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Abstract: Wind factors significantly influence air travel, and extreme conditions can cause operational
disruptions. Machine learning approaches are emerging as a valuable tool for predicting wind pat-
terns. This research, using Madeira International Airport as a case study, delves into the effectiveness
of feature creation and selection for wind nowcasting, focusing on predicting wind speed, direction,
and gusts. Data from four sensors provided 56 features to forecast wind conditions over intervals of
2, 10, and 20 min. Five feature selection techniques were analyzed, namely mRMR, PCA, RFECV,
GA, and XGBoost. The results indicate that combining new wind features with optimized feature
selection can boost prediction accuracy and computational efficiency. A strong spatial correlation was
observed among sensors at different locations, suggesting that the spatial-temporal context enhances
predictions. The best accuracy for wind speed forecasts yielded a mean absolute percentage error
of 0.35%, 0.53%, and 0.63% for the three time intervals, respectively. Wind gust errors were 0.24%,
0.33%, and 0.38%, respectively, while wind direction predictions remained challenging with errors
above 100% for all intervals.

Keywords: wind nowcasting; machine learning; feature selection; feature engineering; aviation
wind nowcasting

1. Introduction

Airflow, including wind speed and direction, is a crucial element that significantly
influences aeronautical operations [1]. Extreme wind conditions can disrupt airport and
air traffic operations, highlighting the necessity for precise measurements and predictions
of wind near the takeoff and landing zones [2]. Machine learning (ML), with its ability to
model complex non-linear relationships and adapt to new data, has emerged as a promising
approach for wind prediction, achieving good performances and the ability to operate at
acceptable timescales [3–5].

In this context, the significance of the input data’s quality and relevance to the perfor-
mance of models has been emphasized extensively in scholarly discussions. The literature
reiterates a fundamental tenet that the quality of the training data dictates the performance
ceiling of a given ML model. A surge of relentless efforts, including the refinement of
methods for feature selection, is currently being channeled towards optimizing both the
quality and performance of these models [6,7].

Feature selection, a process that identifies and selects the most pertinent features from
a dataset, has emerged as a crucial strategy in optimizing the quality and performance
of ML models. The feature selection methods can be broadly categorized into four types:
filter, wrapper, embedded, and hybrid. Each technique offers a unique approach to feature
selection, from utilizing training data characteristics to integrating feature selection into
model construction and even combining techniques for a more comprehensive approach [8].
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The significance of feature selection is multifaceted, reducing computational costs,
identifying irrelevant features, and aiding the whole generation of well-classified models [8].
Focusing on the most relevant features also eliminates noise and redundancy, thereby
improving the performance and accuracy while also reducing the dimensionality and
optimizing the overall ML approaches in diverse fields [9,10].

With the maturation of technology and the concurrent advancement in ML methodolo-
gies, a trend toward more intricate and profound models becomes evident. Concomitant
with these developments is the emergence of new paradigms in feature selection, as
researchers are now endeavoring to incorporate feature selection techniques into deep
learning models, underscoring the burgeoning significance of this approach even within
the context of contemporary, high-dimensionality, and complex models [8–11].

The current research explores various feature selection methodologies using wind data
from Madeira Airport as a case study and aims to compare the effectiveness of different
techniques through a comparative analysis of each set of features. Specifically, it is intended
to assess the effectiveness of the created features for predicting the following wind-related
metrics. The prime objective is to deepen the comprehension of feature creation and
selection strategies for wind prediction and contribute to refining meteorological nowcasts
using ML models.

The principal innovations of this work are as follows:

• A comprehensive analysis focused on exploration of the effective features within the
understudied domain of ML-based wind nowcasting.

• A first application of feature engineering to wind speed, direction, and gust, employing
five distinct techniques.

• A first exploration into the significance of feature importance, evaluated over multiple
prediction steps for wind nowcasting.

This study is divided into six sections. Section 2 provides an overview of the current
state of the art in feature selection for wind prediction using ML. Section 3 describes
the materials and methods employed in this study, while Section 4 presents the results.
Section 5 conducts an analysis and discussion of the results, which is further concluded in
Section 6.

2. State of the Art

Research has been channeled into developing accurate and efficient wind speed
prediction models, underscoring the significance of feature selection and optimization
techniques. Hence, a bibliographic review was undertaken to assess the leading feature-
based methodologies in wind prediction using ML.

Salcedo-Sanz et al. [12] adopted an innovative biologically inspired metaheuristic
algorithm, coral reefs optimization (CRO), to process feature selection in wind speed
prediction at wind farms. This method is a masterful simulation of coral reproduction and
competition for space within an artificial reef, where each grid cell represents a potential
solution. In this context, a key or “coral” is a unique set of meteorological variables capable
of predicting wind speed. The CRO approach identified nine features that displayed robust
performances across various regression models, thereby consolidating its efficacy in wind
speed prediction feature selection.

