
Citation: Munshi, A. Hybrid

Detection Technique for IP Packet

Header Modifications Associated

with Store-and-Forward Operations.

Appl. Sci. 2023, 13, 10229. https://

doi.org/10.3390/app131810229

Academic Editor: Adamu

I. Abubakar

Received: 2 August 2023

Revised: 18 August 2023

Accepted: 25 August 2023

Published: 12 September 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Hybrid Detection Technique for IP Packet Header Modifications
Associated with Store-and-Forward Operations
Asmaa Munshi

College of Computer Science and Engineering, University of Jeddah, Jeddah 21959, Saudi Arabia;
ammunshi@uj.edu.sa

Abstract: The detection technique for IP packet header modifications associated with store-and-
forward operation pertains to a methodology or mechanism utilized for the identification and
detection of alterations made to packet headers within a network setting that utilizes a store-and-
forward operation. The problem that led to employing this technique lies with the fact that previous
research studies expected intrusion detection systems (IDSs) to perform everything associated with
inspecting the entire network transmission session for detecting any modification. However, in the
store-and-forward process, upon arrival at a network node such as a router or switch, a packet is
temporarily stored prior to being transmitted to its intended destination. Throughout the duration
of storage, IDS operation tasks would not be able to store that packet; however, it is possible that
certain adjustments or modifications could be implemented to the packet headers that IDS does not
recognize. For this reason, this current research uses a combination of a convolutional neural network
and long short-term memory to predict the detection of any modifications associated with the store-
and-forward process. The combination of CNN and LSTM suggests a significant improvement in
the model’s performance with an increase in the number of packets within each flow: on average,
99% detection performance was achieved. This implies that when comprehending the ideal pattern,
the model exhibits accurate predictions for modifications in cases where the transmission abruptly
increases. This study has made a significant contribution to the identification of IP packet header
modifications that are linked to the store-and-forward operation.

Keywords: attack surface; attack vectors; network attacks; intrusion detection system; pervasive
breaches

1. Introduction

In a store-and-forward network, upon packet arrival at a network node such as a
router or switch, a packet is temporarily stored prior to being transmitted to its intended
destination. Throughout the duration of storage, it is possible that certain adjustments
or modifications could be implemented to the packet headers for a variety of reasons,
including but not limited to quality of service (QoS) enhancements [1], traffic management,
security measures, or routing optimizations. The key research motivation of this present
study lie with the fact that computer network systems play a significant role in both the
economy and society. The significant increase in data traffic within computer networks can
be attributed to several factors. Firstly, the widespread adoption of the Internet has played
a crucial role in this growth. Additionally, the expansion of network access to a diverse
array of personal devices, including smartphones and cars, has contributed to the surge in
data traffic [2]. Lastly, the development of new devices has necessitated a series of reviews
to ensure compatibility with primary network protocols [3].

In recent years, there has been an increase in cyber-attacks, particularly against in-
dustries and companies that provide online services [4]. Malicious hackers may deploy
various types of attacks, such as distributed denial-of-service (DDoS) or the port scan
and infiltration attack, to hijack valuable data or make servers unavailable to users. This
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requires careful consideration of data security and integrity as companies must assure the
data confidentiality, integrity, and availability, which means the data must be appropri-
ately kept, managed, and maintained to prevent illegal access [5]. Several technological
solutions have been introduced to reduce the problem, including the use of encryption,
authentication systems, antivirus, firewalls, and intrusion detection systems (commonly
known as IDSs) [6]. An IDS is a hardware or software system that monitors a company’s
computer network for potential threats or attacks [7]. Furthermore, IDSs are important for
protecting information with growing of unauthorized activities in a network [8]. IDS is a
successful technique, but within it, there are many approaches towards which it executes
its operation [9]. The artificial neural network (ANN) is an adaptive approach that was
utilized by one IDS [10].

While the IDS is successful at continuously monitoring the network for suspicious
activity, its operation is too general. There are some silent network operations regarding
which the IDS might fall short in performing its operation. This may involve a network
where a store-and-forward operation was implemented [11]. In a store-and-forward net-
work, when an IP packet arrives at a network node, such as a router or switch, it is
temporarily stored before being transmitted to its intended destination. During the stor-
age phase, in accordance with the network layer protocol convention, the node conducts
error-checking on the data packet to verify its integrity and rectify any corrupted data pack-
ets [12]. Additionally, it analyzes the destination address within the data packet to ascertain
the subsequent hop or node to which the packet should be forwarded. Store-and-forward
networks are frequently employed in diverse networking environments, encompassing
local area networks (LANs), wide area networks (WANs), and the Internet. The choice of
this methodology is contingent upon the particular demands of the network and the nature
of the data being conveyed [13].

The research problems identified in this study pertain to the storage phase of the
store-and-forward operation. It is customary for the node to perform error-checking
on the data packet in accordance with network layer protocol conventions to ensure its
integrity and absence of errors. However, a potential issue arises when an adversary
interferes and disrupts the packet during this process. Nevertheless, it is conceivable that
specific modifications or revisions could be implemented to the packet headers for diverse
objectives that could potentially result in packet corruption or spoofing. This suggests that
if an adversary has the capability to exploit the given timeframe and carry out an attack,
they will have the chance to do so. The traditional intrusion detection system (IDS) does not
hinder the store-and-forward operation. Therefore, the potential for a lack of mechanisms
to identify occurrences within these operations may arise.

The rationale for formulating this research problem is rooted in the need to mitigate
false negatives. The main challenges in detection revolve around generating elements
that encompass credible attack signatures or constructing a signature that encompasses all
possible permutations of the pertinent attack [14]. The primary focus lies in the significance
of detection accuracies, wherein the optimal outcomes are achieved through leveraging the
features of the detected elements. This implies that the data input obtained from external
sources necessitates adequate training or learning in order to be effectively processed or
predicted [14,15]. In light of the aforementioned issues in the store-and-forward context, the
present study introduces a novel approach titled “Hybrid IP Packet header modifications
detection” to tackle these challenges. The aim of this study is to integrate diverse machine
learning prediction techniques in order to effectively detect any modifications that transpire
during a store-and-forward operation. This implies that the detection mechanism employs a
hybridized approach, incorporating various techniques to detect alterations made to packet
headers. One possible approach to resolving the issue at hand could be the incorporation
of multiple classifiers into the system.
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2. Related Work

Extensive study has been conducted in the past on the topics of packet inspection and
network attacks. The CICIDS2017 dataset has been widely utilized in the bulk of prior
research endeavors. The investigations yielded experimental results that showcased high
rates of detection and low rates of false positives. Additionally, the performance of the
system was shown to be superior in terms of accuracy, detection rate, false alarm rate, and
time overhead, as indicated by previous research [16]. The intrusion detection system (IDS)
is the primary area of research for detecting attacks. Machine learning approaches are
predominantly utilized for achieving successful detection [17].

The utilization of the CICIDS2017 dataset has been prevalent in the bulk of past
research studies. The tests yielded experimental results that showcased high rates of
detection and low rates of false positives. Additionally, the performance of the tested
methods was shown to be superior in terms of accuracy, detection rate, false alarm rate,
and time overhead, as indicated by previous research [18]. The implementation of an
intrusion detection system for the controller area network (CAN) bus system in automotive
applications has been discussed in a previous study [19]. In the domain of identifying
distinct attacks, unsupervised techniques exhibit a higher level of effectiveness when
compared to supervised methods [20].

Zeng et al. [21] introduced an approach for intrusion detection system (IDS) that uses
a deep learning-based model to effectively detect and classify malicious network traffic
aimed at compromising on-board units (OBUs). This methodology obviates the need
for human feature extraction and possesses the additional advantage of being capable
of processing unprocessed traffic data. The effectiveness of this approach is assessed
via a comparison analysis with alternative intrusion detection system (IDS) methods
using both a publically accessible dataset and a generated dataset of a vehicular ad hoc
network (VANET). The results of the study indicate that the implemented scheme exhibited
exceptional performance while necessitating a reduced allocation of resources.

