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Abstract: A triangular parabolic cross vault, that was designed by Musmeci in the 1950s as a
reinforced concrete structure but remained unbuilt, is revisited from the original perspective of its
reinvention as a masonry structure. In the framework of static limit analysis under classical Heyman’s
assumptions, a generalized thrust network analysis is adopted for a structural safety assessment.
The performances of the vault, subject to its self-weight, are investigated through minimum-thrust
and minimum-thickness analyses by conforming to the original geometry and assuming the vault
thickness as the only design parameter. Further insight is achieved by exploring a more general
class of triangular parabolic masonry cross vaults, whose rise-to-span ratio is an additional design
parameter. The static efficiency of the smart and unconventional geometry proposed by Musmeci is
thus proven, motivating the possibility of bringing it to new life in the form of a masonry structure.

Keywords: historical monuments; masonry; cross vaults; limit analysis; thrust network analysis;
minimum thrust; minimum thickness; geometric safety factor; structural optimization; linear
programming

1. Introduction

In 1954, the Italian engineer Sergio Musmeci (1926–1981) designed a reinforced con-
crete cross vault, characterized by a triangular layout and obtained by assembling three
triangular webs with parabolic profiles [1]. Although the vault geometry was a unique and
pioneering result of structural optimization, it remained unbuilt and its project was only
mentioned in reference [2] as “exemplary for its modular conception of the structure based
on the repetition of cylindrical shells”.

The smart geometry invented by Musmeci is revisited here to explore its potential
realization as a masonry structure, as first proposed in references [3,4], and it is then taken
for inspiration in considering the design of a more general class of triangular masonry
cross vaults. As a reliable structural assessment methodology of masonry vaults, the static
(or safe) theorem of limit analysis is adopted, following its formulation by Heyman under
the assumptions of null tensile strength, infinite compressive strength, and no-sliding
behavior [5–7].

Departing from the classical slicing technique (for a recent application, see, e.g., ref-
erence [8]), which models a typical masonry vault as a series of independent arch slices,
thrust network analysis (TNA) has established itself as a powerful and automatic tech-
nique for the 3D funicular analysis of masonry vaults under gravitational loads [9,10]. It
consists of finding a discrete network of compressive forces (or thrusts) in equilibrium
with the vault self-weight, as reduced to nodal forces by tributary areas, and completely
contained within the vault thickness. Peculiar to the method is the introduction of a form
diagram, prescribing the network in horizontal projection and entailing a specific pattern
of the internal force flow. Consequently, the unknown nodal heights and force densities
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(i.e., the thrust-to-length ratios of the branches) are determined through a suitable nonlin-
ear optimization problem enforcing nodal equilibrium equations and static admissibility
conditions [11–17].

The TNA is mechanically interpreted by relating the network nodes to rigid masonry
blocks ideally constituting the vault. Accordingly, the nodal equilibrium amounts to the
equilibrium of the blocks under their self-weight and the interface forces, regarded as the
thrusts in the network branches. In reference [18], Block observed that “the equilibrium of
a masonry unit, or voussoir, in the vault does not require all forces to meet at one point in
3D space”. In other words, the TNA assumption that all thrusts applied to a network node
converge to that node is a sufficient, but not necessary, rotational equilibrium condition for
the blocks. This observation has motivated the recent introduction of the generalized thrust
network analysis (GTNA) [19]. Among its advantages, the GTNA allows an extension of
the set of equilibrated and statically admissible stress states in the vault and translates the
classical minimum-thrust problem for the safe assessment of the vault into a simple linear
programming problem.

Besides the intrinsically discrete formulations discussed above, continuous methods
have been proposed for the static limit analysis of masonry vaults. The thrust surface
analysis approach describes the statics of a masonry vault by searching for a compressed
thrust membrane within the vault thickness in equilibrium with its self-weight [20–24]. A
generalization of that approach is offered by shell-based static limit analysis formulations,
which overcome the thrust membrane concept by assuming that general shell stress states
can arise within the vault to resist external actions [25–31]. Thrust surface analysis and
shell-based static limit analysis can be regarded as the counterpart continuous methods
of TNA and GTNA, respectively. A general and comprehensive review of computational
methods for the structural analysis of masonry structures can be found in reference [32].
Experimental and computational investigations specifically devoted to the structural be-
havior of masonry cross vaults under diverse external actions have been discussed in, e.g.,
reference [33–35].