A critical work by Kong et al. [13] introduced a wind speed prediction model em-
ploying the potent combination of a high-efficiency convex optimization support vector
machine (SVM) and a reduced SVM (RSVM) for more tractable data regression. Their
model integrated principal component analysis (PCA) to pinpoint critical factors impacting
wind speed, thereby optimizing parameters. The RSVM-based model was validated using
real-time data from wind power plants, thereby unmasking the potential of feature selection
techniques such as PCA for enhanced model generalization. Wind speed, temperature, and
pressure emerged as the key features that the model identified as necessary. Interestingly,
the wind direction was found to have a minimal impact and was hence discarded. Conse-



Appl. Sci. 2023, 13, 10221 3 of 23

quently, the RSVM model, with PCA integration, stands as an exceptional leap forward in
wind speed nowcasting.

Moreover, Relief feature selection has also proven beneficial in wind speed nowcasting.
As applied by Paramasivan and Lopez [14], this technique discerns essential features based
on their relevance and contribution to the prediction task in a nonlinear autoregressive
model process with exogenous input (NARX). The performance of the NARX model,
when evaluated in terms of mean square error, accentuates the efficiency of the Relief
feature selection, achieving greater performance when using the selected features for wind
prediction: wind direction, humidity, and temperature.

In 2016, Zhang et al. [15] proposed innovative models that amalgamate empirical
mode decomposition (EMD), feature selection, artificial neural networks (ANN), and SVM
for short-term wind speed prediction. After applying EMD to decompose the original wind
speed time series into sub-series, these models identified the most informative features.
Subsequently, predictive ANN or SVM models were constructed. Furthermore, a data-
driven multi-model wind nowcasting methodology was developed by Feng et al. [16],
which utilized a two-layer ensemble machine learning technique with a deep feature
selection framework to determine the most suitable inputs. The noteworthy improvements
in nowcasting accuracy from these novel approaches further underscored the critical role
of feature selection in enhancing wind speed prediction models.

Yet another perspective was brought forth by Liu et al. [17] with a feature selection
framework rooted in mutual information. This was then paired with a stacked denoising
autoencoder (SDAE) and an extended short-term memory network, based on a long short-
term memory (LSTM), to distill intrinsic features and generate accurate predictions. When
juxtaposed with traditional models, the superior performance of this SDAE-LSTM network
highlighted the effectiveness of feature selection-driven hybrid deep architectures in wind
speed prediction.

A hybrid two-stage feature selection methodology was introduced by Mir et al. [18],
which merged filter- and function-based clustering models to extract valuable feature
subsets. Symmetrical uncertainty and SVM algorithms were deployed for feature weighting,
with clustering being determined by a function-based model. The marked improvement in
the prediction model’s accuracy served as evidence of this approach’s validity.

A feature selection method based on the extreme gradient boosting (XGBoost) algo-
rithm was melded with a temporal convolution network (TCN) by Zha et al. [19]. This
combination markedly reduced the root mean square error (RMSE) and mean absolute error
(MAE) indicators when excluding the wind direction and air relative humidity features
from the model’s input.

The adaptive dynamic grey-wolf dipper-throated optimization (ADGWDTO) algo-
rithm, a novel method developed by El-kenawy et al. [20], optimizes weight values in
a weighted ensemble model. The novelty lies in incorporating the foraging behavior of
dipper-throated birds, thus enhancing the algorithm’s exploration capability. The ADG-
WDTO revealed superior performance in feature selection and outperformed state-of-the-
art feature selection algorithms.

Moreover, Lv and Wang [21] proposed an ingenious method by coupling the filter-
wrapper non-dominated sorting differential evolution algorithm with K-medoid clustering
to select pivotal weather-related factors (FWNSDEC-SSA). The initial features were several
meteorological variables like temperature, humidity, and dewpoint and were processed by
a convolutional LSTM network. This technique provided a more efficient set of features to
be processed, resulting in a remarkable improvement in nowcasting accuracy compared to
various benchmarks.

Through the review of these innovative approaches, it becomes evident that feature
selection plays a pivotal role in enhancing the performance of wind speed prediction
models. The techniques range from biologically inspired algorithms like CRO to complex
deep learning networks like the SDAE-LSTM network. Each of these methods offers a
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unique approach to feature selection and contributes to the overarching goal of improving
the accuracy and efficiency of wind speed prediction models.

The analysis reveals a predominant focus on wind speed and power prediction within
the realm of feature engineering. This leaves a discernible void in predicting wind direction
and gusts, which are significant across various sectors, particularly within aeronautical
operations, where localized wind gusts can be indicative of critical hazards affecting aircraft
stability and safety during takeoff and landing, such as wind shear [22,23]. Therefore,
research must persist in probing these innovative methodologies, exploring different target
variables to optimize ML performance in new fields.