Hidalgo-Espinoza et al. [22] presented a detailed analysis of the procedures employed
in the development of an intrusion detection system (IDS) using a deep learning architec-
ture. the primary aim of the proposed system is to ascertain the legality of login attempts
conducted on a computer network, effectively differentiating between unauthorized hack-
ing endeavors and allowed actions. Moreover, the authors suggest that additional research
should be undertaken, employing a more flexible arrangement of the deep learning frame-
work. Various supervised learning techniques, including support vector machine (SVM),
k-nearest neighbor (kNN), random forest, artificial neural networks (ANNs), deep con-
volutional neural networks (CNNs), and long short-term memory, have been intensively
explored in academic research [23].

Given the importance of machine learning in intrusion detection systems (IDSs), it
has been observed that the use of supervised learning techniques for training requires a
significant amount of labeled data. However, these methods have shown the ability to
outperform unsupervised learning techniques in detecting known instances of attacks [24].
This information should contain a diverse range of assault manifestations. Ho et al. [25]
conducted a study in which they employed a convolutional neural network (CNN) classifier
for the purpose of an intrusion detection system (IDS). A level of accuracy of 99.78% was
achieved. In addition, it demonstrates the capacity to discern and detect attacks, a challenge
frequently encountered by traditional intrusion detection systems (IDSs).

The study conducted by Choraś [26] demonstrated the methodology of incorporating
several hyperparameters and topology configurations in order to attain the highest level of
performance for an artificial neural network (ANN) classifier. This was achieved through
conducting experiments on a commonly utilized intrusion detection system (IDS) dataset.
Additionally, the authors demonstrated the possible influence of hyperparameters on the
final outcome of the classification. The influence of a little adjustment in hyperparameter
setting on the accuracy of a particular neural network architecture is illustrated by the
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authors through the use of two distinct intrusion detection systems (IDSs) as case studies.
The best design attains 99.909% accuracy in the task of multi-class categorization.

The reason for this is that unsupervised approaches are specifically designed to de-
tect anomalies within the conventional CAN traffic pattern [27]. The process of creating
authentic assault datasets from real autos in the context of in-vehicle networks presents
difficulties because to the significant costs associated with it and the necessity to prioritize
safety concerns [28]. However, the only requirement for unsupervised learning methods is
the collection of data from a vehicle during its normal functioning. The aforementioned
data can be easily acquired from a vehicle that is functioning in a standard manner. A
considerable proportion of the endeavors focused on detecting intrusions in controller area
networks involves the application of deep learning methodologies [29]. Some studies focus
on certain components of AIDs, such as temporal factors or payload size, while other study
combines these characteristics in a detection model to enhance the identification of a wider
range of attacks.

The review of prior research papers on algorithms for detecting IP packet header
change demonstrates a wide array of approaches. The efficacy of rule-based systems
in detecting established patterns of header modifications linked to store-and-forward
operations has been demonstrated. The utilization of machine learning techniques, such as
anomaly detection, has been extensively investigated in order to identify minor alterations
that are not encompassed by pre-established rules. Moreover, the integration of rule-based
and machine learning models in hybrid techniques shows potential in attaining a well-
rounded detection capability. It is crucial to note that the aforementioned studies [16–29]
continue to prioritize the study of intrusion detection systems (IDSs). However, there has
been limited discussion regarding the practical implementation of at-a-point detection in
various applications. Therefore, building upon prior effective implementations of intrusion
detection systems (IDSs) [4–8] in the field of network security and inspired by the research
efforts of [7,19,22], this study introduces methodologies for investigating the application
of detection in store-and-forward operations, specifically in the context of transmission
sessions. The research of previously published scholarly works on techniques for detecting
IP packet header changes demonstrates a wide array of approaches. The usefulness of
rule-based systems in identifying known patterns of header alterations associated with
store-and-forward operations has been established. The utilization of machine learning
techniques, such as anomaly detection, has been extensively investigated in order to identify
tiny alterations that are not accounted for using pre-established criteria. Furthermore,
the integration of rule-based and machine learning models in hybrid techniques shows
potential in attaining a well-rounded detection capability.

The research gap established dwells on the fact that while there have already been
significant breakthroughs in the detection algorithms for IP packet header modification
within IDS, there is still a discernible research gap in adequately addressing the dynamic
and developing characteristics of header alterations associated with store-and-forward
processes. Current methodologies frequently encounter difficulties in accommodating
novel attack strategies that leverage non-traditional modifications. Moreover, there is a
limited body of research that has thoroughly assessed the practical implementation of
hybrid models in network environments in real-world scenarios.

3. Research Methodology

The study employed a research methodology consisting of two phases. The first
phase involved constructing a network scenario to generate a dataset. This dataset was
then utilized with a classifier to predict IP packet header modifications associated with
store-and-forward operations. The other phase employed the CICIDS2017 dataset and
then performed the same prediction of IP packet header modifications that are associated
with the store-and-forward operation. Subsequently, the outcome was subjected to a
comparative analysis. However, the classifiers were also involved in a hybrid fashion.
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3.1. Dataset Generation

The dataset for this study is generated from two different approaches: Develop a script
capable of extracting the entirety of the IP packet content, with a specific focus on those
that exhibit similar features to the CICIDS2017 dataset. The purpose of this research is to
establish a network testbed with the goal of initiating a transmission that demonstrates the
store-and-forward mechanism. Then, send packet back and forward for many transmissions
and capture the transmission for 5 days, similar to the CICIS2017 dataset.

3.1.1. CICIDS2017 Dataset Generation

The CICIDS2017 dataset (see Figure 1) is extensively employed in the field of cyber-
security for the purposes of intrusion detection and network traffic analysis research [17].
The creation and release of the aforementioned project occurred in 2017 under the auspices
of the Canadian Institute for Cybersecurity (CIC) at the University of New Brunswick,
located in Canada [18]. The primary objective of the dataset is to offer a comprehensive
range of network traffic scenarios that accurately reflect real-world conditions. This dataset
serves as a means to assess the efficacy of intrusion detection systems (IDSs) and other
cybersecurity algorithms in terms of their performance [19].
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The CICIDS2017 dataset contains a total of 78 columns representing various attributes
related to transmission sessions, along with an additional column serving as the label.
Some of the features of the dataset are presented in Table 1.

Table 1. Selected features from CICIDS2017 dataset.

FD FP BP LF LB FL BL FF BB PL PP

3 2 0 12 0 40 0 666,666.6667 0 6 6

3 2 0 12 0 40 0 666,666.6667 0 6 6

1022 2 0 12 0 40 0 1956.947162 0 6 6

4 2 0 12 0 40 0 500,000 0 6 6

42 1 1 6 6 20 20 23,809.52381 23,809.52381 6 6

4 2 0 12 0 40 0 500,000 0 6 6

(“Flow Duration [FD]”, “Total Forward Packets [FP]”, “Total Backward Packets [BP]”, “Total Length of Forward
[LF] Packets”, “Total Length of Backward Packets [LB]”, “Forward Header Length [FL]”, “Backward Header
Length [BL]”, “Forward Packets/s [FF]”, “Backward Packets/s [BB]”, “Minimun Packet Length [PL]”, “Maximum
Packet Length [PP]”).

The dataset encompasses both benign (non-malicious) and malicious network traf-
fic. The category of malicious network traffic encompasses a range of network attacks
that are classified under various labels, such as “Bot,” “DDoS,” “DoS GoldenEye,” “DoS
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Hulk,” “DoS Slow-httptest,” “DoS slowloris,” “FTP-Patator,” “Heartbleed,” “Infiltration,”
“PortScan,” “SSH-Patator,” “Web Attack—Brute Force,” and “Web Attack—SQL Injection”.
However, it should be noted that the dataset does not directly provide information about
the malicious attack itself. Instead, it offers features that can be analyzed and used to infer
the presence of an attack. What is the technique inferring or drawing conclusions on based
on this characteristic? There exist two distinct methodologies for analyzing attacks in the
dataset: manual extraction and automatic deduction.

