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Abstract: This paper compared the predictive performance of different regression models for trend
component estimation in the spatial downscaling of coarse resolution satellite data using area-to-point
regression kriging in the context of the sensitivity to input data errors. Three regression models, linear
regression, random forest, and support vector regression, were applied to trend component estimation.
An experiment on downscaling synthetic Landsat data with different noise levels demonstrated that a
regression model with higher explanatory power and residual correction led to the highest predictive
performance only when the input coarse resolution data were assumed to be error-free. Through an
experiment on spatial downscaling of coarse resolution monthly Advanced Microwave Scanning
Radiometer-2 soil moisture products with significant errors, we found that the higher explanatory
power of regression models did not always lead to better predictive performance. The residual
correction and normalization of trend components also degraded the predictive performance. Using
trend components as a final downscaling result showed the best performance in both experiments as
the input errors increased. As the predictive performance of spatial downscaling results is susceptible
to input errors, the findings of this study should be considered to evaluate downscaling results and
develop advanced spatial downscaling methods.

Keywords: spatial downscaling; trend component; residual; spatial scale

1. Introduction

The recent advances in sensor technology have made various satellite images and
satellite-derived products available for Earth observation (EO). Quantitative thematic
information derived from satellites has been widely applied to environmental monitoring
and modeling tasks at various spatial and temporal scales [1–3].

Despite the great potential of remote sensing data for EO tasks, it is not always possible
to utilize the remote sensing data obtained at the desired spatial and temporal resolutions.
While each satellite sensor has its own set of spatial and temporal resolutions, the trade-off
between spatial and temporal resolutions is a well-known challenge in remote sensing [2,3].
For example, satellite sensors designed for global monitoring typically prioritize high
temporal resolutions over high spatial resolutions, while most satellite data with high
spatial resolutions have low temporal resolutions. In particular, to fully utilize the temporal
information of remote sensing data with high temporal resolutions, it is often necessary to
convert the data obtained at low spatial resolution to data with relatively higher spatial
resolution for local-scale applications. This scale conversion, known as spatial downscaling,
is a common strategy employed by the remote sensing community [2,4].
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Since the late 2000s, spatial downscaling has been widely applied to enhance the
spatial resolution of various remote sensing data, such as precipitation [5–10], soil mois-
ture (SM) [11–15], and land surface temperature (LST) [16–20]. Most studies have tried to
downscale the coarse spatial resolution remote sensing data using fine spatial resolution
auxiliary variables associated with the target attribute. From a methodological perspective,
there are two approaches to spatial downscaling. The first approach is regression modeling,
where quantitative relationships between a target variable and auxiliary variables are
first quantified, and the relationships are then used to predict the target variable at a fine
scale [6,8,13,16–19]. Various regression models, ranging from linear regression (LR) to ma-
chine learning, have been applied to spatial downscaling, as summarized in Park et al. [2].
The performance of this regression-modeling approach depends heavily on the explanatory
power of the applied regression model. When the regression model fails to explain the
variability of the target variable, the downscaling results cannot preserve the spatial pattern
of the input coarse resolution data [2].

The second approach, complementing the limitations of the regression-based approach,
is a component-decomposition-based one. It decomposes a target attribute into a deter-
ministic trend component (TC) and a stochastic residual component (RC). The TC at fine
resolution is estimated using regression modeling similar to the abovementioned approach.
The RC that cannot be explained from regression modeling is predicted at fine resolution
using spatial interpolation. The final downscaling result is generated by summing the
above two components. The advantage of this hybrid approach over the regression-based
approach is that the spatial pattern of the coarse resolution data can be reproduced by
considering the residual correction, even when the regression model does not have high
explanatory power [2]. Area-to-point regression kriging (ATPRK) [21] is a representative
model for this approach and has been widely applied to the spatial downscaling of remote
sensing images and products [22–25].