3. Materials and Methods

In this section, an overview of the materials and the methodologies adopted through-
out the course of this research is provided, exploring the major steps and ensuring the
reliability, reproducibility, and validity of the results.

3.1. Materials

On the southeastern coast of Madeira, the largest island in the Madeira archipelago in
the subtropical eastern North Atlantic, sits the Madeira International Airport, as shown
in Figure 1. This unique geographic location presents a set of specific challenges due to
the island’s complex topography, notably a significant mountain range. This characteristic
significantly influences the climatic conditions at the airport, contributing to an intricate
pattern of air flows and denoting substantial wind complexity, as the prevailing wind
regime from the N and NE sectors is modified by the island topography [24,25].
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Figure 1. Madeira Island hypsometric map (10 m resolution digital terrain model—Direção Regional
do Ordenamento do Território, IP-RAM), depicting the airport runway and the examined wind
sensors sites (ROSARIO, RWY05, MID, and RWY23).
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The wind data utilized for this study are not publicly available, yet they were pro-
vided, upon request, by NAV Portugal E.P.E., a public corporate entity entrusted with the
responsibility of providing air traffic services in Portugal.

Wind observations at Madeira Airport are recorded by a wind set from Väisälä,
model WA15, comprised of a Väisälä Anemometer WAA151 and a Väisälä Wind Vane
WAV151. This system is deployed in four different sites, one at the short-final of runway 05
(ROSARIO) and three others at different sectors of the airport: RWY05, MID, and RWY23,
as illustrated in Figure 1. In their unprocessed form, collected data are captured every three
seconds and stored on a server in a comma-separated values (CSV) format. This format
includes a timestamp, the wind speed expressed in m/s, and the wind direction in degrees.

The provided dataset comprises complete CSV records collected from the four de-
ployed sensors, covering the unprocessed three-second interval data for the years 2018 and
2019 and accounting for 84,096,000 potential observations, of which 84,040,836 contained
valid and usable data. Figures 2 and 3 display the distribution of the raw data for the entire
period, showcasing the prevailing wind speed and direction for each sensor. It is noticeable
that the predominant wind in the data occurs from the N and NE, averaging between
4.5 m/s and 4.9 m/s on ROSARIO and RWY05, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 26 
 

 
Figure 1. Madeira Island hypsometric map (10 m resolution digital terrain model—Direção Regional 
do Ordenamento do Território, IP-RAM), depicting the airport runway and the examined wind 
sensors sites (ROSARIO, RWY05, MID, and RWY23). 

The wind data utilized for this study are not publicly available, yet they were 
provided, upon request, by NAV Portugal E.P.E., a public corporate entity entrusted with 
the responsibility of providing air traffic services in Portugal. 

Wind observations at Madeira Airport are recorded by a wind set from Väisälä, 
model WA15, comprised of a Väisälä Anemometer WAA151 and a Väisälä Wind Vane 
WAV151. This system is deployed in four different sites, one at the short-final of runway 
05 (ROSARIO) and three others at different sectors of the airport: RWY05, MID, and 
RWY23, as illustrated in Figure 1. In their unprocessed form, collected data are captured 
every three seconds and stored on a server in a comma-separated values (CSV) format. 
This format includes a timestamp, the wind speed expressed in m/s, and the wind 
direction in degrees. 

The provided dataset comprises complete CSV records collected from the four 
deployed sensors, covering the unprocessed three-second interval data for the years 2018 
and 2019 and accounting for 84,096,000 potential observations, of which 84,040,836 
contained valid and usable data. Figures 2 and 3 display the distribution of the raw data 
for the entire period, showcasing the prevailing wind speed and direction for each sensor. 
It is noticeable that the predominant wind in the data occurs from the N and NE, 
averaging between 4.5 m/s and 4.9 m/s on ROSARIO and RWY05, respectively. 

 
Figure 2. Violin plots representing the full range of wind direction recorded by the official wind 
sensors at Madeira International Airport over 2018 and 2019. 

Figure 2. Violin plots representing the full range of wind direction recorded by the official wind
sensors at Madeira International Airport over 2018 and 2019.

