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Abstract: With the increase in the occupancy ratio of bridges and the speed of trains, the probability
of trains being located on bridges during earthquakes increases, and the risk of derailment increases.
To investigate the influence of unequal‑height piers on the dynamic response of high‑speed railway
train bridge systems, a seismic action model of high‑speed train–track–bridge dynamic systems was
established based on the in‑house code using the finite element method and multi‑body dynamics
method. It is found that (1) compared to equal‑height piers, the peak lateral dynamic response of
unequal‑height piers (with gradually increasing pier heights) decreases, while the peak vertical dy‑
namic response increases; (2) the peak lateral dynamic response of unequal‑height piers (with a steep
increase in pier height) increases sharply, while the peak vertical dynamic response decreases; and
(3) the safety indicators of equal‑height piers are significantly superior to the two unequal‑height
pier operating conditions.

Keywords: high‑speed railway; earthquake; bridge; coupling vibration; dynamic response;
unequal‑height pier

1. Introduction
On 1 October 1964, with the opening of the Tokaido Shinkansen in Japan, the world’s

first high‑speed railway was officially put into operation. There has subsequently been a
wave of building high‑speed railways around the world, and high‑speed railways have
developed rapidly [1–3]. Due to the limitations of computational methods, the initial re‑
search on vehicle bridge vibration problems mainly focused on independent analysis of
vehicle and bridge models, and the models were too simplistic to best reflect the real vehi‑
cle bridge dynamic response [4]. The emergence of electronic computers and the develop‑
ment of finite element technology have further promoted the research on vehicle–bridge
coupling vibration [5]. Matsuura Akio [6] used the energy method to derive the motion
equation of the dynamic interaction between vehicles and bridges in high‑speed railways.
Chu K.H. et al. [7] first studied the vehicle–bridge coupling vibration system, considering
that the vehicle body is a 3‑degree of freedom rigid body, and established a vehicle–bridge
coupling vibration calculation model. Dhar C.L. [8] established a vehicle model consisting
of a vehicle body, a bogie, and awheelset. The train–bridge coupled systemwas studied us‑
ing a spring connection between the vehicle body and the bogie, and between the bogie and
the wheelset, with the wheelset always in contact with the steel rail. Subsequently, train
analysis models constructed with multiple rigid bodies were gradually recognized and
adopted by scholars. This paper is also based on this to construct a 38‑degree‑of‑freedom
train model.

Appl. Sci. 2023, 13, 10271. https://doi.org/10.3390/app131810271 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810271
https://doi.org/10.3390/app131810271
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0355-643X
https://orcid.org/0000-0002-1636-4111
https://doi.org/10.3390/app131810271
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810271?type=check_update&version=1


Appl. Sci. 2023, 13, 10271 2 of 15

Since the 1960s, there have been multiple high‑speed train derailments worldwide,
which caused serious casualties and economic losses. One of the reasons for derailment
is earthquakes [9–11]. Therefore, it is necessary to consider seismic effects in the study of
the dynamic response of train–track–bridge coupled systems. Currently, many scholars
have conducted extensive research on the dynamic response of vehicle–bridge coupling
systems under seismic excitation. Lei et al. [12] used the relative motion method to solve
seismic influences and analyzed the operational safety of high‑speed trains passing over
rigid‑frame bridges with high piers under seismic influences. Xiang et al. [13,14] studied
the dynamic response of trains and bridges under emergency braking during earthquakes,
as well as the safety of train operation. Zeng [15], Han [16], Guo [17], Variyavwala J.P. [18]
and others used cable‑stayed bridges as examples to study the coupling dynamic inter‑
action between trains and cable‑stayed bridges under earthquake action, and obtained
valuable conclusions.