Despite the great potential of ATPRK for spatial downscaling, there is a practical
issue to be resolved. An important issue, which is the main focus of this study, is an
error propagation problem. If the input data contain errors, the errors affect both the TC
estimation and final downscaling results. Satellite-derived products, including precipitation
and SM, are obtained through modeling procedures. Thus, any satellite-based products
inevitably contain intrinsic errors. When coarse resolution data with significant errors
are used as input for spatial downscaling, some regression models with high explanatory
power may yield downscaling results with poor quality [26,27]. In such a case, residual
correction may not improve predictive performance.

When LR and area-to-point kriging (ATPK) are applied to the TC and RC estimations,
respectively, ATPRK enables a coherent prediction [2,28]. That is, the downscaling results
are the same as the original coarse resolution input data when upscaled to the coarse
resolution. Spatial downscaling aims to predict attribute values at a fine resolution by
preserving the properties of the input coarse resolution data. Thus, the preservation of
the coherence property is important. However, the application of nonlinear regression
models to TC estimation cannot guarantee perfectly coherent predictions. TCs estimated
using nonlinear regression models can be normalized to satisfy the coherence property.
After upscaling the fine resolution TC to the coarse resolution, the coarse resolution RC
is calculated by subtracting the upscaled TC from the input coarse resolution data [16].
Then, the fine resolution RC is estimated using ATPK. However, when the input coarse
resolution data contain errors, the coherent prediction might degrade the downscaling
results, achieving poor predictive performance. Thus, the input errors inevitably affect the
prediction results of ATPRK-based spatial downscaling.

To the best of our knowledge, most previous studies have focused on the selection
of advanced regression models. The impact of the errors of input coarse resolution data
on predictive performance has not been thoroughly investigated. As the quality of spatial
downscaling results is subject to that of the input coarse resolution data, it is necessary
to analyze the impact of input errors in conjunction with the comparison of different
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regression models. Such a sensitivity analysis is the primary objective of this study. More
specifically, this study aimed to compare the predictive performance of spatial downscaling
of coarse resolution remote sensing data for different regression models and different
quantities of input errors. Quantitative comparisons were conducted on two datasets,
including synthetic Landsat images with different error levels and monthly Advanced
Microwave Scanning Radiometer-2 (AMSR-2) SM products. In particular, the predictive
performances were evaluated in the context of the sensitivity of different error quantities
by comparing different regression models for TC estimation.

2. Methods and Data
2.1. Spatial Downscaling Based on ATPRK

ATPRK was employed as a standard spatial downscaling method in this study because
of its great potential for spatial downscaling. It is a multivariate version of ATPK proposed
initially to predict fine-scale attribute values from areal data [28]. It is a hybrid method
combining regression-based modeling with ATPK-based residual correction [2] and was
named by Wang et al. [21,29]. Its implementation requires coarse resolution data and fine
resolution auxiliary variables associated with the target attribute.

The whole procedure for ATPRK is illustrated in Figure 1. In this section, the main
theoretical background and application procedures of ATPRK are briefly provided. Suppose
that the attribute values of coarse resolution data (zc(v)) are available in the study area of
interest, where v denotes a coarse resolution pixel. In theory, ATPRK regards the target
variable as a random variable that is decomposed into TC and RC as:

zc(v) = Tc(v) + Rc(v), (1)

where T and R are the TC and RC at a coarse resolution, respectively.
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By applying the same decomposition to the attribute at a fine resolution, the attribute
value at a fine resolution location u (ẑF(u)) within a coarse resolution pixel is predicted as
the sum of TC and RC predicted at a fine resolution:

ẑF(u) = T̂F(u) + R̂F(u), (2)
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where T̂F and R̂F are the TC and RC predicted at a fine resolution, respectively.
The TC at a fine resolution is predicted using regression modeling between the target

attribute and the auxiliary variables. Prior to predicting the TC at a fine resolution, the
quantitative relationships between the target attribute and auxiliary variables are first
derived at a coarse resolution since the target attribute is available only at a coarse resolution.
When there are N auxiliary variables at a fine resolution in the study area (yF), the fine
resolution auxiliary variables to the coarse resolution are first upscaled to the coarse
resolution. Regression modeling is then conducted to quantify the relationship between
the target attribute and the upscaled auxiliary variables. Finally, the TC at a fine resolution
(T̂F(u)) is predicted using the relationship modeled at a coarse resolution and the auxiliary
variables at a fine resolution, under the assumption that the quantitative relationships
between the target attribute and auxiliary variables remain unchanged across spatial
resolution [2]:

T̂F(u) = f (yi
F(u)), i = 1, · · · , N, (3)

where f (·) denotes the regression function applied at a coarse resolution and yi
F(u) is the

ith auxiliary variable at a fine resolution.
As regression modeling is conducted at a coarse resolution, the RC at a fine resolution

(R̂F(u)) in Equation (2) has to be predicted from the coarse resolution RC via another
estimation procedure. ATPK has great potential for area-to-point predictions because of its
ability to explicitly account for scale differences between input data and output results [2].
This study employed ATPK to predict the RC at a fine resolution. The theory and detailed
explanations of ATPK can be referred to in Kyriakidis [28] and some previous studies [7,29].

2.2. Datasets

In this study, we prepared two datasets for the performance comparison experiments
(Table 1). The first dataset (hereafter referred to as the Landsat dataset) included simulated
Landsat images. The subarea over Cheongyang and Gongju in South Korea, with a spatial
extent of 9 km by 9 km, was extracted from a Landsat-5 image on 30 April 2013 (Figure 2a).
This subarea was selected because there are various land-cover types, including a river,
mountains, croplands, and built-up. The shortwave infrared (SWIR) band was experi-
mentally selected as a target band, and the red and near infrared (NIR) bands at a 30 m
resolution were used as fine resolution auxiliary variables by considering their reasonably
good correlations to the SWIR band. The original 30 m SWIR band was aggregated to a
150 m resolution, and the aggregated SWIR band at a 150 m resolution was then regarded
as a coarse resolution image. The final goal for the experiment using this dataset was to
predict the 30 m SWIR band from the 150 m one using two 30 m bands.

Table 1. List of datasets used for spatial downscaling experiments (NIR: near infrared; SWIR:
shortwave infrared; NDVI: normalized difference vegetation index; LST: land surface temperature).

Dataset Variable Spatial Resolution Remark

Landsat

SWIR band 150 m Target variable

Red band 30 m Auxiliary variablesNIR band 30 m

SM

AMSR-2 soil moisture 10 km Target variable

NDVI

1 km Auxiliary variables

LST
Elevation

Cropland fraction
Forest fraction
Water fraction
Barren fraction

Built-up fraction
Latitude

Longitude
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Figure 2. Two datasets used for spatial downscaling experiments: (a) Landsat shortwave infrared
band image; (b) AMSR-2 soil moisture data in July 2017 (unit: %). The black polylines and dots in
(b) denote the administrative boundary of South Korea and soil moisture observation sites used for
accuracy evaluation, respectively.

Real satellite-based SM products (hereafter referred to as the SM dataset) were used as
the second dataset. Monthly AMSR-2 soil moisture products at a 10 km resolution between
May and October from 2015 to 2017 over South Korea were used as the input coarse
resolution images (Figure 2b). Ten variables were prepared to be used as fine resolution
auxiliary variables. The two dynamic variables, which temporally varied, were the MODIS
monthly normalized difference vegetation index (NDVI) and monthly LST products. The
eight static variables, which remained unchanged over time, were elevation, the fractions of
five land-cover types (cropland, forest, water, barren, and built-up), latitude, and longitude.
The spatial resolution of all auxiliary variables with different spatial resolutions was set to
1 km. Thus, the output of the experiment using this dataset was the soil moisture value
at 1 km.

2.3. Experimental Design
2.3.1. Comparison of Regression Models

Three regression models commonly applied to spatial downscaling, LR, random forest
(RF), and support vector regression (SVR) models, were applied to estimate the TC in
Equation (3). As the effect of different TC estimates on the predictive performance of
ATPRK predictions was primarily explored in this work, ATPK was only employed as
a residual correction method in all the comparison experiments, based on our previous
study [2]. It should be noted that the comparison of the three regression models did not aim
to select the optimal regression model but to compare the behaviors of different regression
models with respect to input errors.