3.2. Methods

In this section, the research methodology employed is presented, emphasizing the
major steps followed to analyze the more important features in wind nowcasting. The
prediction process was based on feeding the model with the last 2 min of data for predicting
the targeted 2 min, 10 min, and 20 min values, corresponding to the next step, 5 steps, and
10 steps of the dataset, respectively. Specifically, the 2 min and 10 min durations are defined
by the World Meteorological Organization (WMO) for local and international wind reports,
respectively, while the 20 min duration is drawn from the timeframes used in previous
wind nowcasting studies [2,26,27]. A concise illustration of the stages followed in this work
is provided in Figure 4.
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3.2.1. Data Validation and Preprocessing

The raw data, composed of direct wind readings from each sensor, underwent a
preprocessing phase via a Python algorithm to validate each three-second interval record.
This step ensures valid readings for both wind speed and direction upstream, preventing
issues during the rest of the process. Instances of missing or corrupted data were identified
and discarded, resulting in a usable dataset consisting of 99.93% of the original raw data.
Aligning with the WMO recommendation for local reports in aeronautical purposes, the
raw data were subsequently reformatted into two-minute steps [2].
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3.2.2. Data Processing and Feature Creation

After adjusting the time step, a mathematical approach encompassing standard statis-
tical and entropy methods was employed for feature engineering, enabling the extraction of
information, modification of existing features, and generation of new ones from the wind
data to identify patterns and randomness for the subsequent stages of the study.

Features represent the quantifiable attributes or characteristics of the observed phe-
nomena, serving as the variables that support the model’s decision-making or predictive
capabilities. The process of feature engineering, which involves the generation of new
features or modification of existing ones, encompasses a broad spectrum of transforma-
tions that can be applied to numerical data, such as mathematical approaches [28,29].
Consequently, 14 distinct features were derived, per sensor, totaling 56 features at a time
resolution of two minutes.

Statistical Methods

The
→
u and

→
v wind components represent the west-to-east and south-to-north flows,

respectively, and can be written as

→
u =

∑n
i=1
[
−Si × sin

(
Di ×

(
π

180
))]

n
(1)

→
v =

∑n
i=1
[
−Si × cos

(
Di ×

(
π

180
))]

n
(2)

where D is the wind direction in degrees, S is the wind speed in m/s, and n is the number
of samples in the 2 min timestep [30–32].

Mean wind speed (S) and direction (D):

S =
∑n

i=1(Si)

n
(3)

D =

(
arctan

(→
u
→
v

)
+ π

)
× 180

π
(4)

where
→
u and

→
v are the mean 2 min wind components in m/s [30–32].

The wind speed maximum value, corresponding to the wind gust [27] (maxS) and
standard deviation (stdS), can be calculated with

maxS = maxn
i=1(Si) (5)

stdS =

√√√√∑n
i=1

(
Si − S

)2

n− 1
(6)

while the median (mdnS), if n is odd, is given by

smdnS = So( n+1
2 ) (7)

and if n is even, it is defined as

smdnS =

(
So( n

2 )
+ So( n

2 +1)

)
2

(8)

where So represents the wind speed values, in the interval, sorted from the lowest to the
highest value [30–32].
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Skewness (skwS) and kurtosis (krtS) provide insights into the shape and distribution,
in addition to the symmetry and tail behavior of the wind data.

sskwS =
1
n

n

∑
i=1

 Si − S√
∑n

i=1(Si−S)
2

n−1


3

(9)

krtS =
1
n

n

∑
i=1

 Si − S√
∑n

i=1(Si−S)
2

n−1


4

(10)

Entropy Methods

Shannon entropy (ShnE) measures the uncertainty or randomness of the data and can
be calculated with

ShnE(S) = −
n

∑
i=1

P(Si)log2 P(Si) (11)

where P is the probability of occurrence, and S is the data values [33–35].
Sample entropy (SplE) is used to extract information about the complexity of the

time-series data by quantifying the regularity and unpredictability of its fluctuations is
given as

SplE(m) = −ln
(

A
B

)
(12)

where m is the embedding dimension, A is the number of template vectors of length
m + 1 that are similar, and B is the number of template vectors of length m that are
similar [33,35,36].

Multiscale entropy (MscE), which quantifies the complexity of the data over different
timescales, is defined as

scE(m, r, τ) = −ln
(

A(m, r, τ)

B(m, r, τ)

)
(13)

where m is the sequence length to compare, r is the maximum allowed difference for
sequences to be considered similar, τ is the scale factor, and A and B are counts of similar
sequences of lengths m + 1 and m, respectively [33,35,37].

Permutation entropy (PmtE) extracts the complexity of the data by examining all
possible patterns or permutations and quantifying the pattern appearance in the defined
time-steps and is given as

PmtE(m) = −∑
π

p(π)log p(π) (14)

where π ranges over all m! possible permutations (m is the embedding dimension) of length
m, and p is the normalized count of permutation [33,35,38].

Multiscale permutation entropy (MspE) is an extension of permutation entropy that
takes into consideration multiple scales to analyze the complexity of the time series, allow-
ing for the detection of features or complexities that might be invisible at the original scale
but become evident when looking at larger scales, especially when the features manifest
over multiple scales. It can be calculated with

MspE(m) = [PmtE(m, 1), PmtE(m, 2), . . . , PmtE(m, τmax)] (15)
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where PmtE was calculated with the coarse-grained time series at a particular scale τ, and
the sequence 1, 2, . . ., τmax is the different scales at which the time series is coarse-grained
and analyzed [33,35,39].