In order tomeet the requirements of smooth and stable operation of high‑speed trains,
land saving, and not affecting ground transportation, the proportion of high‑speed rail‑
way bridges is constantly increasing. Many studies have shown that the characteristics of
bridges significantly affect the dynamic response and safety of train–track–bridge coupled
systems. It is necessary to study the effect of bridge characteristics on the train–track–
bridge coupled system. Bridge characteristics include bridge structural stiffness, bridge
deformation, abutment settlement, pier height, and so on. Zhai [19,20] analyzed the im‑
pact of bridge structural stiffness on the dynamic response of the coupling system. Their
study shows that when the beam stiffness or lateral stiffness of bridge piers is insufficient,
the main dynamic indicators of trains and bridges significantly increase with the decrease
in stiffness. Fan et al. [21] found that the damping coefficient of bridges has great influence
on the vertical acceleration and mid‑span acceleration of vertical and horizontal beams.
Chen et al. [22–24] theoretically derived an analytical expression for the mapping relation‑
ship between pier settlement and rail deformation in a dual block ballastless track–bridge
system, and proposed a method for determining the safety threshold for high‑speed rail‑
way pier settlement. Zhang et al. [25] studied the impact of differential settlement of high‑
speed railway bridge piers on various railway performance‑related criteria. The wheel
load reduction rate increases with differential settlement of bridge piers, and the vertical
acceleration increases with differential settlement of bridge piers and train speed, respec‑
tively. Guo et al. [26] determined the mapping relationship between bridge deformation
and train operation safety. This provides a convenient method for engineers to evaluate
and maintain high‑speed railway bridges. Feng et al. [27] studied the impact of uneven
settlement of side piers on the stability and safety of train operation. Their study shows
that under the condition of uneven settlement of side piers, the stability of train operation
will be significantly affected.

At present, most bridge piers are of equal height, but in mountainous areas, due to
geographic factors, an equal height of bridge piers cannot be guaranteed when construct‑
ing bridges, and there is an effect of pier height on the dynamic response of the system.
Therefore, in this paper, three kinds of pier height conditions are set up, and the seismic
effect is considered to investigate the influence law of unequal‑height piers on the dynamic
response of high‑speed train–track–bridge coupled systems.

2. Train–Track–Bridge Coupled Vibration Model
2.1. Train Model

The single‑section train model is shown in Figure 1. Each carriage consists of four
wheelsets, a car body, and two bogies at the front and rear. It is assumed that the car
body, wheel pairs and bogies are rigid bodies, and the car body and bogies, and bogies
and wheelsets are simulated to be connected by linear spring dampers in longitudinal,
lateral and vertical directions [26,28,29]. The car body contains six degrees of freedom,
each wheel pair contains five degrees of freedom, and each bogie contains six degrees of
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freedom. That is, a single‑section train model with 38 degrees of freedom is established,
and the distribution of degrees of freedom is shown in Table 1.
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Table 1. Distribution of 38 degrees of freedom for a single train section.

Vertical Longitudinal Lateral Yaw Roll Pitch

Car body zc xc yc θzc θxc θyc
Front bogie zt f xt f yt f θzt f θxt f θyt f
Rear bogie ztb xtb ytb θztb θxtb θytb

First wheel set zw1 xw1 yw1 θzw1 θxw1 ‑
Second wheel set zw2 xw2 yw2 θzw2 θxw2 ‑
Third wheel set zw3 xw3 yw3 θzw3 θxw3 ‑
Fourth wheel‑set zw4 xw4 yw4 θzw4 θxw4 ‑

The subscript symbols c, wi, tf, and bf in Table 1 denote the train body, the i‑th wheel
set, and the front and rear bogies of the train, respectively. The mass Mcc, stiffness Kcc,
and damping matrices Ccc of the train are obtained from the multi‑rigid body dynamics.

2.2. Track and Bridge Model
This paper takes CRTS II slab ballastless track as an example to establish the track

model. The track structure is mainly composed of a base, CA mortar layer, track board,
elastic fasteners, rails and other components [30,31]. The steel rail is simulated as a beam
element, and the track plate and base are both simulated as plate elements. The base is con‑
nected to the bridge, the track plate is connected to the base, and the steel rail is connected
to the track plate as a linear spring damper, as shown in Figure 2.
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Figure 2. Cross section view of track model.

The bridge adopts a simply supported concrete box girder at both ends and a concrete
pier, as shown in Figure 3. The connection between the steel beam and the steel rail is also
considered as a linear spring damper connection. A bridge model is established based on
the finite element method, and the pier and beam are simulated as Euler–Bernoulli beam
elements. Each element has two nodes, and each node contains six degrees of freedom.
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The mass matrixMrr, Mbb, stiffness matrix Krr, Kbb and damping matrix Crr, Cbb of
the bridge and track can be easily calculated via the finite element method [32,33]. The
damping matrix Cbb of the bridge adopts Rayleigh damping, which can be composed of a
mass matrixMbb and stiffness matrix Kbb in a linear way.