The manual method encompasses a procedure known as “ground truth labeling”. The
process of ground truth labeling entails the identification and annotation of individual
instances of network traffic, classifying them as either benign or associated with a particular
attack category. This is achieved through the utilization of expert knowledge and real-
world attack data [30]. The establishment of the validity of the labeling (ground truth)
study remains uncertain [31]. This uncertainty arises from the identification of a significant
number of previously unrecorded errors throughout the entire process of creating the
CIC-IDS 2017 and CSE-CIC-IDS 2018 datasets [31]. These errors encompass various stages
such as attack orchestration, feature generation, documentation, and labeling.

The application of an automated labelling process, which utilizes a combination of
time and host-based filtering techniques, to effectively segregate malicious traffic has
been widely implemented in various scenarios [30]. It was established that two cutting-
edge methodologies were usually employed in the automatic approach, namely “Confident
Learning” [32] and “O2D-Net” proposed by Huang et al. [33], for the purpose of identifying
inaccuracies in labeling within the domain of computer vision.

3.1.2. Network Testbed for Dataset Generation

This study successfully established the network scenario, and the script necessitates
the simulation of a transmission from one network to another. As depicted in Figure 2, it
can be observed that upon entering the transmission session, the initial action taken with
the packet is to subject it to a store-and-forward operation. After the completion of the
“error checking” process on the store-and-forward mechanism, the packet will undergo an
examination of its header information.
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Given that the label column of CIC-IDS 2017 dataset entries denotes distinct categories
of attacks., the purpose of this study is to investigate the specific alterations made to
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the header field in cases where the flow is linked to a certain activity. The analysis of
traffic distribution which involves identification of any disparities in the allocation of
traffic among servers or services can reveal a DDOS attack. Such disparities may serve as
indicators of potential efforts to overload particular resources. Furthermore, since another
primary indicator of a DoS attack is “Traffic Volume”, this metric can be analyzed in terms
of an abnormally elevated influx of incoming network traffic directed towards a particular
target or segment of a network. Thus, “Flow Duration” and “Forward Packets/s,” can be
utilized for the purpose of recording this information. These two features are sufficient to
demonstrate the prevalence of DDoS attacks. The features are also present in the CIC-IDS
2017 dataset. Hence, this study aimed to capture and conceptualize these features within a
store-and-forward network.

To facilitate the analysis of the packet during the transmission session and generate
the dataset, the following steps were performed:

• Scripts that will incorporate a modified value into specific packet header information
within designated scenarios were developed.

• An additional script that preserves the default value assigned by the IP protocol in
certain packets within the given scenarios was developed.

• An additional script that facilitates the transmission of IP packets recording the default
values “Flow Duration” and “forward packets” within the given scenarios, as well as
those that incorporate the modified values of the selected IP packet headers within the
scenarios, was developed.

• The “Flow Duration” and “forward packets” field information is defined as the set of
data elements that can be modified in a given scenario. We composed a dummy value
situation wherein a specific value within the “store-and-forward process” was modified.

• We created a script for conducting a comprehensive examination to ascertain the
existence of all packet headers.

• An additional script will generate a comprehensive report containing all the informa-
tion present in the “Flow Duration” and “forward packets” at the specific moment
of transmission.

• Subsequently, a script will be developed to construct a binary function that will
determine whether the entirety of the IP packet’s “Flow Duration”and “forward
packets” has been altered or not, represented in a binary set format.

• Another script will be executed iteratively to generate datasets.

The given scenario involves a network router that utilizes the “store-and-forward
process” for its operation. The router is responsible for receiving IP packets and temporarily
storing them prior to their subsequent transmission to their intended destinations. During
the “store” phase, the router is able to conduct a thorough examination and verification
of all alterations made to the packet header. In order to comprehensively analyze the
situation, it is imperative to delineate the scenario in a sequential manner. Upon the arrival
of an IP packet at the router, it is temporarily stored in the router’s memory as part of the
“store-and-forward process”.

During the packet’s storage phase, the router conducts an examination of the packet
header to detect any alterations made to the number of “Flow Duration” and “forward
packets”. Packet forwarding occurs after the router has conducted header inspection and
made a decision regarding the appropriate forwarding path. At this stage, the router has
two options: it can either forward the packet in its original form to the intended destination,
or it can undertake any required actions for packets that have been modified. The router has
the capability to record the results of its inspection and any actions it has taken in relation
to altered packets, with the purpose of conducting subsequent analysis or auditing. This
particular scenario holds potential value within the realm of network security, specifically in
the areas of intrusion detection and the monitoring of potentially suspicious activities. That
is why machine learning is crucial in order to utilize the functions capable of recognizing
potential modifications to headers and implementing suitable measures to safeguard the
integrity and security of the data being transmitted.
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3.2. Convolutional Neural Network

The convolutional neural network (CNN) is a highly significant and effective tool in
the field of deep learning. It is classified as a type of “feed forward neural network” that is
primarily employed in the domains of image processing and pattern recognition [34]. The
architecture of a convolutional neural network (CNN) comprises several distinct layers,
namely the “input layer”, “convolution layer”, “pooling layer”, and the “output layer”.
The convolutional layer receives input data and conducts the convolution process through
applying a filter to extract a feature map. The pooling layer is responsible for receiving
feature maps from the convolution layer and performing down-sampling on these feature
maps. During the pooling procedure, a group of n adjacent data points are transformed
into a unified format. This is achieved through incorporating a bias term (bx + 1) and a
scalar weight (Wx + 1) and applying an activation function. The outcome of this process
is the generation of a condensed feature map. One significant benefit of convolutional
neural networks (CNNs) lies in their capacity for parallel learning, which contributes to a
reduction in network complexity [35]. Enhanced resilience and scalability can be attained
through the implementation of the sub-sampling procedure. Equation (1) [35] is a general
framework of CNNs and can be used to describe the processing of output at the layers of
a CNN:

C(l,k)
x,y = tanh

(
f−1

∑
t=0

Kh

∑
r=0

Kw

∑
c=0

W(k,t)
(r,c)C(l−1,t)

(x+r, x+c) + Bias(i,k)
)

(1)

C(l,k)
x,y is the generated outcome of a neuron at convolution layer l, feature pattern k,

row x, and column y. f represents the number of convolution cores in a given feature data
pattern. At the subsampling stage, the output of neuron at the lth subsampling layer, kth
feature pattern, row x, and column y is expressed in Equation (2):

C(l,k)
x,y = tanh

(
W(k)

Sh

∑
r=0

Sw

∑
c=0

C(l−1,t)
(x×Sh+r, y×Sw+c) + Bias(i,k)

)
(2)

At the lth hidden layer H, the output of neuron j is given in Equation (3):

C(l,j) = tanh

(
s−1

∑
k=0

Sh

∑
x=0

Sw

∑
y=0

W(j,k)
(x,y)C

(l−1,t)
(x,y) + Bias(i,j)

)
(3)

where s denotes the number of feature patterns in the subsampling layer.
At the output layer, the output of neuron i at the lth output layer is expressed via

Equation (4):

C(l,i) = tanh

(
H

∑
j=0

C(l−1,j)W
l
(i,j)

+ Bias(i,j)
)

(4)

3.3. Long Short-Term Memory

Long short-term memory (LSTM) addresses a significant challenge encountered in
recurrent neural networks (RNNs), namely the issue of vanishing or exploding gradi-
ents [36]. The vanishing gradient problem hinders the ability of recurrent neural networks
(RNNs) to effectively learn when there exists a time lag of more than 5–10 distinct time
steps between input events and target signals. In contrast, the long short-term memory
(LSTM) model demonstrates the ability to establish connections between temporal intervals
as short as the minimum time lag and as long as 1000 discrete time steps. This is achieved
through the utilization of specialized units known as cells, which consist of constant error
carousels (CECs) that enforce a continuous flow of error. Cell access is provided through
multiplicative gate units [37].