LR is the baseline for the TC estimator in ATPRK-based spatial downscaling. RF, as an
ensemble learning method combining tree-based predictors, is relatively robust to outliers
and effectively avoids overfitting by maximizing diversity through tree ensembles [30].
Furthermore, RF demands relatively a small number of user-specified hyperparameters [16].
In this study, we optimized two hyperparameters: the number of variables for the best
splitting and the number of trees to be grown, by minimizing out-of-bag errors. The
feature selection procedure was not considered in this study to ensure that each regression
model used the same auxiliary variables. SVR, one of the kernel-based learning methods,
is known to effectively model nonlinear relationships for noisy data [31]. In this study,
we applied ε-SVR with the ε-insensitive function for TC estimation. The radial basis



Appl. Sci. 2023, 13, 10233 6 of 13

function (RBF), widely utilized in remote sensing data processing [31,32], was selected as
the kernel function. The optimal values of three hyperparameters in ε-SVR, including ε, the
regularization parameter, and the gamma of the RBF kernel, were determined through a
grid search within appropriate ranges identified in preliminary experiments.

In addition to ATPRK predictions, two other cases were considered spatial downscal-
ing results, as listed in Table 2. Since the TC estimate in Equation (3) has often been used as
a spatial downscaling result in previous studies, the direct use of the TC estimate as the
downscaling result (C1) was compared with the ATPRK result obtained after a residual
correction (C2). Moreover, the impact of the normalization for TC estimated from nonlinear
regression on predictive performance was also explored. More specifically, the normal-
ization of TC estimates (C3) was additionally applied when RF and SVR were applied to
estimate TCs.

Table 2. List of spatial downscaling result cases considered for three regression models (LR: linear
regression; RF: random forest; SVR: support vector regression; ATPRK: area-to-point regression kriging).

Case LR RF SVR

C1 Trend component only C1_LR C1_RF C1_SVR
C2 ATPRK C2_LR C2_RF C2_SVR
C3 ATPRK with trend normalization - C3_RF C3_SVR

All spatial downscaling procedures, including data preparation and accuracy evalua-
tion, were implemented using ENVI software version 5.6 (L3Harris Technologies, Broomfield,
CO, USA), the Scikit-learn library [33], and Python/R programming.

2.3.2. Experiment on the Landsat Dataset

As the actual SWIR band image at 30 m resolution was available, the impact of the
errors in input data on spatial downscaling was explored by intentionally generating the
noise-contaminated coarse resolution SWIR images. More specifically, white noises from
Gaussian distributions with zero means and three different standard deviations (5, 10,
and 20) were added to the 150 m resolution SWIR band. Thus, four inputs, including one
error-free SWIR band and three noise-contaminated SWIR bands, were used as input for the
spatial downscaling experiment (Table 3). The original 30 m SWIR band was used as a test
image for evaluating predictive performance. Per-pixel comparison of spatial downscaling
results with the test image was employed to compute the accuracy.

Table 3. List of different input cases used for spatial downscaling of the Landsat dataset.

Case Description

E0 Error-free standard input
E1 Noisy input (noise standard deviation = 5)
E2 Noisy input (noise standard deviation = 10)
E3 Noisy input (noise standard deviation = 20)

2.3.3. Experiment on the SM Dataset

For the SM dataset, the soil moisture observations from the Agrometeorological
Information Service of the Rural Development Administration (RDA) [34] were used
to evaluate the predictive performance. After excluding some data observed along coastal
lines and islands, 40 RDA observations were used as test data. Unlike the synthetic Landsat
dataset, the error information of the input SM dataset was unknown. To explore the impact
of input errors on the prediction results, the accuracy of the coarse resolution SM data was
also computed using the RDA observations to assess the quality of the input data.
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2.3.4. Accuracy Indices for Evaluation

The mean absolute error (MAE) and mean relative absolute error (MRAE) values were
computed as quantitative accuracy measures for both datasets. MRAE, defined as the
ratio of the MAE to the mean of actual values, was considered to highlight the relative
difference in errors for small actual reflectance values. Furthermore, the coefficient of
determination (R2) of regression modeling and error information of input data were used
as supplementary information to compare and interpret the accuracy measures.