Cbb =
2ω1ω2ζ

ω1 + ω2
Mbb +

2ζ

ω1 + ω2
Kbb (1)

where ω1, ω2 denote first‑order and second‑order natural frequencies (rad) of the bridge
structure, respectively, and ζ denotes the bridge damping ratio. Here, it is assumed that the
first‑order and second‑order corresponding bridge damping ratios are equal. Moreover,
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the stiffness and dampingmatrices (Krb, Kbr, Crb, Cbr) of the interaction between the track
and the bridge are also easily obtained, with the following relationships:

Kbr = KT
rb,Cbr = CT

rb (2)

2.3. Rail Irregularity
In reality, when trains pass over bridges, there are irregularities in the running surface

of the steel rails, which can be divided into four types: high and low irregularities, track
orientation irregularities, horizontal irregularities, and gauge irregularities [34]. In this
paper, the low interference rail irregularity power spectral density (PSD) of Germany is
used to describe the rail irregularity state of high‑speed railways [29,35].

Sv(Ω) = Av ·Ω2
c

(Ω2+Ω2
r )(Ω

2+Ω2
c )

Sa(Ω) = Aa ·Ω2
c

(Ω2+Ω2
r )(Ω

2+Ω2
c )

Sc(Ω) =
Av ·b−2

0 ·Ω2
c ·Ω2

(Ω2+Ω2
r )(Ω

2+Ω2
c )(Ω

2+Ω2
s )

Ss(Ω) =
Ag ·Ω2

c ·Ω2

(Ω2+Ω2
r )(Ω

2+Ω2
c )(Ω

2+Ω2
s )

(3)

where, Sv(Ω), Sa(Ω), Sc(Ω), Ss(Ω) denote the irregularity PSD of the vertical rail profile,
rail cross‑level, rail alignment and rail distance, respectively

(
m2/(rad/m)

)
, Av, Aa, Ag

denote the constants of roughness (m 2 · rad/m), Ωc, Ωr, Ωs denote the truncation fre‑
quency (rad/m), b0 denotes the half distance between two rails (m), and the corresponding
parameters are shown in Table 2.

Table 2. Parameters of PSD of rail irregularity.

Ωc Ωr Ωs Ag Av Aa

0.8264 0.0206 0.438 5.32 × 10−8 2.119 × 10−7 4.032 × 10−7

2.4. Train–Track–Bridge Coupled Vibration
According to themassmatrix, stiffnessmatrix and dampingmatrix obtained using the

finite element method, multi‑rigid body dynamics and other processing methods, based
on the energy principle, the train–track–bridge coupled vibration equation can be derived,
as shown below:Mcc 0 0

0 Mrr 0
0 0 Mbb




..
Xcc..
Xrr..
Xbb

+

Ccc Ccr 0
Crc Crr Crb
0 Cbr Cbb




.
Xcc.
Xrr.
Xbb

+

Kcc Kcr 0
Krc Krr Krb
0 Kbr Kbb


Xcc
Xrr
Xbb

 =


Qcc
Qrr
0

 (4)

where Xcc, Xrr and Xbb denote the displacement vector of the train, rail and bridge, respec‑
tively, while Qcc, Qrr denote the load train vector of the train and rail, respectively.

2.5. Equation Solving of System Coupled Vibration
Since the equations ofmotion are functional equationswith respect to time, at present,

numerical analysis methods are commonly used, such as the mean acceleration method,
linear acceleration method, Wilson‑θmethod, Newmark’s method, Runge–Kutta method,
and Houbolt’s method. In this paper, the MATLAB program solves the system dynamic
response based on the Wilson‑θmethod.

The Wilson‑θ method is an improvement on the linear acceleration method, which
is one of the simplest and best methods to use, expanding the time step from ∆t to θ∆t,
and unconditionally stabilizing at θ > 1.37, and the MATLAB program in this paper takes
θ = 1.4. SinceM, K, C varywith time, it is necessary to establishMt+θ∆t, Kt+θ∆t, Ct+θ∆t at
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each moment. At the moment t, the initial acceleration is calculated from the given initial
velocity of the system and the initial displacement using the following equation:

Mt
..qt +Ct

.qt +Ktqt = Qt (5)

Calculate Qt+θ∆t at each moment in time according to the linear law of change.