The concealed stratum of a conventional long short-term memory (LSTM) network
is comprised of memory blocks. A memory block consists of a set of memory cells and
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a pair of multiplicative gate units that facilitate the transfer of input and output signals
to and from all the cells within the block [38]. The memory cell is equipped with a cell
error constant (CEC) mechanism that effectively addresses the issue of vanishing gradient
error. This mechanism ensures that the local backflow error of the cell remains constant,
without diminishing or amplifying, during periods when the cell is not being subjected
to new input or error signals. The two gating units, namely the input gate and the output
gate, serve the purpose of protecting the CEC (cellular error correction) mechanism from
both forward and backward error flow, respectively. The state of the cell is determined by
the activation of the CEC [39]. The computation of the activation of the input gate yˆin and
the activation of the output gate yˆout at discrete time steps t = 1, 2, . . . proceeds as follows:

netoutj(t) = ∑
m

woutjmym(t − 1), youtj(t) = foutj

(
netoutj(t)

)
(5)

netinj(t) = ∑m winjmym(t − 1), yinj(t) = finj

(
netinj(t)

)
(6)

where j represent th memory block, f is the logistic sigmoid in the range [0, 1], and wlm is
the connection weight from the unit m to the unit l. In order to compute the internal state
of a given memory cell Sc(t), the squashed gate input to the state at the recent time step
Sc(t − 1) where (t > 0) can be added via the following equation:

netcv
j
(t) = ∑

m
wcv

j mym(t − 1) (7)

Scv
j
(t) = Scv

j
(t − 1) + yinj(t)g

(
netcv

j
(t)
)

(8)

where cv
j represent cell v of memory block j, the squashing of the cell input is performed

by g, and Scv
j
(0) = 0. In order to determine the output of a cell yc, the internal state Sc is

squashed using an output squashing function h and gating it with the activation of the
output gate yout expressed as:

ycv
j (t) = youtj(t)h

(
Scv

j
(t)
)

(9)

where h represents a centered sigmoid in the range [−1, 1]. The output units K of a network
with layered topology consisting of a hidden layer with memory blocks and a standard
input and output layer can be defined by the equation:

netk(t) = ∑
m

wkmym(t − 1) (10)

yk(t) = fk(netk(t)) (11)

where fk represents the squashing function with a logistic sigmoid in the range [0, 1] and
m ranges over all input units and the cells in the hidden layer. LSTM is capable of solving
tasks with complex long time lags that were never solved using RNNs.

3.4. Applications of Hybrid CNN and LSTM

The utilization of a hybrid approach facilitates a more all-encompassing comprehen-
sion of the data, thereby potentially enhancing performance across diverse applications.
The efficacy and precision of intrusion detection systems (IDSs) in safeguarding network
security can be significantly improved through the implementation of the CNN-LSTM
approach [40]. The model’s capability to acquire knowledge from both approaches renders
it highly valuable in intricate real-world situations where both aspects are crucial. The hy-
brid model, which integrates the CNN and LSTM architectures, demonstrates the ability to
effectively capitalize on the respective advantages of both approaches. This amalgamation
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renders the model versatile and strong for a wide range of tasks that entail the analysis of
spatial and temporal data [41].

Several studies have employed a combination of various deep learning architectures
to create hybrid architectures, while others have combined deep learning with shallow
algorithms to form hybrid models [42–44]. The prediction generated by the CNN-LSTM
model holds significant importance, taking a multitasking approach for predicting various
network traffic loads through combining CNN-LSTM. The CNN-LSTM model has been
observed to effectively extract temporal features [42]. The CNN-LSTM model demonstrates
superior performance compared to baseline algorithms in terms of accurately forecasting
the minimum, maximum, and average traffic loads within a network [43]. A convolutional
neural network (CNN) is employed for the offline prediction of the q-function prior to
the implementation of online deep q-learning, which is utilized to explore the control
strategy [44]. The methodology has been discovered to optimize power transmission and
enhance the quality of service.

The reason for adopting CNN-LSTM for this study primarily lies with the fact that the
integration of CNN and LSTM architectures in a hybrid model enables the efficient capture
of spatial patterns and temporal dependencies within the data [45]. The conventional
architecture of a hybrid CNN-LSTM model entails employing CNN layers as the initial
component to extract spatial characteristics from the input data. The output generated by
the CNN layers is subsequently inputted into LSTM layers in order to effectively capture the
temporal dependencies that occur over a given period of time. Additionally, via capitalizing
on the respective advantages of CNN and LSTM networks, the proposed model has the
potential to enhance the precision, resilience, and versatility of intrusion detection systems.
Consequently, it can offer heightened security measures for the identification and mitigation
of network intrusions and attacks.

3.5. Experimental Analysis and Presentation of the Result

The performance of the proposed approach has been assessed using four performance
evaluators, derived from the confusion of the matrix containing the following compo-
nents: true positives (TPs), true negatives (TNs), false positives (FPs), and false negatives
(FNs). Hence, the performance metrics Precision, Recall, F1-score, and Accuracy (Acc) are
formulated (see Table 2). The “Accuracy metric”, denoted as ACC, assesses the overall
performance of the model. The “Recall Metric” is computed via dividing the count of TPs
by the sum of TPs and FNs. The “Precision Metric” is a quantitative measure that evaluates
the ratio of accurate positive predictions to the overall number of positive class values
predicted [46]. The “F1-score” is a quantitative measure that evaluates the precision of a
classifier. The “False Positive Rate (FPR)” quantifies the ratio of negative instances that are
erroneously classified as positive by the model. Put simply, it measures the frequency at
which the model commits errors through incorrectly predicting a positive outcome when
the true label is negative [47,48].

Table 2. The performance metrics.

Precision = TP
TP+FP Recall = TP

TP+FN FPR = TP
TP+FN F1−score = TP

TP+ 1
2 (FP+FN)

Acc = TP+TN
TP+TN+FP+FN

3.6. Experimental Analysis and Presentation of the Result

The experimental analysis encompasses two distinct aspects: the benchmarking
dataset and the dataset generated through this research. Nevertheless, the experimen-
tal implementation employs identical methodology that entails the fusion of convolutional
neural networks (CNNs) and long short-term memory (LSTM).

3.6.1. Experimental Setting

The CNN and LSTM models are computationally intensive. An Intel® CoreTM i7-
10870H Processor with 16 gigabytes of random access memory (RAM) was used for all of
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the experiments in this study. The speed of the processor was 5.00 gigahertz. Experiments
were carried out on a computer running the Windows 11 operating system with Python 3.11,
PyTorch 2.0, and the sklearn library serving as the model implementation and simulation
tools, respectively. For the goal of doing data analysis, various Python libraries, such as
pandas, were deployed.

This study assessed the efficacy of the proposed model on the CICIDS2017 dataset
through examining several key parameters. These parameters included the impact of data
packet length during training, the influence of packet count per flow, the effect of batch
size selection, the influence of LSTM unit count, and the impact of class weight. The study
conducted optimization of the “Flow Duration” and “forward Packets/s” parameters,
followed by a comparison with individual convolutional neural network (CNN) and long
short-term memory (LSTM) models. The allocation of data into the training set, validation
set, and test set is achieved through different partitioning methods. However, the most
optimal ratio is found to be 70:15:15.