In the present paper, the GTNA is adopted for investigating the structural safety
of a masonry instance of the Musmeci vault. Initially, by conforming to the original
geometry, the vault thickness is assumed as the only design parameter. Minimum-thrust
and minimum-thickness analyses are performed, respectively enlightening the potential
stress states in the vault after outward settlements of the supports and the geometric
safety factor of the structure, as defined in reference [5]. Subsequently, the Musmeci
vault is regarded as representative of a class of triangular parabolic masonry cross vaults
parameterized by their rise-to-span ratio and normalized thickness. Minimum-thrust and
minimum-thickness analyses are thus extended through parametric analyses, informing of
the structural behavior of such unconventional structures.

The paper is organized as follows. In Section 2, the Musmeci structural model is re-
viewed. In Section 3, the fundamentals of GTNA are discussed. In Section 4, the minimum-
thrust and minimum-thickness analyses of the Musmeci vault as a masonry structure are
presented. Their extension to a parametric class of triangular parabolic masonry cross
vaults is carried out in Section 5. The conclusions are outlined in Section 6.

2. Musmeci Triangular Parabolic Cross Vault

The structure referred to here as the Musmeci vault consists of a reinforced concrete
parabolic cross vault with an equilateral triangular bay. It was conceived by Sergio Musmeci,
in collaboration with the architect Giuseppe Vaccaro, in 1954, as a module forming, through
four-fold repetition, the cover of a rural market in southern Italy [1,2]. The cover, which
accommodated the rhomboidal layout of the market space, was the result of Musmeci’s
early investigations on structural design optimization. An original sketch of the planar view
and a reconstructed perspective view of the whole structure are depicted in Figure 1. In
detail, each vault was formed by three triangular webs with parabolic profile, characterized
by external arches with a rise f = 3.65 m and span 2a = 12.50 m. The intersection of
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the three webs generated the ribs of the vault as semi-parabolic arches with a rise f and
span b = a/ cos (30°) = 2a/

√
3 = 7.22 m. In the following, the equilibrium design

approach developed within the original Musmeci structural model [1] is briefly described,
as also reviewed in references [3,4].

Figure 1. Musmeci triangular parabolic cross vault: (a) original sketch of the planar view, reproduced
from reference [1], and (b) reconstructed three-dimensional view.

For the typical triangular vault to be considered, the Cartesian reference frame shown
in Figure 2 is introduced. A slicing technique is adopted to find an equilibrated membrane
stress state in the parabolic webs. By using a symmetry argument, only the web whose
ridge line is parallel to the y-axis is considered. It is discretized into a family of independent
parabolic web arches of infinitesimal width dy, with a span linearly increasing from 0 to 2a,
and with mid-curve parameterized as follows:

z(x) =
f

a2 x2. (1)

O

dy
dξ

30◦

30◦

a

f

Hweb

Hweb

Vweb

q

b

H
crown

H
ribV

rib

p

s

Figure 2. Musmeci triangular parabolic cross vault: structural model [4].
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Motivated by the web shallowness, the web self-weight is assumed to be approximately
uniform in horizontal projection and with a magnitude q per unit surface. It follows that
the vertical and horizontal actions (per unit dy in horizontal projection) transmitted by the
web arch of span 2x to the rib arch are, respectively, given by:

Vweb(x) = qx, Hweb =
qa2

2 f
. (2)

Consequently, the rib arch, which is parameterized in terms of the abscissa
ξ = x/ cos(30°) = 2x/

√
3 as

z(ξ) =
f

b2 ξ2, (3)

is subjected to the vertical and horizontal loads (per unit dξ in horizontal projection),
respectively, given by:

p(ξ) = 2Vweb(x(ξ))
dy
dξ

=

√
3

2
qξ, s(ξ) = 2Hweb cos (30°)

dy
dξ

=
3
√

3
16

qb2

f
. (4)