Qt+θ∆t = Qt + θ(Qt+∆t −Qt) (6)

Calculate the equivalent stiffnessmatrix and the equivalent loadmatrix at time t+ θ∆t,
respectively.

Kt+θ∆t = Kt+θ∆t +
6

(θ∆t)2Mt+θ∆t +
3

θ∆tCt+θ∆t

Qt+θ∆t = Qt+θ∆t +

(
6qt

(θ∆t)2 +
6
.qt

θ∆t + 2
..qt

)
Mt+θ∆t +

(
3qt
θ∆t + 2

.qt +
θ∆t

..qt
2

)
Ct+θ∆t

(7)

Solve for qt+θ∆t at each moment using the following equation.

Kt+θ∆t · qt+θ∆t = Qt+θ∆t (8)

Finally, the acceleration, velocity, and displacement responses for each moment can
be solved by the following equation:

..qt+∆t =
6

θ(θ∆t)2 (qt+θ∆t − qt)− 6
θ2∆t

.qt +
(
1 − 3

θ

) ..qt
.qt+∆t =

.qt +
∆t
2
( ..qt+∆t +

..qt
)

qt+∆t = qt + ∆t
.qt +

(∆t)2

6
( ..qt+∆t + 2

..qt
) (9)

3. Analysis and Calculation Parameters
3.1. Research Scenario

In order to analyze the influence of unequal‑height piers on the dynamic characteris‑
tics of high‑speed train–track–bridge coupling systems, this paper takes a three span sim‑
ply supported box girder bridge as an example. As shown in Figure 4, the train speed is
350 km/h, the span length is 32 m, and the bridge consists of a round‑ended solid pier with
a height of 8 m and a cross‑sectional area of 7.6 m2, and a C35 cast‑in‑place concrete pier
shaft. The structural damping ratio is 3%. The corresponding parameters of the bridge are
shown in Table 3, and the track and wheel set parameters are detailed in the Ref. [36]. The
train formation is: motor train + trailer × 6 + motor train. The corresponding parameters
of the high‑speed train and trailer are based on the German ICE3 train set parameters, as
detailed in Ref. [37].
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Table 3. Some parameters of the bridge.

Parameters Definitions Values Units

Eb Elastic modulus 3.45 × 1010 N/m2

I Mass moment of inertia of cross section 12.744 m4

µ Poisson’s ratio 0.2 /
mb Mass per unit length 2.972 × 104 kg/m
Le Length of element 3.2 m
ζ Damping ratio 0.03 /

3.2. Pier Height Working Condition
In order to fully analyze the influence of unequal‑height piers on the dynamic char‑

acteristics of a high‑speed train–track–bridge coupling system, the equal‑height pier con‑
dition is set, and two unequal‑height pier conditions are considered, namely gradually
increasing unequal‑height piers and sharply increasing unequal‑height piers. The pier
height parameters are shown in Table 4 below:

Table 4. Pier height parameters under different working conditions.

Working Condition Type H1 H2 H3 H4

Equal‑height pier (m) 8 8 8 8
Gradually increasing (m) 8 10 12 14
Sharply increasing (m) 8 8 14 14

3.3. Earthquake Excitation Model
For high‑speed railways, earthquakes not only directly affect the operation of high‑

speed trains and pose a threat of derailment to passengers, but also affect the construction
and maintenance of high‑speed railway lines. Once an earthquake occurs, it causes seri‑
ous damage to infrastructures such as tracks and viaducts, greatly increasing maintenance
costs and operational losses. Based on the above situation, it is of great significance to
consider the seismic influence in vehicle–bridge vibration analysis.

Due to the limited number of existing seismic records, it is not enough to solely study
the dynamic response of the system under earthquakes using existing records. Therefore,
this article uses artificial seismic waves as seismic excitations. The mathematical model
of seismic waves is simulated by using trigonometric series synthesis [35], and the artifi‑
cial seismic wave is synthesized by using the simulated standard response spectrum. The
acceleration equation of seismic ground motion is expressed in Equation (10):

..
q(t) = I(t) ·

n

∑
k=1

A(ωk) sin(ωk + φk) (10)

I(t) =


(

t
t1

)2
0 ≤ t ≤ t1

1 t1 ≤ t ≤ t2
e−c(t−t2) t2 ≤ t

(11)