The feature engineering stage ended with a normalization process, which adjusted the
range of each feature value between −1 and 1, fostering an equitable comparison between
the features by mitigating potential scale disparities.

3.2.3. Feature Selection

Based on the state of the art, five feature selection techniques were chosen. The
mRMR was chosen in alignment with the approach brought forth by Liu et al. [17], which
emphasized mutual information-based feature selection. PCA was adopted, inspired by
the work of Kong et al. [13], which effectively integrated it to identify influential factors
affecting wind speed. RFECV was selected to consolidate the approach, emphasizing
accuracy and efficiency, as noted in various studies [13–21]. The GA was employed due
to its ability to emulate natural biological evolution processes, drawing parallels with the
CRO method’s efficacy in identifying robust features. Lastly, XGBoost, as highlighted by
Zha et al. [19], provided a compelling methodology for feature selection, leading to marked
improvements in prediction accuracy metrics.

These techniques can be grouped into four broad feature selection categories: fil-
ter/dimensionality reduction, wrapper, and embedded methods [40]. In Figure 5, a
flowchart is presented, which points to the steps and procedures followed in this process.

The feature selection process was carried out independently for each target variable
and forecast window. This methodology was implemented to ensure an in-depth and
varied understanding of the significance of each feature across distinct prediction scenarios.
By isolating the process for every target variable and forecast window, variations in feature
importance across different prediction variables and time horizons were discerned. Such
an approach provides a comprehensive view, revealing how certain features might hold
more importance for one prediction context but may wane in relevance in another.

The minimum redundancy maximum relevance (mRMR) and PCA techniques were
employed as filter methods. The mRMR method, widely used for feature selection, brings
inherent benefits, particularly its reduced computational complexity and processing speed.
It works by selecting the features with high amounts of mutual information with the class
but with minimum information shared between each other [41,42]. The PCA method is
one of the classic and most widely used techniques to reduce the dimension of a dataset
without losing statistical information [43,44]. The calculations were processed by Python 3
using pymrmr (version 0.1.11) and scikit-learn (version 1.2.2) libraries, and the number of
features selected was based on the minimum mean absolute percentage error (MAPE) for
each target and prediction window.

In wrapper methods, the recursive feature elimination with cross-validation (RFECV)
and the Genetic Algorithm (GA), which is also considered an evolutionary search-based
method, were used. A regression tree was chosen due to its quick processing speed, sim-
plicity, minimal input parameters, which reduce subjectivity and enhance reproducibility,
and its explainability potential, which lends itself to further exploratory studies [45–50].

Concerning the RFECV, a commonly used methodology that deletes features that
may interfere with the result, data processing was performed using an algorithm that
incorporated both the RFECV feature selection module and the decision tree regressor
libraries, using a 5-fold cross-validation setup [51–53].

Regarding the GA, for optimization of the features involved, a Python script was
developed to facilitate an evolutionary algorithm inspired by natural selection processes,
emulating the process of natural biological evolution [54,55]. The developed GA optimizes
the decision tree regressor’s feature selection using fitness scores derived from the MAPE
and applied to a population of 100 individuals, in which each chromosomes had 56 genes.
The fundamental mechanisms are the selection based on the best fitness individuals, multi-
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point crossover on reproducing steps, a mutation rate of 0.5%, and an early stopping
criterion based on a lack of fitness improvement over ten generations.
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Finally, the XGBoost embedded method was used. This feature-selection technique
leverages a second-order Taylor expansion to approximate the loss function, enhancing
model accuracy, and incorporates a regular term to control model complexity, thereby
preventing overfitting. It employs feature importance selection, an embedded method,
wherein gain is used to identify optimal segmentation nodes during training. The im-
portance of each feature is gauged by calculating the average gain (total gain of all trees
divided by each feature’s division count), which indicates the feature’s contribution to the
model’s construction and training. Therefore, XGBoost is an optimal choice for wind feature
selection since its integrated regularization can prevent overfitting and demonstrates its
efficient cross-validation implementation for accurate assessment [56–58].

For feature selection, the mRMR method employed the Mutual Information Quotient
(MIQ) from the pymrmr library, while the GA relied on the mean absolute percentage
error (MAPE). The RFECV, as defined by the default values in scikit-learn, utilized the
R2 score for evaluation. XGBoost determined feature importance through gain during its
training process.