3. Results
3.1. Spatial Downscaling of the Landsat Dataset

The R2 values of three regression models for TC estimation are listed in Table 4.
Regardless of the magnitude of errors, RF achieved the highest explanatory power, followed
by SVR. LR showed the lowest explanatory power. The addition of errors resulted in a
decrease in the explanatory power for all three regression models.

Table 4. Coefficient of determination (R2) values of three regression models for the Landsat dataset
(unit: %).

Dataset LR RF SVR

E0 60.43 90.36 76.72
E1 54.07 86.66 68.71
E2 41.31 79.63 62.63
E3 21.13 68.33 47.04

Table 5 summarizes the accuracy assessment results for different error levels and
spatial downscaling results for three regression models. For all cases, accuracy decreased
as input errors increased, regardless of regression models and types of spatial downscaling
results. For the LR model, the ATPRK result (C2) achieved the best accuracy for error-free
input data (E0), indicating that residual correction could improve predictive performance
when the input data have no or few errors. However, when the input coarse resolution
data were contaminated by severe noise, residual correction led to the worst predictive
performance (E3). Notably, the regression-based predictions of LR and SVR (C1_LR and
C1_SVR) were less sensitive to the magnitude of input errors. For the RF and SVR models,
the TC normalization yielded the best predictive accuracy for error-free input data (E0).
As the input errors increased, the TC normalization could not improve accuracy, yielding
the worst accuracy for the input data with severe errors (E3). Furthermore, the use of the
TC estimate as a downscaling result (C1) could achieve better accuracy than the ATPRK
results with residual correction (C2) and with normalization (C3). When comparing the
prediction performance of the three regression models, the application of SVR for the TC
estimation achieved the best accuracy for all input error levels. Although RF showed the
highest explanatory power (Table 4), the higher explanatory power of RF did not always
lead to better prediction accuracy. Instead, overfitting to the error-contaminated input data
might degrade the predictive performance.

Table 5. Accuracy statistics of all cases for the Landsat dataset (MAE: mean absolute error; MRAE:
mean relative absolute error). The best case for each error level is shown in bold. The case name can
be referred to in Tables 2 and 3.

Error Level Case MAE MRAE Error Level Case MAE MRAE

E0

C1_LR 0.019 13.86%

E2

C1_LR 0.019 13.89%
C2_LR 0.013 9.31% C2_LR 0.021 15.28%
C1_RF 0.015 11.33% C1_RF 0.017 12.32%
C2_RF 0.013 9.79% C2_RF 0.018 13.63%
C3_RF 0.012 8.92% C3_RF 0.021 15.31%

C1_SVR 0.015 11.03% C1_SVR 0.015 11.07%
C2_SVR 0.012 8.92% C2_SVR 0.020 14.74%
C3_SVR 0.012 8.55% C3_SVR 0.020 14.47%
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Table 5. Cont.

Error Level Case MAE MRAE Error Level Case MAE MRAE

E1

C1_LR 0.019 13.88%

E3

C1_LR 0.019 13.91%
C2_LR 0.015 11.21% C2_LR 0.033 24.61%
C1_RF 0.016 11.59% C1_RF 0.020 13.42%
C2_RF 0.015 10.86% C2_RF 0.027 20.24%
C3_RF 0.015 10.98% C3_RF 0.035 25.97%

C1_SVR 0.015 11.06% C1_SVR 0.015 11.22%
C2_SVR 0.015 10.78% C2_SVR 0.033 24.44%
C3_SVR 0.014 10.46% C3_SVR 0.033 24.60%

In summary, when the magnitude of input data errors was small, the residual cor-
rection in ATPRK was effective, and TC normalization was required for the nonlinear
regression model. In contrast, using the TC estimate as a downscaling result was more
effective than the ATPRK result when the input data were severely contaminated by errors.