Since the rib is subjected to a vertical load p linearly varying from the crown to the
abutment, Musmeci inferred that the thrust line differs from the parabolic rib mid-curve.
However, he realized that the constant horizontal load s was capable of bringing the former
very close to the latter, the maximum eccentricity resulting in a few centimeters [1]. A
structural analysis of the ribs was carried out by observing that, “Since the flexural stiffness
of rib is practically negligible at the abutment, where the section is theoretically reduced to
a point, and at the crown, where the angle between webs becomes zero, the behavior of
the rib can be considered similar to that of a three-hinged semi-arch”. On such a basis, the
vertical reaction at the abutment is given by:

V =
∫ b

0
p(ξ)dξ =

√
3

4
qb2 =

√
3

3
qa2, (5)

the thrust follows from the rotational equilibrium about the crown hinge as

H =
1
f

(
Vb−

∫ b

0
p(ξ)ξdξ +

∫ b

0
s(ξ)z(ξ)dξ

)
=

7
√

3
48

qb3

f
=

7
18

qa3

f
, (6)

and the thrust value at the crown results in

Hcrown = H −
∫ b

0
s(ξ)dξ = −

√
3

24
qb3

f
= − qa3

9 f
, (7)

the negative sign implying that tensile stresses arise in the rib from the crown to the neutral
point located at the abscissa ξ = 2b/9 = 1.60 m. In particular, the normalized thrust at the
abutment is estimated to be:

H
V

=
7

6
√

3
a
f
≈ 1.153. (8)

The Musmeci project assumes the vault thickness to range from 12 to 8 cm (with
tapering in the crown region), the ribs having a triangular section with a height of 28 cm.
The webs are connected along the external sides by edge curbs recalling the formeret arches
adopted in Gothic masonry vaults. The edge curbs have an almost rectangular section,
with a thickness ranging from 15 to 22 cm. The reinforcement layout of the vault is shown
in Figure 3. In detail, the whole surface of the webs is reinforced by a welded mesh with
6 cm pitch, whereas the edge curbs and the ribs are reinforced by 12 mm top and bottom
longitudinal bars and 6 mm diameter stirrups with 20 cm pitch. It is observed that the
arrangement of reinforcement bars along the ribs is consistent with their structural role of
curved beams in the Musmeci model.
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Figure 3. Musmeci triangular parabolic cross vault: reinforcement layout, reproduced from refer-
ence [1].

3. Generalized Thrust Network Analysis of Masonry Vaults

The possibility of reinventing the Musmeci triangular parabolic cross vault as a ma-
sonry vault is investigated here. To that aim, the safe assessment of a masonry instance
of the vault is performed by adopting a generalized thrust network analysis (GTNA). A
brief review of the method is presented in the following section (for further details, see
reference [19]).

3.1. Discretization

The vault is discretized by considering a 3D network of B beams on its mid-surface
(Figure 4). Consistently, the vault self-weight is concentrated at the network nodes accord-
ing to their tributary areas. Let (O; x, y, z) denote a Cartesian reference frame. The typical
node n, of coordinates xn = (xn; yn; zn), is subjected to external forces and couples denoted
by f n =

(
fxn; fyn; fzn

)
and mn =

(
mxn; myn; 0

)
, respectively. In particular, it is assumed

that no external couple is applied at the node about the z-axis. The vault thickness at the
node, vertically measured, is decomposed as hn = hext

n + hint
n , with hext

n [resp., hint
n ] standing

for the vertical distance of the node from the vault extrados [resp., intrados].
A local reference frame is associated with the typical beam b, given by the unit vectors:

tb
H =

1
lb
H


∆xb

∆yb

0

, k =


0

0

1

, bb =
1
lb
H


−∆yb

∆xb

0

, (9)

where ∆xb, ∆yb, and ∆zb are the coordinate differences between the beam end-sections.
Specifically, tb

H is parallel to the horizontal projection of the beam (whose length is lb
H) and

bb is normal to the vertical plane πb that contains the beam.
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Figure 4. Generalized thrust network analysis of masonry vaults: geometric modeling of the Musmeci
vault from (a) solid model, to (b) mid-surface, to (c) 3D beam networks.