To prevent overfitting, scikit-learn’s regression tree and XGBoost’s specific default
parameters were used. For scikit-learn’s regression tree, nodes are expanded until all
leaves contain fewer than the default value of minimum samples split, which is set to
2. In XGBoost, the subsample parameter defaults to 1, indicating that the model uses
the entire dataset, and the learning rate (or eta) is set to 0.3. These inherent parameter
settings mitigate the risk of overfitting, thus helping the models generalize effectively to
unseen data.

3.2.4. ML Model Training

An ML model was trained using the selected features from each selection technique
and the set of all created features. A low-complexity regression tree model was chosen
due to its utility in systematically classifying outputs based on low input parameters that
enable the reduction of parameter range based on objective criteria and aid in establishing
relationships from input data to the end results [50].

Regression trees, a variant of decision tree models, are adept at processing continuous
data by partitioning the dataset into homogeneous groups at specific nodes, each represent-
ing a decision point based on an independent variable, and the final partitions condense the
outcome as a continuous value [48]. Regression trees can also discern variables’ importance
within a dataset. Still, this local optimization can prioritize background variables with
significant indirect effects over those directly influencing the response [49], hence the usage
and feature selection techniques to ensure proper feature assortment.

The model training phase utilized seven distinct feature sets, each representing the
output of various feature selection processes. Five of these sets were derived from sep-
arate individual selection processes, while, alongside, an encompassing set was created
incorporating all the variables that were produced. A control set was also established,
containing solely the original dataset wind variables—wind speed, direction, and gust,
at a 2-min timestep. Each of these sets corresponds to the features chosen through their
respective selection methods. Consequently, seven corresponding models were developed,
each representing the unique characteristics of its respective feature set.

All models were trained using the mean squared error (MSE) as the evaluation metric.
For the XGBoost model, the default hyperparameters from scikit-learn version 1.3.0 were
employed. The parameters encompassed a learning rate set to 0.3, a number of estimators
set to 100, a maximum depth set to 6, a subsample value set to 1, a column sample by tree
set to 1, and the objective set as ‘reg:squarederror’.

3.2.5. ML Model Evaluation

To evaluate each trained model, a comparative analysis was employed to identify
the best set of features and the selection technique that delivered superior results. The
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assessment was performed using MAE, MSE, and MAPE as evaluation and comparison
metrics [59]. These metrics are defined as

MAE =
1
m

m

∑
i=1
|Xi −Yi| (16)

MSE =
1
m

m

∑
i=1

(Xi −Yi)
2 (17)

MMAPE =
1
m

m

∑
i=1

∣∣∣∣ |Xi −Yi
Yi

∣∣∣∣ (18)

For the feature selection and training procedures, all the data from the years 2018 and
2019 were used with a 5-fold cross-validation approach to ensure statistical robustness
and mitigate the risk of overfitting in the model’s predictions. The shuffling procedure
divided the dataset into five distinct folds, with each fold serving as a testing set rotationally,
whereas the remaining folds formed the training set. While not directly ensuring statistical
relevance, this method facilitated the assessment of the model’s performance across differ-
ent data subsets, thereby reducing overfitting and improving the generalizability of the
model’s results [60].

The three assessed targets were the subsequent 2, 10, and 20 min for the MID sensor,
as this sensor is considered the most important in the airport.

4. Results

This section presents the attained results. After the preprocessing and feature creation
steps, 14 distinct variables were computed for each sensor, aggregating to 56 features. For
each sensor, the 14 derived features—[Wind U Component, Wind V Component, Maxi-
mum Instant Wind Speed, Wind Speed Standard Deviation, Wind Speed Median, Wind
Speed Kurtosis, Wind Speed Skewness, Mean Wind Speed, Mean Wind Direction, Shannon
Entropy, Sample Entropy, Multiscale Entropy, Permutation Entropy, and Multiscale Permu-
tation Entropy]—are further denoted by the sequence [An, Bn, Cn, Dn, En, Fn, Gn, Hn, In,
Jn, Kn, Ln, Mn, Nn], where n corresponds to the sensor number [1–4], matching positions
RWY23, MID, RWY05, and ROSARIO, respectively. Figure 6 presents the data distribution
from all sensors and features.

Figure 7 presents the Pearson correlation coefficient for each target feature at all
studied forecast windows, sorted from left to right by the highest mean correlation value,
showing strong correlation between sensors.

Table 1 depicts all the features selected by each technique for all time targets. Tables 2–4
present an in-depth overview of the results for each evaluated metric and feature for wind
speed, wind direction, and wind gust targets, respectively. The presented results refer to
the test dataset, where a standard tree was trained with the features selected by the feature
selection methods and then evaluated on the independent test data.

Figure 8 illustrates the frequencies of feature choice by the feature selection methods.
The figure displays the number of times each feature was selected for individual target
variables and the cumulative occurrence. Figure 9 depicts the performance of the model for
each selection process, highlighting the features used. The model’s efficiency is gauged
using the mean absolute error (MAE) as a reference metric across all forecasted periods.
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Table 1. Selected features by algorithm. S, D, and G correspond to speed, direction, and gust,
respectively.

