibration response of the system shows a slow increase in amplitude and max
speed in both DOFs, indicating a gradual divergence of the oscillations. The vibration
phase diagram is shown in Figure 16. A comparison with the motion phase diagram in

Figure 13, which had the initial conditions
(

h,
.
h, α,

.
α
)T

3
= (0, 0, 0.45, 0)T under the same

wind speed, reveals the presence of an unstable limit cycle oscillation within the range of
torsional amplitudes between 0.45 and 0.452. The vibration phase trajectories on either side
of this LCO will gradually move away from it.

From the analysis above, at a wind speed of U = 75 m/s, the origin point of this
nonlinear flutter system is an unstable focus. Additionally, there are two LCOs in the
phase diagram. The smaller-amplitude LCO is stable, and vibration starting from the
unstable focus will eventually converge to this stable LCO. The larger amplitude limit
cycle is unstable one. Vibrations within the range between the unstable and stable LCOs
will gradually approach the stable one, while vibrations with amplitudes greater than the
unstable LCO will diverge.

In summary, the Runge–Kutta integration method can be used to solve flutter systems
with nonlinear aerodynamic self-excitation and obtain bifurcating LCOs beyond the critical
state. The stable LCO amplitude at a specific wind speed can be obtained through the
steady-state time response, while the unstable LCO requires the following calculation steps:
select a wind speed U and an initial condition (0, 0, α0, 0)T , calculate the time response of
the nonlinear system vibrations, and continuously change the initial amplitude α0. When
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the response above this value converges to the stable limit cycle and the response above
this value diverges, it can be concluded that there exists an unstable limit cycle at the wind
speed U, with an amplitude of α0. By substituting the parameter values of the reference
case into the flutter Equations (4) and (5), the stable and unstable limit cycles corresponding
to the wind speed can be obtained. Figure 17 shows the relationship between the limit cycle
amplitudes and wind speed.
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Taking into account the parameter settings for the other three operating conditions in
Table 2, the relationship between the LCO amplitude and wind speed after the supercritical
Hopf bifurcation is calculated using the aforementioned method. The results are plotted
in Figures 18 and 19.

As shown in the results of the LCO bifurcation curves, the flutter systems of all four
operating conditions undergo supercritical Hopf bifurcation at the same critical value,
leading to stable limit cycle oscillations on the side above the critical value. The stable LCO
amplitude rises with the increasing wind speed. Comparing the curves of the reference
case and case A, the two curves nearly overlap, but the stable LCO amplitude of case
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A is relatively smaller than that of the reference case, and the unstable LCO amplitude
is larger than that of the reference case. This indicates that applying stronger nonlinear
damping on the torsional degree of freedom has a limited dissipating effect on limit
cycle oscillations under supercritical flutter. Furthermore, comparing the curves of case
A and case B, it can be observed that to achieve the same LCO amplitude, case B needs
higher wind speeds. This suggests that considering the nonlinear stiffness of the bridge
structure reduces the stable LCO amplitude and increases the unstable LCO amplitude
under supercritical flutter, indicating a higher stability of the bridge compared to a system
without considering structural nonlinear stiffness. Finally, in case C, by adding strong
nonlinear damping on the vertical bending degree of freedom, the corresponding wind
speed for the same LCO amplitude is the highest, demonstrating strong energy dissipation
and suppression capabilities for supercritical flutter. In conclusion, by considering various
nonlinear factors, the variation relationship between the limit cycle amplitude and wind
speed for the four operating conditions has been analyzed. Among them, considering
structural nonlinear stiffness and cubic damping on the vertical bending degree has the
most significant influence on the LCO amplitude under supercritical flutter.
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Figure 18. The Hopf bifurcation results of the calculation examples in Table 2, the relationship
between the amplitude of the LCO and the wind speed.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 20 
 

 
Figure 17. Bifurcation curves for the relationship between LCO amplitudes and wind speed. 

Taking into account the parameter settings for the other three operating conditions 
in Table 2, the relationship between the LCO amplitude and wind speed after the super-
critical Hopf bifurcation is calculated using the aforementioned method. The results are 
plotted in Figures 18 and 19. 

 
Figure 18. The Hopf bifurcation results of the calculation examples in Table 2, the relationship be-
tween the amplitude of the LCO and the wind speed. 

 
Figure 19. The Hopf bifurcation results of the calculation examples in Table 2, the relationship be-
tween the amplitude of the LCO and the wind speed, including stable and unstable LCO. 

55 60 65 70 75 80
0.0

0.2

0.4

0.6

0.8

A 
(ra

d)

U (m/s)

 Bifurcation of stable LCO
 Bifurcation of unstable LCO

55 60 65 70 75 80 85 90 95 100
0.00

0.05

0.10

0.15

0.20

A 
(ra

d)

U (m/s)

 Reference case 
 Case A
 Case B
 Case C

55 60 65 70 75 80 85 90 95 100
0.0

0.2

0.4

0.6

0.8

A 
(ra

d)

U (m/s)

 Reference case
 Case A
 Case B
 Case C
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5. Conclusions

This paper considers the effects of nonlinear damping and structural stiffness on the
limit cycle response of a long-span suspension bridge’s flutter systems under supercritical
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conditions, focusing on analyzing the influence of strong nonlinear damping and cubic
stiffness on limit cycle oscillation at the flutter critical state. The nonlinear flutter self-
excited force model proposed by Gao is considered, and the flutter derivatives obtained
from wind tunnel tests are fitted using the least squares method to establish the nonlinear
flutter self-excited force equation.

The flutter equation is transformed into state-space equations, and the flutter critical
state is solved by analyzing the changes in matrix eigenvalues and obtaining the critical
wind speed value. By using the Jacobian matrix of the state-space equations, the changes in
matrix eigenvalues at the critical point are analyzed, and the supercritical Hopf bifurcation
of the flutter system is demonstrated through vibration responses. Furthermore, the results
of the four cases in Table 2 show that the flutter critical values for the systems are the same,
indicating that supercritical Hopf bifurcation occurs at the same critical value. Finally,
through a comparative analysis of the four case studies, the relationship between the
limit cycle amplitude and wind speed under supercritical conditions is analyzed, demon-
strating the effective flutter suppression and energy dissipation effects of cubic damping
and stiffness.

The above studies indicate that in terms of engineering practicality, the flutter occur-
ring in long-span suspension bridges is predictable and regular, displaying LCOs with
amplitudes increasing as wind speed rises. To mitigate the detrimental effects of flutter on
the bridge, increasing vertical bending and torsional damping of the bridge is an effective
approach. By employing tuned mass dampers to apply strong nonlinear damping in both
vertical bending and torsion motion dimensions, the amplitude of flutter oscillations in
the bridge can be significantly reduced, thereby minimizing further damage caused by
the displacement and deformation of the bridge. With the advancement of deep learning
and machine learning, our research will leverage artificial neural network algorithms to
conduct investigations, facilitating the prediction and evaluation of the vibrational response
of bridges under aerodynamic forces.
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