3.2. Stress State and Equilibrium

The typical network beam b is assumed to behave as an in-plane beam loaded in the
vertical plane πb. The following three statical descriptors are, therefore, introduced:

Xb =
(

Hb; Vb; Mb
)

, (10)

representing the horizontal and vertical components of the internal resultant force, and the
bending moment at the beam mid-section, respectively. For a visualization, it is observed
that such a stress state is statically equivalent to a thrust force Ñb along a suitable straight
line r̃b (Figure 5a). Accordingly, the beam equilibrium implies that the resultant forces±R±
and moments ±M± at the beam end-sections (with positive or negative sign prevailing for
the initial or final section, respectively) are given by:

(
Rb
±

Mb
±

)
= Eb

±Xb, Eb
± =

 tb
H k 0

∓∆zb

2
bb ±

lb
H
2

bb bb

. (11)

In passing, it is noted that, because Mb
± is parallel to bb, the matrices Eb

± have null entries
in the last row.

tbH

k

bb

lbH

Hb

V b

M b
+

Hb

V b
M b

−

r̃b

Ñ b

Ñ b

b

n

b1

πb1

r̃b1

tb1H

k

bb1

b2

πb2

r̃b2

tb2H
k

bb2

b3

πb3

r̃b3

tb3H

k

bb3

(a) (b)

Figure 5. Generalized thrust network analysis of masonry vaults: (a) stress state in the typical
network beam and (b) equilibrium of the typical network node [19].

Accounting for the stress state in the network beams, the nodal equilibrium equations
for the typical network node n result to be (Figure 5b):

EnX + pn + rn = 0, (12)

in which X is the 3B× 1 vector collecting the beam statical descriptors, En is the 6× 3B
nodal equilibrium matrix constructed by standard assembling of the beam equilibrium
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matrices Eb
± in Equation (11), and pn = ( f n; mn) and rn, respectively, are the 6× 1 vectors

of nodal external loads and (possibly present) nodal constraint reactions. The presence
of nodal constraint reactions rn in Equation (12) is generally undesirable, for they involve
a number of unknown parameters, collected into a vector λn, equal to the constraint
multiplicity Cn. Conversely, it is preferable to reduce to the (6− Cn) pure equilibrium
conditions:

EnX + pn = 0, (13)

obtained by projecting the equilibrium Equation (12) along the unconstrained nodal degrees
of freedom.

Upon column-stacking such equations for all the network nodes, the structural equi-
librium equations are found:

EX + p = 0. (14)

In closing, it is remarked that the assembling of the nodal rotational equilibrium equation
about the z-axis can be avoided from the beginning, because it is identically satisfied for all
the nodes (Figure 5b).

3.3. Static Admissibility

The classical Heyman’s assumptions for masonry prescribe the vault to be com-
pressed [5]. Within GTNA formulation, such an admissibility requirement is accounted for
by restricting the stress state in the network beams. Specifically, for the typical beam b, it is
enforced that:

Hb ≤ 0, Mb
± + Hb hint

± ≤ 0, −Mb
± + Hb hext

± ≤ 0, (15)

where hint
± [resp., hext

± ] denotes the vertical distance hint
n from the vault intrados [resp.,

extrados] of the node n corresponding to the initial or beam end-section. Those conditions
imply that the beam is compressed and the center of pressure at the beam end-sections
is contained within the corresponding vertical sections of the vault. Requirement (15)1
will be, henceforth, dropped off upon observing that it is linearly dependent on the two
remaining conditions.

Using the relationships (10), the conditions (15) can be compactly written as follows:

AbXb ≤ 0, Ab =



hint
− +

∆zb

2
−

lb
H
2

1

hext
− −

∆zb

2
lb
H
2

−1

hint
+ −

∆zb

2
lb
H
2

1

hext
+ +

∆zb

2
−

lb
H
2

−1


, (16)

which, assembled for all the network beams, provide the structural admissibility conditions:

AX ≤ 0, (17)

with A as the 4B× 3B structural admissibility matrix.

3.4. Structural Safety Assessment

A structural safety assessment of the vault is performed by the classical minimum-
thrust and minimum-thickness problems (see, e.g., references [6,7]).