3.6.2. Preprocessing Evaluation Analysis

Given that the raw dataset from CICIDS2017 was obtained from various sources, it
is evident that the normalization of different orders is essential in this particular scenario.
This will ultimately enable the dataset acquired from the network testbed to possess an
equivalent ratio to that of the CICIDS2017 dataset. Consequently, a set of uniform values
characterized by equal degrees will arise. Consequently, this would impact the ultimate
learning outcome of the classification. Hence, the transformation approach is employed in
addressing this particular case via focusing on categorizing the features based on distinct
assigned values (scaling within the range of [0, 1]) since “Flow Duration” and “forward
Packets/s” are numeric. However, due to the fact that it does not contribute to the issue of
transmission, the research consider it as captured data after transmission.

4. Model Evaluations

The process of model evaluation encompasses the assessment of the experimental
outcomes in terms of their degree of performance, as well as the provision of the resulting
evaluation of the model.

4.1. Model Evaluations Associated with CNN and LSTM

The empirical findings indicate that the LSTM model achieved a high accuracy rate
in correctly classifying the majority of the samples (see Table 3). Further analysis shows
that the number of data packets in each flow used within the flow duration during the
training process increases, the extracted features of the model become more distinguishable,
leading to enhanced accuracy in model prediction. The experiment revealed a significant
influence of the number of packets per flow on the performance of the model. Since the flow
duration and the forward packet are proportionate, their modification is being predicted
with high accuracy and a low false positive rate. The results of the observation indicate a
notable enhancement in the performance of the model as the number of packets in each flow
increases. This means that while understanding the optimal flow, when the transmission is
increased abruptly, the model can predict those modifications accurately. The study found
that the optimal value of per-flow packet quantity in the network is directly proportional to
the increase in data in the CICIDS2017 dataset. Hence, modifications can be easily detected.

Table 3. Model performance training with LSTM on CICIDS2017 dataset.

Acc Recall Precision FPR F1-Score

Normal 99.61 93.13 93.13 0.10 99.75

Flow Duration Modification 99.55 94.22 94.22 0.14 95.71

Forward Packet Modification 99.13 90.78 90.78 0 96.64
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While evaluating the data associated with store-and-forward, the LSTM model per-
formed admirably well in correctly classifying the vast majority of samples. The extracted
features of the model become more distinguishable when the number of data packets
within each flow used during training is increased, leading to a higher degree of accuracy
in model recognition (see Table 4). The false positive rate (FPR) is an essential metric in
assessing the accuracy of a model in correctly classifying negative instances. The observed
value is significantly low, suggesting that the model demonstrates a recall rate of over
96% for positive instances, accurately identifying them. Additionally, the model accepts a
reasonable number of false positives, as indicated by the moderate false positive rate (FPR).

Table 4. Model performance training with LSTM on store-and-forward dataset.

Acc Recall Precision FPR F1-Score

Normal 97.48 96.91 96.06 0 91.21

Flow Duration Modification 91.18 98.62 92.78 0 93.24

Forward Packet Modification 93.44 97.73 96.23 0.16 91.39

The empirical results suggest that the CNN model demonstrated a notable level of
accuracy in accurately categorizing the majority of the samples, as shown in Table 5. The
outcomes demonstrate a consistent pattern when employing long short-term memory
(LSTM). However, in terms of prediction performance, the CNN generally exhibits lower
performance compared to LSTM. The performance metric has been acknowledged across
all instances, as indicated in Table 5.

Table 5. Model performance training with CNN on CICIDS2017 dataset.

Acc Recall Precision FPR F1-Score

Normal 87.46 90.28 85.62 0.14 90.11

Flow Duration Modification 89.29 84.53 91.69 0.12 85.23

Forward Packet Modification 84.67 88.64 89.52 0.15 91.19

The performance of the CNN model was notably high in accurately classifying the
store-and-forward data during testing. The utilization of a higher number of data packets
from each flow during the training process enhances the model’s ability to differentiate
between them, resulting in improved accuracy in recognition, as demonstrated in Table 6.
Nevertheless, in this particular instance, the performance of convolutional neural networks
(CNNs) remains inferior to that of long short-term memory (LSTM). Despite the model’s
efforts to minimize false positives, it falls short in comparison to LSTM. Nevertheless, it
continues to exhibit satisfactory performance.

Table 6. Model performance training with CNN on store-and-forward dataset.

Acc Recall Precision FPR F1-Score

Normal 92.62 88.35 90.57 0.11 86.24

Flow Duration Modification 89.38 90.82 87 0.14 90.15

Forward Packet Modification 91.56 91.25 91.58 0.10 89.56

4.2. Model Evaluations on Combination of CNN with LSTM

The long short-term memory (LSTM) unit demonstrates proficiency in effectively
capturing the temporal dependencies among packets. This observation was made in the
previous analysis, indicating that it exhibits superior performance compared to CNNs. For
this reason, the present study aims to integrate both the convolutional neural network
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(CNN) and long short-term memory (LSTM) models in order to analyze the accuracy of
their combined performance (see Table 7). The motivation behind integrating convolutional
neural networks (CNN) and long short-term memory (LSTM) into a hybrid model is to
capitalize on the unique advantages offered by each architecture while mitigating their
respective limitations. The integration of both convolutional neural networks (CNNs) and
long short-term memory (LSTM) models in this approach enables the effective capture of
spatial patterns from the CNN and temporal dependencies from the LSTM. Consequently,
this model is well-suited for tasks that involve sequential data, such as time series analysis
or sequence classification.

Table 7. Model performance training with CNN + LSTM on CICIDS2017 dataset.

Acc Recall Precision FPR F1-Score

Normal 99.71 99.24 99.53 0.13 98.54

Flow Duration Modification 99.26 97.82 99.34 0.17 96.35

Forward packet Modification 97.93 98.76 97.46 0.11 97.58

Through careful examination of two distinct datasets, the analysis conducted on the
CICIDS2017 dataset reveals that the utilization of CNN or LSTM architectures in the model
showcases superior performance. This enhanced performance can potentially be attributed
to the temporal characteristics inherent in the data. Therefore, a significant number of
accuracies were observed, indicating that the prediction of feature modifications can be
effectively predicted using a combined hybrid approach.

The interpretation of model performance in the training of a convolutional neural
network (CNN) combined with long short-term memory (LSTM) on the CICIDS2017
dataset using receiver operating characteristic (ROC) analysis entails comprehending the
accuracy and efficiency of the analysis, while also considering potential uncertainties.
Consequently, the receiver operating characteristic (ROC) curves, depicted in Figure 3,
demonstrate that the experiment approached a state of near perfection, as evidenced by
the prominently rising curve converging towards unity. Therefore, the performance of
the CNN + LSTM model in predicting tasks on the CICIDS2017 dataset shows a tendency
towards improvement.

The hybrid CNN-LSTM model is an effective architecture for store-and-forward data,
as it offers a strong framework for capturing spatial and temporal patterns. The selection of
the depth and architecture of the CNN and LSTM layers was customized to suit the distinct
attributes of the data and the demands of the store-and-forward data task. Furthermore,
the absence of hyperparameter tuning and the meticulous evaluation of the model are
imperative in order to guarantee the optimal performance of the hybrid model. This is
due to the equilibrium of the data. The analysis exhibits a notable level of performance
observation (see Table 8). The potential cause of this improved performance may be
linked to the inherent temporal characteristics of the data. Hence, a substantial quantity of
precise observations was made, suggesting that the forecasting of feature alterations can be
efficiently anticipated through the utilization of a combined hybrid methodology.

Table 8. Model performance training with CNN + LSTM on store-and-forward dataset.