Algorithm Time Target Features

mRMR

2
Speed E1 E2 E3 E4 J2 J3 L1 L2 L3 L4

Direction E1 E2 E3 E4 I2 J2 L1 L2 L3 L4
Gust C1 E1 E2 E3 E4 H1 L1 L2 L3 L4

10
Speed E1 E2 E3 E4 J2 J3 L1 L2 L3 L4

Direction E1 E2 E3 E4 J2 J3 L1 L2 L3 L4
Gust E1 E2 E3 E4 J2 J3 L1 L2 L3 L4

20
Speed E1 E2 E3 E4 J2 J3 L1 L2 L3 L4

Direction E1 E2 E3 E4 J2 J3 L1 L2 L3 L4
Gust E1 E2 E3 E4 J2 J3 L1 L2 L3 L4

GA

2
Speed A1 A2 A3 B4 C1 D1 D2 D4 E3 E4 F2 F4 G1 G2 H1 H2 H3 H4 I2 J2 J4 K3 L1 M1 N1 N4

Direction A2 A3 A4 B4 C2 C3 C4 D3 D4 E3 F2 F4 G1 G2 G3 I2 I3 I4 J2 J4 K1 K2 L1 M2 M3 N1 N2
Gust A2 A4 B2 B3 B4 C1 C2 C4 D1 D2 D3 D4 E3 F2 F3 G1 H1 H2 I3 I4 J2 J3 J4 L3 L4 M1 M3 N1

10
Speed A1 A4 B1 B2 B3 C4 D1 D2 E1 E2 E3 F1 F3 F4 G1 G2 G3 H2 I1 J1 K1 K2 K3 L1 L4 M1 M3

N1 N2 N4
Direction A1 A3 B3 C2 C3 C4 D2 F3 F4 G3 G4 H1 I2 J1 J3 J4 K1 K2 K3 K4 L4 M1 M3 N1 N3 N4

Gust A1 A2 A4 B2 B3 C2 C4 D2 E1 E4 F1 F3 G1 G2 G3 H2 H3 I1 I2 J1 J3 J4 K4 L2 L3 L4 M2 M4

20
Speed A1 A2 A4 B1 B3 B4 C1 C3 D1 D3 D4 E2 E3 F2 F4 G1 H2 I1 I3 I4 J1 J2 K1 K2 K4 L1 L2 L4

M1 M2 N3 N4
Direction A1 A3 B1 B2 B3 B4 C1 C4 D1 D3 E2 E4 F1 F3 F4 G1 H1 I1 I2 I4 K1 K3 L1 L3 M3 N3

Gust A1 A2 A3 A4 B1 B2 C1 C3 D1 D2 D3 E1 E2 E3 E4 F1 F3 F4 G3 G4 H1 I1 I4 J2 J3 J4 K1 K2
K3 K4 L1 L2 L3 M1 M4

XGBoost

2
Speed A2 A3 B2 C2 E2 H2 I1 I2 I3 I4

Direction A2 A3 B2 C2 E2 H2 I1 I2 I3 I4
Gust A2 A3 B2 C2 E2 H2 I1 I2 I3 I4

10
Speed A1 A2 A3 C2 H2 H3 I1 I2 I3 I4

Direction A1 A2 A3 C2 H2 H3 I1 I2 I3 I4
Gust A1 A2 A3 C2 H2 H3 I1 I2 I3 I4

20
Speed A1 A2 A3 A4 C2 H2 H3 I1 I2 I4

Direction A1 A2 A3 A4 C2 H2 H3 I1 I2 I4
Gust A1 A2 A3 A4 C2 H2 H3 I1 I2 I4

RFECV

2
Speed A1 A2 A3 B3 B4 C2 D3 H2 I1 I2 I4 L1

Direction A1 A2 A3 B3 B4 C2 D3 G1 H2 I1 I2 I3 I4 L1
Gust A1 A2 A3 B3 C2 D3 F4 H2 I1 I2 I4 L1

10
Speed A1 A3 A4 B1 B3 B4 C2 D3 H2 I1 I2

Direction A1 A2 A3 A4 B1 B3 B4 C2 D1 D3 G4 H2 I1 I2 I3 I4 L2 N3
Gust A1 A3 A4 B1 B3 B4 C2 D3 H2 I1 I2

20
Speed A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 E1 E2 E4 F1 F2 F3 F4 G1 G2 G3 G4

H1 H2 H3 H4 I1 I2 I3 I4 J1 J2 J3 J4 K1 K2 K3 K4 L1 L2 L3 L4 M1 M2 M3 M4 N1 N2 N3 N4

Direction A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 E1 E2 E4 F1 F2 F3 F4 G1 G2 G3 G4
H1 H2 H3 H4 I1 I2 I3 I4 J1 J2 J3 J4 K1 K2 K3 K4 L1 L2 L3 L4 M1 M2 M3 M4 N1 N2 N3 N4