In the former problem, it is assumed that the vault supports undergo outward set-
tlements, as generally caused by external loads. Consequently, the vault experiences a
settlement mechanism which drives it into a minimum-thrust state. According to the
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static theorem of the minimum thrust [7], such a stress state minimizes the opposite of the
(resistant) work done by the settling constraints reactions:

W = − ∑
n∈C

δT
n λn = −δT(WX + b), (18)

where the Cn × 1 vector δn collects the settlement parameters assigned for any constrained
node n ∈ C. The minimization is performed over the set of equilibrated and statically
admissible stress states, amounting to the following optimization problem:

min
X

− δT(WX + b),

s.t. EX + p = 0,

AX ≤ 0.

(19)

It is remarked that such a formulation consists of a linear programming problem and can
be effectively addressed using standard optimization software. Details on the assembly
procedure of δ, W , and b can be found in reference [19]. Therein, it has also been shown
that, by interpreting the dual of the optimization problem (19) as a formulation of the
kinematic theorem of the minimum thrust, the settlement mechanism of minimum thrust
can be recovered by a simple post-computation. Needless to say, by changing the sign of δ,
the maximum-thrust state in the vault can be explored instead of the minimum-thrust one.

The minimum-thickness problem offers a quantitative estimation of the structural
safety of the vault under its self-weight in terms of the geometric safety factor [5]. Upon
denoting as h the actual vault thickness and as hmin the minimum thickness for which the
vault would be able to stand, the geometric safety factor is, in fact, given by the ratio h/hmin.
Here, a computational strategy based on the solution of a sequence of minimum-thrust
analyses is adopted for determining the minimum thickness. The underlying idea is
that a prescribed thickness h is safe only if the minimum thrust problem (19) is feasible.
Accordingly, the minimum thickness hmin is iteratively computed by applying the bisection
method to an initial interval [ha, hb] whose endpoints correspond to an unsafe and a safe
thickness, respectively. Compared to other approaches available in the literature (see,
e.g., reference [17]), the adopted procedure has the merit of circumventing unavoidably
nonlinear optimization in the unknown minimum thickness and instead addressing a
sequence of straightforward linear programming problems.

4. Structural Analysis of the Musmeci Vault Reinvented as a Masonry Structure

In this section, a masonry instance of the Musmeci vault is considered and its structural
safety is investigated using GTNA.

For complying with the original geometry, the vault thickness is assumed to be the
only design parameter. A uniform normalized thickness h/2a = 0.02 is initially considered,
corresponding to a thickness h = 25 cm. Outward horizontal settlements are considered in
the rib planes at the corner supports for a minimum-thrust investigation.

To that end, the beam network topologies depicted in plan view in Figure 6 are adopted
for the discretization of the vault mid-surface. The network refinement is controlled by
a refinement parameter N, coinciding with the number of beams along the half-web (the
case N = 4 is illustrated in the figure). Panels (a) and (c), respectively, refer to orthogonal
and fan-like networks, obtained by adapting the form diagrams proposed for a classical
TNA of cross vaults with a square layout in reference [17]. Distinct patterns of internal
force flows underlie the two network topologies. In particular, the orthogonal topology
presupposes that the self-weight of the webs is first conveyed to the ribs, which are then
in charge of its transmission to the corner supports. Conversely, a direct flow of the self-
weight of the webs toward the corner supports is envisaged within the fan-like topology.
Motivated by the potential blending of the two internal force flow patterns, the orthogonal
and fan-like topologies are conveniently interpreted as the two limit cases, respectively,
corresponding to λ = 0 and λ = 1, of a continuous sequence of network topologies indexed
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by a shape parameter λ ∈ [0, 1]. By way of example, panel (b) of Figure 6 shows the beam
network for the choice λ = 0.5. Thanks to the problem symmetry, in numerical simulations,
one-sixth of the vault is considered and suitable symmetry conditions are accounted for on
the symmetry planes. At the corner support, additional static admissibility conditions are
prescribed, requiring the line of action of the resultant constraint reaction to be contained
within the springing section.

Figure 6. Structural analysis of the Musmeci vault reinvented as a masonry structure: beam networks
in plan view. The network shape parameter is selected as (a) λ = 0, (b) λ = 0.5, and (c) λ = 1, with the
former and latter cases identified as orthogonal and fan-like networks, respectively. Coarse networks
are depicted for improved readability, corresponding to a network refinement parameter N = 4.