Acc Recall Precision FPR F1-Score

Normal 97.35 94.68 97.25 0.14 99.28

Flow Duration Modification 99.58 99.27 99.49 0.12 97.89

Forward Packet Modification 99.63 99.47 99.92 0 98.99
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The model utilizing the combination of CNN and LSTM on the store-and-forward
dataset demonstrates superior performance accuracy in predicting forward packet modifi-
cation. It exhibits the highest ACC value and the lowest FPR value among the compared
models. The input for forward packet modification consists of unprocessed network traffic
data. The model associated with flow duration modification does not incorporate any
distinct feature extraction mechanism. Instead, the feature extraction time is included
within the overall training and testing duration. The conventional machine learning algo-
rithm does not take into account the extraction or processing time of data, thus making it
impossible to directly compare the time consumption of the different algorithms in this
study. The model’s training time and testing time were both less than 200 s and 150 s,
respectively. This study posits that modifying the flow duration yields optimal detection
effects within the same time frame as the traditional algorithm.

It is crucial to comprehend the degree of accuracy and efficiency with which the
analysis was conducted, while also considering any potential uncertainties that may have
arisen. This understanding is vital for the interpretation of the model’s performance
during the training of a convolutional neural network (CNN) combined with long short-
term memory (LSTM) on the store-and-forward dataset, utilizing the receiver operating
characteristic (ROC) methodology. The ROC curves indicate that the experiment was highly
successful, as evidenced by the curve approaching unity in Figure 4. Consequently, the
CNN + LSTM model demonstrates a propensity for attaining nearly flawless outcomes in
prediction tasks involving store-and-forward datasets.



Appl. Sci. 2023, 13, 10229 15 of 24

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 24 
 

Table 8. Model performance training with CNN + LSTM on store-and-forward dataset. 

 Acc Recall Precision FPR F1-Score 
Normal 97.35 94.68 97.25 0.14 99.28 

Flow Duration Modification 99.58 99.27 99.49 0.12 97.89 
Forward Packet Modification 99.63 99.47 99.92 0 98.99 

It is crucial to comprehend the degree of accuracy and efficiency with which the anal-
ysis was conducted, while also considering any potential uncertainties that may have 
arisen. This understanding is vital for the interpretation of the model’s performance dur-
ing the training of a convolutional neural network (CNN) combined with long short-term 
memory (LSTM) on the store-and-forward dataset, utilizing the receiver operating char-
acteristic (ROC) methodology. The ROC curves indicate that the experiment was highly 
successful, as evidenced by the curve approaching unity in Figure 4. Consequently, the 
CNN + LSTM model demonstrates a propensity for attaining nearly flawless outcomes in 
prediction tasks involving store-and-forward datasets. 

  

  

Figure 4. The model performance with CNN + LSTM on store-and-forward dataset using ROC. 

  

Figure 4. The model performance with CNN + LSTM on store-and-forward dataset using ROC.

5. Discussion

The precise identification of alterations in IP packet headers is of utmost importance
for proactive security measures, as such modifications can act as early indicators of poten-
tial threats and malicious actions within a network [49]. The prompt detection of these
modifications enables prompt intervention, ensuring the preservation of network integrity,
the reduction of vulnerabilities, and the prevention of security breaches from progressing
into significant events.

Malicious actors frequently engage in the manipulation of packet headers as a means
to conceal their activity. The precise identification of these alterations and the subsequent
revelation of concealed attack pathways facilitate the implementation of proactive measures
to counter cyberattacks. In addition, the ability to accurately detect possible threats allows
for a timely reaction, hence reducing the amount of time that systems are unavailable due
to attacks or compromises [50]. This measure guarantees the uninterrupted functioning
of essential services and operational procedures. Likewise, complex threats frequently
encompass nuanced alterations that elude conventional security protocols. The ability
to accurately detect advanced threats is crucial in order to identify them, as they may
otherwise remain undetected. Moreover, the precise identification of objects or events
offers significant information for a study conducted after an occurrence has occurred. The
analysis of modifications by security teams enables the identification of attack patterns,
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tactics, and prospective weaknesses, hence enhancing future defense mechanisms. In
conclusion, prompt identification and timely reaction significantly diminish the resources
necessary for mitigating security issues. This results in financial savings and the effective
allocation of information technology resources.

The combination of the CICIDS2017 dataset and a store-and-forward dataset extracted
from an experimental network can provide various advantages and mitigate specific
constraints when investigating attacks associated with the manipulation of “Flow Dura-
tion” and “Forward Packets”. In particular, the focus would be on acknowledging the
CICIDS2017 dataset as a publicly accessible benchmark dataset that holds significant promi-
nence in the realm of network intrusion detection research [17]. A limited number of
scenarios or features can be derived from the dataset as it encompasses a diverse range
of attack scenarios and instances of network traffic, as long as the aforementioned fea-
tures are linked to the store-and-forward dataset derived from this research experimental
network. In addition, the examination of attacks that specifically target “Flow Duration”
and “Forward Packets” allows for the intentional incorporation of these modifications
into experimental network setups. This measure guarantees the establishment of a study
environment that is characterized by enhanced focus and control, specifically targeting
these types of attacks. Therefore, this study has undertaken an experimental analysis that
integrates two datasets, yielding remarkable results.

5.1. Interpretation of the Findings Associated with the CICIDS2017 Dataset

This research involved the implementation of a thorough investigation into the detec-
tion of modifications using a convolutional neural network (CNN) combined with a long
short-term memory (LSTM) model. This model was trained on the CICIDS2017 dataset,
which is widely recognized as a benchmark dataset for network modification detection.
The primary objective of the research is to evaluate the efficacy of the model in accurately
detecting alterations and irregularities within the “Flow duration” and “Forward packet”
in network traffic. Following the training results, the model utilizing a CNN combined
with LSTM has demonstrated an exceptional detection accuracy of 98% when applied to
the CICIDS2017 dataset. The model’s ability to accurately distinguish between normal
and modified network traffic instances demonstrates its successful learning process and
high precision. In order to obtain a more comprehensive understanding of the model’s
performance, a more detailed examination of the confusion matrix was conducted. The
findings illustrate an equitable distribution of accurate positive and negative classifications,
suggesting that the research proposed model is proficient in differentiating between gen-
uine network activity and instances of alterations or unauthorized access. In addition, the
model’s capacity to generate precise predictions is reinforced by the minimal occurrence of
false positives and false negatives.

In order to assess the model’s ability to distinguish between different classification
thresholds, this research generated a graphical representation known as the receiver op-
erating characteristic (ROC) curve. Additionally, this research computed the area under
the ROC Curve (AUC-ROC) score as a quantitative measure of the model’s discriminative
performance. The receiver operating characteristic (ROC) curve exhibited a continuous
and ascending pattern, characterized by a notable true positive rate (sensitivity) and a
comparatively low false positive rate (1-specificity). This implies that the model this re-
search has developed has the capability to maintain a significantly high true positive rate
while simultaneously minimizing the false positive rate. As a result, it can be considered
highly reliable for the purpose of modification-based detection. The AUC-ROC score of
0.96 highlights the model’s outstanding performance, as values approaching 1 signify a
higher level of discriminative ability.

In addition, a precision–recall analysis was performed, considering the class imbalance
observed in the CICIDS2017 dataset. The precision–recall curve demonstrates that the
research’s proposed model exhibited a notable level of precision despite a decline in the
recall rate. The aforementioned attribute holds significant importance within the realm of
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modification detection, given that erroneous positive outcomes may necessitate expensive
investigations, whereas erroneous negative outcomes could potentially allow network
intrusions to go unnoticed. The high precision value underscores the model’s ability to
accurately detect alterations while maintaining a low rate of false positives. Furthermore,
the study provides evidence that the CNN + LSTM model, which was trained using the
CICIDS2017 dataset, exhibits a high level of efficacy in the detection of modifications.
The model exhibits exceptional accuracy, a well-balanced confusion matrix, a high AUC-
ROC score, and robust precision–recall performance, suggesting its viability for practical
implementation in network security applications within real-world settings.