3.2. Spatial Downscaling of the SM Dataset

Table 6 shows the explanatory power of three regression models for TC estimation.
Similar to the Landsat dataset, the highest R2 value was obtained via RF across almost all
months. LR achieved the lowest explanatory power and also showed very low R2 values
for some months (e.g., October 2015 and 2017). The R2 values of LR and RF were negatively
correlated with the mean of the actual observation values (−0.568 for both models), which
means that auxiliary variables were insufficient to account for humid soil conditions. In
contrast, SVR showed a positive correlation with the mean of observation values (0.591),
which affected the predictive performance of the spatial downscaling results.

Table 6. Coefficient of determination (R2) values of three regression models for the SM dataset (unit: %).

Year Month LR RF SVR

2015

May 32.67 88.31 75.61
June 46.59 91.69 84.22
July 33.81 90.48 84.99

August 30.57 89.68 91.87
September 39.36 90.00 79.25

October 6.24 85.56 83.26

2016

May 22.57 86.11 79.01
June 44.82 90.68 76.79
July 22.29 88.56 79.58

August 28.02 88.53 82.20
September 28.13 90.13 84.85

October 28.21 90.80 90.45

2017

May 22.80 85.71 72.40
June 46.88 89.90 69.28
July 28.35 91.13 89.47

August 17.09 86.85 89.22
September 29.39 87.69 73.65

October 14.06 89.34 87.75

Table 7 presents the MAE values of all comparison cases between 2015 and 2017. The
accuracy values of the input AMSR-2 SM data are also presented to compare the impact
of input errors on prediction accuracy. All cases showed negative mean error values (not
shown here), which indicates an underestimation of the observation values. This underesti-
mation resulted from the direct comparison of areal values with point observations, as well
as the actual underestimation of satellite products. The TC estimates with SVR (C1_SVR)
achieved the best prediction accuracy for most months (13 out of 18 months). This result is
similar to the result of the Landsat dataset, that is, the TC estimates predicted well when
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the input data contained severe errors. The following best predictions were produced by
the TC estimates with RF (3 out of 18 months). In most cases, LR-based ATPRK (C2_LR)
and RF-based ATPRK with TC normalization (C3_RF) showed the worst accuracy. For
example, C2_LR and C3_RF for August 2016 exhibited decreases of 86% and 61% in MAE,
respectively, compared to the best case (C1_SVR). In particular, the MAE values of those
predictions were worse than those of the input data, indicating that input errors were
amplified after spatial downscaling.

Table 7. Mean absolute error values of all comparison cases for the SM dataset. The best case per
month is shown in bold. The case name can be referred to in Table 2.

Year Month Input C1_LR C1_RF C1_SVR C2_LR C2_RF C2_SVR C3_RF C3_SVR

2015

May 11.73 11.03 10.87 10.02 11.10 11.09 10.03 11.84 10.61
Jun. 5.55 4.62 4.31 4.79 5.76 4.69 4.97 5.71 4.75
Jul. 8.01 9.27 5.52 6.81 10.25 5.97 7.79 7.88 7.30

Aug. 12.41 12.13 11.28 8.43 12.87 11.48 8.59 12.85 10.69
Sep. 12.95 12.02 12.16 9.51 12.19 12.33 9.53 13.48 11.16
Oct. 12.14 11.03 10.98 9.87 11.63 11.22 9.98 12.54 11.23

2016

May 14.67 14.63 14.42 14.30 14.21 14.21 13.91 14.47 14.18
Jun. 7.75 7.90 6.65 6.23 8.18 6.78 6.29 7.76 6.87
Jul. 13.62 12.70 10.89 9.37 13.47 11.38 9.99 13.06 11.91

Aug. 9.46 9.62 7.90 6.10 10.42 8.43 6.18 9.83 8.18
Sep. 14.64 12.09 12.84 9.26 13.26 12.95 9.29 15.06 12.87
Oct. 16.07 14.91 14.29 12.76 16.16 14.29 12.81 16.31 14.78

2017

May 10.27 8.79 9.40 7.38 9.16 9.60 7.50 10.67 8.74
Jun. 6.08 5.80 5.26 5.66 6.74 5.93 6.16 6.63 6.34
Jul. 11.89 10.34 8.44 7.78 12.64 9.51 8.35 12.21 10.63