The left and mid columns of Figure 7 show the generalized thrust networks of min-
imum thrust for the Musmeci vault obtained assuming, from top to bottom, the val-
ues λ = {0, 0.5, 1} for the network shape parameter. A refinement parameter N = 16 is
considered. For the typical network beam b, a pipe with axis on the straight line r̃b and
diameter proportional to Ñb (Section 3) is plotted. Green [resp., blue] dots are used to
identify the beam end-sections where the generalized thrust network is tangent to the vault
extrados [resp., intrados]. The orthogonal network prompts the formation of a series of
web arches supported by the ribs, which thus play a fundamental static role (Figure 7a,b).
Conversely, the fan-like network is characterized by the formation of fan arches, that in-
teract on the vault ridge line, and directly rest on the corner supports (Figure 7g,h). An
intermediate static regime is obtained for an intermediate value of the shape parameter,
with the ribs that are only loaded in the regions close to the corner supports (Figure 7d,e).
The right column of Figure 7 shows the settlement mechanisms of minimum thrust, which
are kinematically dual to the obtained generalized thrust networks. A progressive transfor-
mation is recognized, from one driven by the settlement of the rib arches and triggering
a settlement of the web arches for the orthogonal network, to one due to the settlement
of the fan arches for the fan-like network. The obtained values of the normalized thrust
are H/V = {1.039, 1.054, 1.079} for λ = {0, 0.5, 1}, respectively. Accordingly, the orthog-
onal topology emerges as the most efficient pattern for the internal force flow.

The minimum thickness of the Musmeci vault reinvented as a masonry structure is
then investigated. A vault is in minimum thickness configuration when the corresponding
generalized thrust network is tangent to the vault extrados or intrados in a number of
sections large enough that, from a kinematic viewpoint, the opening of the descending
hinges implies an incipient collapse mechanism. By applying the procedure discussed in
Section 3.4, the normalized minimum thickness is hmin/2a = 0.0105, corresponding to a
minimum thickness hmin ≈ 13.1 cm and a geometric safety factor h/hmin = 1.90. The mini-
mum thickness is attained using the orthogonal network topology and the relevant value
of the normalized minimum thrust is H/V = 1.120. Such a result is in good agreement
with the approximate estimate given in Equation (8) and follows from the similarity of the
orthogonal internal force flow pattern with the one originally considered in the Musmeci
model, where a generally compressive membrane stress state on the vault mid-surface is
found. The present results are also in line with the predictions of 0.0112 and 1.116 for the
normalized minimum thickness and the relevant normalized minimum thrust, respectively,
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obtained using a slicing technique that generalizes the one adopted in the Musmeci model
in order to avoid tensile stresses [3,4,8].

Figure 7. Structural analysis of the Musmeci vault reinvented as a masonry structure: generalized
thrust network in (left) plan and (mid) perspective views, and (right) settlement mechanism of
minimum thrust, assuming a uniform normalized thickness h/2a = 0.02. The network shape
parameter is selected as (a–c) λ = 0, (d–f) λ = 0.5, and (g–i) λ = 1. The network refinement
parameter is set to N = 16.

The small value obtained for its normalized minimum thickness proves the static
efficiency of the cross vault geometry ideated by Musmeci. Although its unique design
makes it difficult to compare with more conventional geometries, a qualitative clue can
be achieved by considering a masonry cross vault with a square layout, a circular profile,
and the same rise-to-span ratio ( f /2a = 0.292) of the Musmeci vault as a benchmark.
Its normalized minimum thickness is 0.0155, approximately 30% larger than the 0.0105
estimate previously obtained. Indeed, such a vault is characterized by a springing angle of
about 30◦, differing from the one of about 40◦ relevant to the original geometry. Nonetheless,
upon referring to the larger class of masonry cross vaults with pointed circular profile
investigated in references [17,19] for a benchmark, the normalized minimum thickness of
such a vault with the same rise-to-span ratio and springing angle of the Musmeci one is
0.0111, which is still approximately 6% larger compared to the Musmeci geometry.