A(ωk) =
√

4Sg(ω)∆ω (12)

ωk = ωl +
(

k − 1
2

)
∆ω

∆ω = ωu−ωl
n , k = 1, 2, · · · n

(13)

where I(t) denotes the intensity envelope function, which describes the process of earth‑
quakes from appearance, enhancement, stationarity, and weakening, as shown in Figure 5.
The values of each parameter of the intensity envelope function are referred to in Ref. [35].
c, A(ωk), Sg(ω), ωk, φk, ωu, ωl denote the attenuation coefficient of the weakening section,
the amplitude of corresponding ωk, the spectral density function of groundmotion acceler‑
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ation power, the k‑th frequency, the random phase angle evenly distributed and mutually
independent within [0 , 2π], and the upper and lower limits of frequency, respectively.
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In this paper, the ground vibration power spectral density function model adopts the
Clough–Penzien model that considers the low‑frequency components.

Sg(ω) =

[
ω4

g + 4ζ4
gω2

gω2

(ω2
g − ω2)2 + 4ζ2

gω2
gω2

]
×

 ω4

(ω2
f − ω2)

2
+ 4ζ2

f ω2
f ω2

S0 (14)

where ωg, ζg denote the site excellence frequency and site damping ratio, respectively,
ω f , ζ f denote the ground filtering parameters for controlling low‑frequency components
of ground motion, and S0 denotes the spectral intensity factor, as shown in Table 5.

Table 5. Seismic PSD parameter values.

Parameters
Site Classification

I II III IV

ζg 0.728 0.775 0.822 0.868
ζ f 0.411 0.557 1.140 2.208

ωg(rad · s−1) 24.763 18.656 13.491 9.848
ω f (rad · s−1) 0.453 0.355 0.154 0.082
S0(cm2/s2)
(PGA = 0.1 g) 11.241 15.546 22.370 31.201

S0(cm2/s2)
(PGA = 0.2 g) 43.028 59.512 85.598 119.304

S0(cm2/s2)
(PGA = 0.4 g) 172.103 238.028 342.905 478.009

The site categories are divided into four classes, I, II, III and IV, according to the soil
layer where the structure is located.

(1) Class I site soil: rocky, compact gravelly soil.
(2) Class II site soil: medium‑dense, loose gravel soil, dense,medium‑dense gravel, coarse

and medium sand; clayey soil with foundation soil with a permissible bearing capac‑
ity [σ0] > 150 kPa.

(3) Class III site soil: loose gravel, coarse and medium sand, dense and medium‑dense
fine and silty sand, clayey soil with a permissible bearing capacity [σ0]≤ 150 kPa and
fill soil with [σ0] ≥ 130 kPa.

(4) Class IV site soil: silty soil, loose fine and chalky sand, recently deposited clayey soil;
fill with foundation soil with an allowable bearing capacity [σ0] < 130 kPa.

Taking a Class II site with an eight‑degree fortification and a 0.1 g seismic acceler‑
ation as an example, the design earthquake group is set as the second group. The seis‑
mic excitation adopts a combination of longitudinal, transverse, and vertical earthquakes
Ex + Ey + 0.65Ex.
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4. Dynamic Response of the System
This paper conducted a study on the influence of three pier heightworking conditions

on the coupled vibration response and running safety of the vehicle bridge system at five
speeds of 150, 200, 250, 300, and 350 km/h. The constant height pier working conditions
were selected to explore the influence of vehicle speed and seismic action on the dynamic
response of the high‑speed train–track–bridge system.

4.1. Validation of the System
In order to verify the reliability and accuracy of the train–track–bridge coupled vibra‑

tion system model established in this paper, an example of Ref. [38] is used for the relia‑
bility analysis, the parameters of the bridge and the train are set to be the same as those in
Ref. [38], and the train is set to run at a speed of 240 km/h. Comparing the vertical displace‑
ment of the bridge spans, as can be seen in Figure 6, the vertical time‑dependent response
of the bridge spans obtained via the two models are very close and almost overlap, which
means that the train–track–bridge coupled vibration system model is reliable.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 17 
 

Taking a Class II site with an eight-degree fortification and a 0.1 g seismic acceleration 
as an example, the design earthquake group is set as the second group. The seismic exci-
tation adopts a combination of longitudinal, transverse, and vertical earthquakes 

0.65x xyE E E+ + . 