Aug. 13.69 11.45 9.87 8.39 12.33 10.34 8.74 13.69 11.78
Sep. 14.78 12.30 13.78 12.55 13.09 13.84 12.53 14.88 14.38
Oct. 14.88 12.62 13.51 12.58 13.70 13.56 12.71 15.32 13.55

The MRAE was found to be more effective than the MAE because it allowed for
relative comparisons of SM values that vary over time. Figure 3 presents the variations of
MRAE values for all comparison cases over the considered period. The superior prediction
accuracy of C1_SVR is clearly shown over time. The next best prediction was obtained
by C2_SVR (12 out of 18 months). It is noteworthy that the accuracy values of most
predictions, except for C3_RF and C2_LR, were superior to those of input AMSR-2 data
when considering that spatial downscaling aims to predict fine-scale attribute values, not
to produce results with superior accuracy to the input coarse resolution data.

For the LR-based prediction, ATPRK had worse predictions than the TC estimate.
When comparing three RF-based prediction results, the difference in MRAE between
C1 and C3 was the largest. A relatively smaller difference was obtained between C1
and C2, indicating the lack of contribution of residual correction to the improvement
in accuracy. Like the LR-based prediction, the accuracy of the TC estimation (C1) was
better than the two ATPRK predictions (C2 and C3). Similar results were also observed
for the SVR-based prediction. These results indicate that residual correction did not
always improve prediction performance, particularly when the input data contained severe
errors. Furthermore, ATPRK with the TC normalization degraded the prediction accuracy,
compared to conventional ATPRK prediction.

The impacts of both the explanatory power of regression models and input errors
on predictive performance were further analyzed using correlation coefficients between
accuracy values, and R2 and input errors were calculated for all prediction cases. All corre-
lation coefficients between input errors and predictive accuracy values were statistically
significant at the significance level of 1%. However, the correlation between accuracy and
R2 values was not significant at the significance level of 5%, except for LR-based predictions
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(C1_LR and C2_LR). Hence, only correlation coefficients between accuracy measures and
errors of input SM data were considered (Figure 4).
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Strong correlations were observed between the input errors and predictive accuracy for
all cases (Figure 4). This result indicates that errors in input coarse resolution data greatly
affect the quality of spatial downscaling results, like in the case of the Landsat dataset.
Although there were no significant differences in correlation for the three regression models,
RF-based ATPRK with TC normalization (C3_RF) showed the highest correlation coefficient
value (0.996 for MAE and 0.990 for MRAE). Other RF-based predictions (C2_RF and C1_RF)
also had strong correlations to input errors, which implies that RF-based predictions are
most susceptible to input errors. In contrast, the prediction accuracy values of C1_SVR and
C2_SVR showed the lowest correlation to the input errors. Consequently, C1_SVR achieved
the best prediction accuracy for most cases.

Despite the insignificance of the correlation between accuracy and R2 values, a fur-
ther interpretation was made. The moderately negative correlation between the accuracy
values of LR-based predictions and the R2 values (−0.59 and −0.61 for C1_LR and C2_LR,
respectively) indicates that the higher explanatory power of TC estimation may lead to
a slight improvement in accuracy. In addition, as shown in Table 6, a positive correla-
tion of the R2 value of SVR to the mean of the observations might contribute to better
prediction performance, particularly in the summer season. However, as found in the
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Landsat dataset, the highest R2 values of RF in most cases did not lead to better prediction
accuracy. Furthermore, TC estimation with very low explanatory power showed worse
prediction accuracy.

Based on the results of the experiment on the real SM dataset, it can be concluded
that the use of the TC estimate as a downscaling result exhibited the best prediction
performance. In addition, as input errors increased, prediction errors increased accordingly.
A clear correlation between the explanatory power of regression models and prediction
accuracy was not observed. However, it is evident that higher explanatory power cannot
always guarantee improvement in prediction accuracy.