In closing, it is noticed that a further thickness reduction could be achieved by drop-
ping off the assumption of uniform thickness. For instance, under the condition that the
ribs are twice as thick as the webs, the normalized minimum thickness of the latter is 0.007,
corresponding to a web thickness of 8.75 cm.
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5. Parametric Analyses of Triangular Parabolic Masonry Cross Vaults

The Musmeci vault is here regarded as an instance of a class of triangular parabolic
masonry cross vaults whose geometry is described by the rise-to-span ratio f /2a and the
uniform normalized thickness h/2a. The structural safety of such a class of vaults is thus
investigated, accounting for their parameterized geometry.

As proposed in reference [17], the minimum and maximum thrusts are explored, result-
ing from outward or inward horizontal settlements in the rib planes at the corner supports,
respectively. In Figure 8, the normalized thrust values, Hmin/V and Hmax/V are reported
versus the normalized thickness h/2a, for the selected values f /2a = {0.2, 0.3, 0.5, 0.7, 1}
of the rise-to-span ratio. Red, yellow, and blue curves correspond to orthogonal (λ = 0),
fan-like (λ = 1), and optimized (λ = λopt) beam networks, respectively. As expected,
an increase in f /2a implies a general decrease in the thrust regime, with the optimized
network shape parameter shifting from λ = 0 to λ = 1 while considering vaults that are
more and more slender. Moreover, an increase in h/2a implies a larger interval [Hmin, Hmax]
of admissible thrusts for the vault, to be interpreted as an increase in the vault robustness.
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Figure 8. Parametric analyses of triangular parabolic masonry cross vaults: minimum/maximum
normalized thrust H/V versus normalized thickness h/2a, for vaults with parabolic webs character-
ized by, from top to bottom, rise-over-span ratio f /2a = {0.2, 0.3, 0.5, 0.7, 1}. Orthogonal (λ = 0),
fan-like (λ = 1), and optimized (λ = λopt) beam networks are considered.

A parametric analysis of the minimum thickness of the vault, with respect to the rise-
to-span ratio f /2a, is then performed. The relevant results are shown in Figure 9, where the
estimates obtained using the orthogonal, fan-like, and optimized networks of beams are
compared. It is observed that the optimized minimum thickness versus rise-to-span ratio
curve is characterized by two branches. The first [resp., second] branch, corresponding
to shallow [resp., slender] vaults, is increasing [resp., decreasing] and attained with an
orthogonal [resp., fan-like] network topology. The transition between the two branches
takes place for vaults with intermediate values of f /2a and requires intermediate values
of the network shape parameter λ. In particular, a maximum of the curve is observed
within such a connection branch, implying that the geometric safety factor of triangular
parabolic masonry cross vaults under self-weight improves when considering shallow or
slender geometries.
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Figure 9. Parametric analyses of triangular parabolic masonry cross vaults: normalized minimum
thickness hmin/2a versus rise-over-span ratio f /2a for vaults with parabolic webs. Orthogonal
(λ = 0), fan-like (λ = 1), and optimized (λ = λopt) beam networks are considered.

6. Conclusions

A triangular parabolic cross vault, that was designed by Musmeci in the 1950s to be
realized as a reinforced concrete structure but remained unbuilt, has been revisited from
the original perspective of its reinvention as a masonry structure. Relying on the classical
Heyman’s assumptions for masonry, the static theorem of limit analysis has been adopted
as a structural analysis methodology, and its application through the recently proposed
generalized thrust network analysis has been performed. In order to comply with the
original geometry, the vault thickness has been first assumed as the only design parameter
to conduct minimum-thrust and minimum-thickness analyses. A theoretical uniform
thickness-to-span ratio of about 1% has been derived, showing the static efficiency of the
unconventional geometry proposed by Musmeci. Then, assuming the vault rise-to-span
ratio as a further design parameter, a more general class of triangular parabolic masonry
cross vaults has been explored. It has been proven that, while shifting from shallow to
slender geometries, a statically efficient internal force flow is obtained by progressively
transforming a system of web arches that convey the self-weight loads to the ribs into a
system of web arches that directly convey the self-weight loads to the corner supports.
For especially shallow or slender geometries, extreme minimum thickness-to-span ratios
appear to be conceivable. Ultimately, the obtained results prove the possibility of bringing
new life to the smart Musmeci vault as a high-performance masonry structure.
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