4. Dynamic Response of the System 
This paper conducted a study on the influence of three pier height working condi-

tions on the coupled vibration response and running safety of the vehicle bridge system 
at five speeds of 150, 200, 250, 300, and 350 km/h. The constant height pier working con-
ditions were selected to explore the influence of vehicle speed and seismic action on the 
dynamic response of the high-speed train–track–bridge system. 

4.1. Validation of the System 
In order to verify the reliability and accuracy of the train–track–bridge coupled vi-

bration system model established in this paper, an example of Ref. [38] is used for the 
reliability analysis, the parameters of the bridge and the train are set to be the same as 
those in Ref. [38], and the train is set to run at a speed of 240 km/h. Comparing the vertical 
displacement of the bridge spans, as can be seen in Figure 6, the vertical time-dependent 
response of the bridge spans obtained via the two models are very close and almost over-
lap, which means that the train–track–bridge coupled vibration system model is reliable. 

 
Figure 6. Model validation with the example in Ref. [38]. 

4.2. Train Running Safety Indicators 
4.2.1. Derailment Coefficient 

French scientist Nadal first began to study the wheel climbing phenomenon, and in 
1896, according to the climbing wheel climbing tendency of static equilibrium conditions, 
deduced the minimum derailment coefficient Q/P [39]. The wheel–rail contact diagram as 
shown in Figure 7. 

tan
1 tan

Q
P

α μ
μ α+

−=  (15)

where Q denotes the wheel rail lateral force, P denotes the wheel weight, α  denotes the 
angle between tangent line and horizontal line at the contact point of wheel and rail, that 
is, rim contact angle; and μ  denotes the coefficient of friction between wheel rim and 
rail side. 

Figure 6. Model validation with the example in Ref. [38].

4.2. Train Running Safety Indicators
4.2.1. Derailment Coefficient

French scientist Nadal first began to study the wheel climbing phenomenon, and in
1896, according to the climbing wheel climbing tendency of static equilibrium conditions,
deduced the minimum derailment coefficient Q/P [39]. The wheel–rail contact diagram as
shown in Figure 7.

Q
P

=
tan α − µ

1 + µ tan α
(15)

where Q denotes the wheel rail lateral force, P denotes the wheel weight, α denotes the
angle between tangent line and horizontal line at the contact point of wheel and rail, that is,
rim contact angle; and µ denotes the coefficient of friction between wheel rim and rail side.

The derailment factor varies from country to country. According to Chinese standard
TB10761‑2013 [40], the derailment factor should meet the following requirements:{

Q/P ≤ 0.8 (Allowable limit)
Q/P ≤ 1.0 (Danger limit) (16)
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4.2.2. Rate of Wheel Load Reduction
In addition to the derailment coefficient, people also use the rate of wheel load re‑

duction to determine the train running safety. When the wheels are substantially loaded
down, that is, the vertical force on the wheels and rail is very small, the corresponding
lateral force on the wheels and rail is often very small, and due to the impact of measure‑
ment error, it is difficult to calculate the derailment coefficient, especially when the wheel
and rail are detached, which provides the derailment coefficient to assess the train running
safety, addressing this serious problem.

Therefore, the increase in the rate of wheel load reduction can be used to compre‑
hensively and effectively assess the derailment stability of the train’s running. The rate
of wheel load reduction is defined as the ratio of the wheel weight reduction ∆P on the
reduced side to the average static wheel weight P of the wheelset. The rate of wheel load
reduction standard stipulated by China is as follows [41]:{

∆P/P ≤ 0.65 (First limit, eligibility criteria)
∆P/P ≤ 0.6 (Second limit, increased safety margin criteria) (17)

4.3. The Influence of Train Speed on System Dynamic Response
We compare the dynamic response of the system under no seismic excitation with

that under seismic excitation, and analyze the influence of an earthquake on the dynamic
response of the train–track–bridge system. The train passed over the bridge at speeds of
150, 200, 250, 300, and 350 km/h, respectively, andwe recorded the peak dynamic response
of the system, as shown in the following figures.