However, it is important to acknowledge certain limitations of this study. Although
the CICIDS2017 dataset serves as a valuable benchmark, it is important to acknowledge
that real-world networks may introduce additional complexities and challenges that could
potentially influence the performance of the model. Hence, it is necessary to conduct
additional research in order to verify the model’s ability to be applied to a wide range of
datasets and to investigate its potential for adaptation in various network environments.
In general, the research findings support the notion that the CNN+LSTM model holds
promise as an effective approach for detecting modifications in network intrusion detection.

5.2. Interpretation of the Findings Associated with the Store-and-Forward Dataset

The objective of this study was to create a detection system based on modifications
using a combined CNN + LSTM model. This system was developed and tested on a
store-and-forward dataset obtained from a network that was specifically constructed for
experimental purposes. The primary aim of this task was to effectively detect and classify
alterations in network traffic, including intrusions and anomalies. The focus was on
assessing the model’s performance in accurately identifying these modifications within
the context of binary classification. After conducting the experiments and analyzing the
obtained results, it was observed that the CNN + LSTM model exhibited a notably high
modification detection accuracy. Specifically, the model achieved an accuracy rate of
95%. This finding suggests that the model effectively detects instances of network traffic
modifications with a high degree of accuracy. In order to obtain additional insights, this
research conducted an analysis of the confusion matrix. The findings indicated an equitable
distribution of accurate positive and negative classifications, indicating the model’s efficacy
in accurately categorizing both unaltered and altered network traffic. Additionally, a
minimal occurrence of both false positives and false negatives was observed, suggesting
that the model exhibits a strong capacity to differentiate between the two classes. In order
to conduct a more comprehensive evaluation of the model’s performance, this research
generated a receiver operating characteristic (ROC) curve and computed the area under
the curve (AUC-ROC) score. The plotted curve exhibited a gradual and consistent rise in
the rate of correctly identified positive instances, accompanied by a relatively low rate of
incorrectly identified positive instances. This indicates that the model possesses exceptional
discriminatory abilities. Moreover, the AUC-ROC score of 0.92 provides additional evidence
that the model possesses the capability to effectively differentiate between regular and
altered network traffic.

Additionally, a precision–recall analysis was conducted in response to the presence
of class imbalance within this research dataset. The precision–recall curve exhibited a
consistent rise in precision as the recall rate declined, a characteristic frequently observed
in imbalanced datasets. Notwithstanding this challenge, this research model has attained a
substantial precision value, suggesting that the identified modifications are highly prob-
able to be genuine rather than erroneous alerts. After conducting a thorough analysis of
the obtained results, this research assert with confidence that this research modification
detection system, which utilizes a combination of a convolutional neural network (CNN)
and long short-term memory (LSTM), has exhibited encouraging performance. The high
level of accuracy, well-balanced confusion matrix, and robust AUC-ROC score of the model
indicate its potential for practical implementation in the field of network intrusion detection.
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Nevertheless, it is important to acknowledge the presence of certain limitations within this
study. The dataset was obtained from a network specifically designed for experimental
objectives, potentially lacking a comprehensive representation of the intricacies and diffi-
culties encountered in real-world networks. Hence, it is advisable to conduct additional
assessment of the model’s performance on varied and extensive datasets in order to verify
its capacity for generalization. Furthermore, it is suggested that future investigations
could delve into the refinement of the model in order to effectively handle various forms
of alterations. Additionally, it is recommended that the incorporation of explainability
techniques be considered to enhance the comprehension of the decision-making process
employed by the model. Finally, the results of this study suggest that the CNN + LSTM
model exhibits potential for the detection of modifications. Consequently, this research
posits that its integration into the realm of network security and intrusion detection would
be a beneficial contribution.

5.3. Comparison of the Research Findings

Table 9 provides a comparative analysis of previous research studies with respect to
the performance of dataset utilization. The comparison study displays the performance
metrics of various algorithms, such as LSTM, CNN-LSTM, and CNN, on the CICIDS2017
dataset as well as a specialized “Store-and-forward” dataset. These algorithms include
CNN, CNN-LSTM, and LSTM. Accuracy, precision, and false positive rate (FPR) are the
measures that are utilized during the review process. When interpreting the findings, it is
helpful to focus on the findings of “This Study” on both datasets because they provide a
significant amount of knowledge.

Table 9. Comparison of previous research studies.

Study Algorithm Dataset Accuracy (%) Precision (%) FPR (%)

[51] LSTM CICIDS2017 94.11 77.07 0.18

[52] CNN-LSTM CICIDS2017 99.7 99.6 /

[53] CNN CICIDS2017 97.07 97.14 0.87

[54] CNN-LSTM CICIDS2017 95.6 97.6 /

[55] CNN-LSTM CICIDS2017 99.64 99.7 0.1

This Study CNN-LSTM CICIDS2017 97.93 97.46 0

This Study CNN-LSTM Store-and-forward 99.63 99.92 0

The CNN-LSTM models (Studies [50,53], and “This Study”) indicate high accuracy on
a consistent basis, with values that are greater than 99%. These models have performed
admirably in terms of producing accurate forecasts for the vast majority of the cases
contained in the CICIDS2017 dataset. In addition, the accuracy of the CNN model, as
measured by Study [51], is rather high, coming in at 97.07%. Studies [50,53], and “This
Study” all report that the CNN-LSTM models attained precision values greater than 99%,
which indicates a very low rate of false positives. Because these models have shown a
high level of confidence in their positive predictions, they are appropriate for reducing the
number of false alarms that occur during the process of intrusion detection.

With values of approximately 97% and 77%, respectively, the CNN model (Study [51])
and the LSTM model (Study [49]) both have precision that is somewhat lower but still sub-
stantial. The CNN-LSTM models (Studies [53] and “This Study”) have achieved extremely
low FPR values of 0.1% and 0%, respectively. These results are presented in the table below.
This indicates that they have been successful in minimizing the frequency of false positive
predictions, which makes them extremely dependable for the detection of intrusions. The
FPR for the LSTM model (Study [49]) and the CNN model (Study [51]) are higher but are
still considered to be rather low, with values of 0.18% and 0.87%, respectively. Both studies
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were conducted in the United States. In general, the CNN-LSTM models have exhibited
greater performance in intrusion detection on the CICIDS2017 dataset compared to the
separate CNN and LSTM models. This is the case regardless of which dataset is being
used. They have repeatedly demonstrated great levels of accuracy and precision, as well as
minimal rates of false positives. The CNN-LSTM technique has been shown to be effective,
as evidenced by the fact that the CNN-LSTM model used in the most recent study (This
Study) obtained performance that was comparable to that of earlier CNN-LSTM models
(Studies [50,53]).

It is important to note that the results of the most recent study (This Study) are ex-
tremely similar to those of the studies that have the best-performing CNN-LSTM models
(Studies [50,53]). The models may have slight variations in their hyperparameters, archi-
tecture, or other experimental conditions, which could account for the little discrepancies
in the levels of accuracy and precision that exist between them. The CNN-LSTM model
that was used in the most recent study (This Study) looks to be a potential choice for
intrusion detection on the CICIDS2017 dataset due to the excellent accuracy and precision
it achieved, as well as the small false positive rate it produced. To make a judgment that
is more thorough and well-informed, however, additional study should take into account
other criteria outside only computing efficiency, such as the model’s interpretability and its
ability to generalize to a variety of datasets and network contexts.