4. Discussion and Conclusions

The main contribution of this study lies in exploring the variations in the predictive
performance of different TC estimations to different input errors in ATPRK-based spatial
downscaling. To fill the gap from previous studies based on a single attribute and/or a
small number of data [26,27], the sensitivity analysis in this study was based on extensive
comparisons using synthetic and real datasets. As error information of real satellite-derived
products is usually unavailable, a direct comparison of results from the real dataset may
not be compatible with those from the synthetic dataset with known errors. Despite the
limitation of using error information from a limited number of actual observation sites in
the real SM dataset, common results could be derived from the two experimental datasets
in this study.

The results from two experiments indicate that the quality of the spatial downscaling
result depends heavily on the accuracy of input data. When input data become more
erroneous, the prediction accuracy decreases accordingly. For input data with no or few
errors, residual correction is recommended to improve the prediction accuracy. TC normal-
ization is also effective when nonlinear regression models are employed for TC estimation.
However, in spatial downscaling of coarse resolution data with significant errors (i.e., SM
dataset in this study), residual correction and TC normalization cannot achieve better
prediction performance, and the use of TC estimate as a prediction result is more effective.
These findings were not reported in most spatial downscaling studies where input errors
were not considered in spatial downscaling of satellite-derived products [16–19]. When
noisy coarse resolution data are used as input for spatial downscaling, the RCs that remain
after regression modeling inevitably include input errors, depending on the explanatory
power of the applied regression model. As a result, the errors of the coarse resolution RCs
propagate to the ATPK-based RC predictions. In addition, the TC normalization procedure
aiming at reproducing the patterns of the erroneous input data also yields a worse result.

As found in the previous study [26], the higher explanatory power of regression
modeling for TC estimation does not always lead to better prediction accuracy. When
downscaling the coarse resolution data with significant errors (the SM dataset in this study),
the prediction accuracy was not clearly correlated to the explanatory power. Instead, the
regression model with higher explanatory power (RF in this study) predicted worse than
other modes with relatively lower explanatory power. Quantitative relationships modeled
at a coarse resolution are directly applied to auxiliary variables at a fine resolution for the
TC estimation. Thus, a possible explanation for the worse prediction in the case with higher
explanatory power is that the relationships at a coarse resolution distorted by overfitting to
the noisy input (too higher R2 values) are likely to generate erroneous TC estimates at a fine
resolution. It should be noted that the superiority of SVR to LR and RF in this study does
not indicate that SVR is an optimal TC estimator in spatial downscaling. Instead, using
the magnitude of explanatory power in the TC estimation as a direct indicator to select
an optimal regression model requires caution, particularly when the input data contain
errors. Recently, geographically weighted regression (GWR) has often been applied in
ATPRK-based spatial downscaling [35–37]. As regression coefficients are estimated locally,
the explanatory power of GWR is likely to be higher than that of other regression models.
As a result, GWR may be more susceptible to input errors than other models in some
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cases. Therefore, it is worthwhile to analyze the impact of input errors on the predictive
performance of GWR-based spatial downscaling to confirm the results of this study.

In future work, an advanced procedure to account for input errors during spatial
downscaling should be developed to improve predictive performance in spatial down-
scaling of coarse resolution data with errors. From a methodological viewpoint, filtered
kriging, as proposed by Christensen [38], can be applied to filter out noise or errors in
coarse resolution satellite-derived products when error variance information is available.
Then, the noise-filtered coarse resolution data can be used as input for ATPRK-based spatial
downscaling. The main difficulty of this approach is in the availability of error information.
Unlike the synthetic dataset, however, the error information of satellite-based products is
usually not available in the study area of interest. When sufficient ground observation data
are available, they can be used to generate error distribution maps through geostatistical
simulation [39]. The potential of this approach for error filtering should be explored in
future work.

As new satellite operation programs continue to be developed, many satellite-based
products are expected to be available in the future. However, it is not always possible to
obtain satellite data acquired at the desired spatial resolution. Thus, spatial downscaling
will remain vital in satellite data reconstruction. Based on the major findings and rec-
ommendations from this study, spatial downscaling results with improved quality can
effectively provide thematic information for environmental monitoring and modeling.
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