From Figures 8 and 9, it can be seen that seismic excitation has a significant impact on
the dynamic response of bridges, with a particularly prominent impact on the acceleration
response. The lateral dynamic response of the bridge increases more than the vertical dy‑
namic response. This is becausewhen there is no earthquake, the lateral dynamic response
of the train mainly comes from the lateral track’s irregularity, and the vertical dynamic re‑
sponse mainly comes from the train’s gravity. The seismic excitation is input according to
the vertical seismicwave strength, which is 0.65 times the horizontal seismicwave strength.
Therefore, the seismic excitation has a more intense and sensitive impact on the lateral dy‑
namic response of the bridge than the vertical dynamic response, and under earthquake
excitation, some responses exceed the safety index limit, seriously reducing the smooth‑
ness and safety of the train. Overall, the dynamic response of the bridge increases with the
increase in vehicle speed.
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From Figure 10, it can be seen that the train response generally increases with the in‑
crease in operating speed, and the lateral response is more affected by seismic excitation
than the vertical response, for the same reason as the above bridge response influence law.
From Figure 11, it can be seen that under seismic excitation, the wheel rail load reduc‑
tion rate and derailment coefficient of trains generally increase with the increase in vehicle
speed. When the operating speed is 350 km/h, the two safety indicators of trains approach
the limit values [42]. When the seismic acceleration is greater, the vehicle speed is faster,
and the bridge structure is more flexible, the risk of train derailment will greatly increase,
and the safety and comfort of trains will be greatly reduced.
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4.4. The Influence of Pier Height on System Dynamic Response
This paper only analyzes the influence of unequal pier heights on the dynamic re‑

sponse and running safety of the high‑speed train–track–bridge system under seismic ex‑
citation when the train passes over the bridge at a speed of 300 km/h. The first‑ to fourth‑
order natural frequencies of the bridge as shown in Table 6.

Table 6. First‑ to fourth‑order natural frequencies of the bridge.

Working Condition Type 1st Modulus 2nd Modulus 3rd Modulus 4th Modulus

Equal‑height pier 13.187 13.302 15.806 21.443
Gradually increasing 10.452 10.518 12.998 15.538
Sharply increasing 9.630 10.832 13.964 15.595

The working conditions of the bridge piers are shown in Table 4 in Section 3.2. From
Figure 12, it can be seen that compared to equal‑height piers, the peak lateral dynamic
response of bridges with unequal‑height piers (gradually increasing) decreases, while the
peak vertical dynamic response of bridges increases. The peak lateral dynamic response of
bridges with unequal‑height piers (Sharply increasing) increases sharply, while the peak
vertical dynamic response of bridges decreases. From Figure 13, it can be seen that com‑
pared to equal‑height piers, the peak lateral dynamic response of trains with unequal‑
height piers (gradually increasing) decreases, which is beneficial for stabilizing the vehi‑
cle body. The peak lateral dynamic response of trains with unequal‑height piers (sharply
increasing) increases sharply, seriously reducing passenger comfort. Moreover, the verti‑
cal dynamic response of trains under both unequal‑height pier conditions increases, and
the safety indicators of equal‑height piers are significantly better than those under the two
unequal‑height pier conditions. From the data in the above figures, it can be concluded that
considering the comfort and safety of the train, the optimal choice is to design equal‑height
bridge piers, followed by gradually increasing pier heights, and avoiding steep increases
in pier heights.
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5. Conclusions
In this study, based on the finite element method and multi‑body dynamics method,

a high‑speed train–track–bridge coupling system model was established. Calculation and
analysis were conducted via programming to explore the influence of unequal‑height piers
on the dynamic response of a high‑speed railway vehicle bridge system. The following
conclusion was obtained:
(1) The dynamic response of the system and the safety index of the train generally in‑

crease with the increase in the train running speed.
(2) Under seismic excitation, the dynamic response of the system is significantly increased,

and the lateral dynamic response of the system is more affected by seismic excitation
than the vertical response.

(3) Compared to equal‑height piers, the peak lateral dynamic response of the system
with unequal‑height piers (gradually increasing) decreases, which is beneficial for
stabilizing the vehicle body. The peak lateral dynamic response of the system with
unequal‑height piers (steep increase in pier height) increases sharply, seriously re‑
ducing passenger comfort.

(4) The vertical dynamic response of trains under two unequal‑height pier conditions
increases, and the safety indicators of equal‑height piers are significantly better than
the two unequal‑height pier conditions. The recommended design is the optimal
choice for equal‑height bridge piers, followed by gradually increasing pier heights,
and avoiding steep increases in pier heights.
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