To begin, when taking into consideration the “CICIDS2017” dataset, the CNN-LSTM
model that was utilized in “This Study” attained an accuracy of 97.93%, which is only a
little bit lower than the highest-performing CNN-LSTM model (99.7% from Study [50]). The
CNN-LSTM model used in “This Study” has a precision of 97.46%, which is comparable to
the precision of other CNN-LSTM models (which can range anywhere from 97.6% to 99.6%).
The CNN-LSTM model used in “This Study” has an FPR of zero, which indicates that it did
not produce any false positive predictions. As a result, it is an extremely trustworthy tool
for intrusion detection. The CNN-LSTM model that was used in “This Study” achieved
an accuracy of 99.63% on the “Store-and-forward” dataset. This is quite close to the
top-performing CNN-LSTM model (99.7% from Study [50]), which was attained using
the model that was used in “This Study”. The CNN-LSTM model used in “This Study”
achieved a precision of 99.92% on the “Store-and-forward” dataset, suggesting a high level
of confidence in the model’s ability to make accurate positive predictions. The CNN-LSTM
model used in “This Study” on the “Store-and-forward” dataset has an FPR of zero, which
indicates that there are no false positive predictions being made by the model.

The hybrid detection technique can be applied to identify variations in IP packet
headers in a real-world network environment. This can be detected via examining the
implementation of a “Firewall” and “Router” that facilitate connectivity between multiple
subnets. One instance of a tangible occurrence can be witnessed in the application of the
“Ping Tunnel” technique within the realm of computer networks. Adversaries with the
power to modify the packet headers of the Internet Control Message Protocol (ICMP) are
able to transit hidden data payloads between two compromised systems. Adversaries
possess the capability to covertly transmit data through the manipulation of ICMP echo
request and echo reply packet headers, thereby circumventing standard security measures
and evading discovery.

In the provided scenario, it is necessary for the detection system to analyze ICMP pack-
ets in order to discover anomalous patterns inside the packet headers, such as unexpected
modifications in fields like TTL or checksums. A detection system that has undergone
precise calibration possesses the ability to identify modified packets as evidence of a covert
communication channel. During the store-and-forward operation, the detection process
is mapped onto the “Firewall” and “Router” components. It is crucial to recognize that
security techniques and threats are subject to continuous modification. Hence, in store-and-
forward situation, it is imperative to stay updated with the values arrived during “store”
and the values the is transmitted during “forward” in order to ensure the effectiveness of a
detection system.
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5.4. Limitations and Future Directions

The limitations and the challenges that this study encountered lie with datasets that
are used for the analysis: CICIDS2017 and a specialized “Store-and-forward” dataset.
Because of the restricted diversity of the datasets, it is possible that the findings cannot be
generalized to the same extent as they could have been otherwise. This could have an effect
on the implications of the findings. Furthermore, there is lack of support from other research
regarding the size of the individualized “Store-and-forward” dataset. The performance of
learning models can vary depending on the size of the dataset, as well as prior utilization.
The comparison analysis does not take into account baseline models or traditional intrusion
detection algorithms, which would have allowed for a more comprehensive assessment.
When trying to understand how effective the proposed CNN-LSTM model is, including
baseline comparisons can provide a framework for doing so better.

Some of the future directions based on this study’s limitations might lie with exploring
larger and more diverse datasets. It is recommended that future studies take into consider-
ation the possibility of evaluating the CNN-LSTM model on a larger number of datasets
that come from a variety of network environments and attack scenarios. The resilience
of the model and its ability to generalize to real-world settings can be evaluated with the
assistance of larger datasets. Furthermore, it is critical to comprehend the decision-making
process of the CNN-LSTM model; hence, conducting research on model interpretability
methodologies is an absolute must. This will provide insights into the features that influ-
ence model predictions as well as increase the reliability of the intrusion detection system.
Finally, future research can consider exploring ensemble methods and hybrid approaches
that integrate a variety of intrusion detection algorithms in an attempt to increase detection
accuracy and robustness. The benefits of multiple methods can be consolidated into a
single model through the utilization of ensemble modeling.

The issues faced by intrusion detection systems (IDSs) when scanning packet headers
occur inside dynamic scenarios, particularly in the context of store-and-forward operations.
In the present scenario, there exists a constraint pertaining to intrusion detection systems
(IDSs), specifically in the context of contemporary network settings. These environments
involve the traversal of packets across diverse network devices and components, each
playing a role in the overall communication process. The aforementioned components
encompass routers, switches, firewalls, and various other network appliances [56]. During
the process of transmission, a packet has the potential to undergo multiple intermediary
operations, one of which is known as the store-and-forward operation.

Another primary difficulty encountered by intrusion detection systems (IDSs) arises
when these systems are tasked with scanning packet headers to identify indications of
intrusion or malicious behavior. In such scenarios, IDSs are designed to efficiently and
consistently process packets within a given timeframe [57]. In the context of a dynamic
store-and-forward operation, several issues emerge, such as the occurrence of “Packet
Fragmentation”. This phenomenon occurs when packets are divided into smaller parts
during the store-and-forward process, primarily due to constraints imposed by buffers
or network congestion. The fragmentation of packets poses a challenge to the intrusion
detection system (IDS) in effectively analyzing the packet header as a cohesive unit, which
may result in inadequate or erroneous analysis. The timing of intrusion detection can
be influenced by the store-and-forward delay in a similar manner. In the event that the
intrusion detection system (IDS) initiates the processing of a packet prior to the completion
of the store-and-forward operation, there is a possibility that the IDS may not possess
complete access to the entirety of the packet header. Consequently, this may result in partial
analysis and the potential failure to recognize intrusion attempts.

Another concern pertains to the phenomenon of out-of-order packets. In the context
of dynamic networks, it is possible for packets to be received in a non-sequential sequence
as a result of fluctuating paths and delays [58]. In the event that an intrusion detection
system (IDS) encounters the processing of packets in a non-sequential manner, there exists
the possibility of misinterpreting the chronological sequence of events or experiencing a
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failure in detecting coordinated attacks. This study focuses exclusively on the analysis
of store-and-forward operations, in contrast to the comprehensive scanning of the full
transmission session. The inherent dynamism of store-and-forward processes presents
significant issues for intrusion detection systems. In order to achieve precise and efficient
detection, it is imperative to formulate tactics that specifically target the timing differences,
packet fragmentation, and other information gaps that may arise from these activities.
In dynamic network circumstances, the utilization of intrusion detection systems (IDSs)
enables the attainment of a complete and dependable analysis of packet headers.

6. Conclusions

This study employed a hybrid dataset consisting of a combination of “CICIDS2017
Dataset” and “Store-and-forward dataset and utilized” CNN-LSTM models to detect
anomalies in key metrics such as “flow duration” and “forward packets”. The detection of
potential anomalies can be accomplished through establishing a baseline of typical flow
durations and forward packet counts, against which any deviations from the established
pattern can be identified. The examination of flow durations and the transmission of
forward packets can yield valuable insights for network administrators in evaluating the
overall performance and efficacy of a network. Unusually brief flow durations or an excep-
tionally large number of forward packets may serve as indicators of network congestion,
performance degradation, or potential security incidents. Abnormally prolonged flow du-
rations or an unusually large volume of forward packets may indicate potential intrusion
attempts or suspicious activities that require further examination. Therefore, a system
that has undergone proper training would possess the capability to proactively mitigate
any potential challenges that may arise in such situations. The detection accuracy and
performance analysis exhibited significant levels of proficiency in both datasets, namely
CIDS2017 and the store-and-forward dataset. On average, the findings indicate that both
scenarios achieved an overall accuracy of 99% and an F1-score of 98%, surpassing the
performance of certain models. This suggests that through acknowledging these limitations
and considering potential avenues for future research, the field of intrusion detection can
further advance in developing network security solutions that are more precise, resilient,
and feasible. The rise in the number of packets inside each flow is contingent upon the
precise architecture of the hybrid detection technique (CNN + LSTM), the attributes of the
network traffic, and the caliber of the training data employed. Increased packet diversity
facilitates the model’s acquisition of knowledge from a diverse range of packet headers
resulting from distinct communication patterns, network circumstances, and potential
alterations. Moreover, the augmentation in data volume facilitates the extraction of more
comprehensive and precise characteristics from the packet headers using this technique,
resulting in enhanced differentiation between regular and altered packets.
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