Gust A1 A2 A3 A4 B1 B2 B3 B4 C1 C2 C3 C4 D1 D2 D3 D4 E1 E2 E4 F1 F2 F3 F4 G1 G2 G3 G4
H1 H2 H3 H4 I1 I2 I3 I4 J1 J2 J3 J4 K1 K2 K3 K4 L1 L2 L3 L4 M1 M2 M3 M4 N1 N2 N3 N4

PCA

2
Speed F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

Direction F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20
Gust F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20

10
Speed F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

Direction F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 F2
Gust F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

20
Speed F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21

Direction F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20
Gust F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19

Table 2. Wind speed nowcast performance metrics, presenting the results, as mean ± standard
deviation, for the three forecasted time targets. The lowest error for each period is highlighted
in bold.

Target H2 2 min 10 min 20 min

Set MSE MAE MAPE Set MSE MAE MAPE Set MSE

Control
1.90 1.00 0.36 3.15 1.32 0.55 3.92 1.48 0.64
±0.02 ±<0.01 ±0.02 ±0.02 ±<0.01 ±0.03 ±0.03 ±<0.01 ±0.02

All
1.88 1.00 0.35 3.15 1.32 0.55 3.91 1.48 0.64
±0.01 ±<0.01 ±0.01 ±0.01 ±<0.01 ±0.01 ±0.04 ±0.01 ±0.03
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Table 2. Cont.

Target H2 2 min 10 min 20 min

Set MSE MAE MAPE Set MSE MAE MAPE Set MSE

mRMR
2.01 1.04 0.37 3.33 1.36 0.56 4.12 1.52 0.67
±0.01 ±<0.01 ±0.02 ±0.04 ±0.01 ±0.01 ±0.02 ±<0.01 ±0.03

PCA
1.96 1.03 0.37 3.12 1.31 0.53 3.87 1.47 0.63
±0.03 ±0.01 ±0.01 ±0.03 ±<0.01 ±0.01 ±0.03 ±<0.01 ±0.02

RFECV
1.90 1.00 0.35 3.11 1.31 0.54 3.90 1.48 0.63
±0.02 ±<0.01 ±0.01 ±0.02 ±<0.01 ±0.01 ±0.03 ±0.01 ±0.03

GA
1.90 1.01 0.36 3.19 1.33 0.55 3.89 1.48 0.64
±0.01 ±<0.01 ±0.01 ±0.02 ±<0.01 ±0.02 ±0.03 ±<0.01 ±0.03

XGBoost
2.07 1.05 0.37 3.27 1.35 0.56 3.98 1.49 0.65
±0.02 ±<0.01 ±0.02 ±0.02 ±<0.01 ±0.03 ±0.03 ±<0.01 ±0.03

Table 3. Wind direction nowcast performance metrics, presenting the results, as mean ± standard
deviation, for the three forecasted time targets. The lowest error for each period is highlighted in bold.

Target I2 2 min 10 min 20 min

Set MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

Control
1.75 × 104 63.58 2.91 × 1013 2.18 × 104 81.30 3.63 × 1013 2.37 × 104 89.58 3.19 × 1013

±1.55 × 102 ±0.46 ±2.62 × 1013 ±1.43 × 102 ±0.43 ±3.10 × 1013 ±2.84 × 102 ±0.83 ±3.23 × 1013

All
1.77 × 104 64.61 3.48 × 1013 2.20 × 104 82.50 4.02 × 1013 2.40 ×104 90.79 3.36 × 1013

±1.92 × 102 ±0.55 ±2.50 × 1013 ±2.57 × 102 ±0.74 ±3.39 × 1013 ±1.38 × 102 ±0.41 ±3.61 × 1013

mRMR
1.87 × 104 67.69 1.09 × 1013 2.98 × 104 114.68 3.51 × 1013 3.04 × 104 117.10 3.49 × 1013

±1.49 × 102 ±0.48 ±1.43 × 1013 ±1.79 × 102 ±0.49 ±3.48 × 1013 ±2.63 × 102 ±0.87 ±3.29 × 1013

PCA
1.85 × 104 68.26 2.32 × 1013 2.22 × 104 82.95 2.69 × 1013 2.41 × 104 90.97 1.80 × 1013

±1.36 × 102 ±0.33 ±2.06 × 1013 ±9.31 × 101 ±0.20 ±1.53 × 1013 ±1.60 × 102 ±0.48 ±1.42 × 1013

RFECV
1.74 × 104 63.53 3.56 × 1013 2.18 × 104 81.49 3.39 × 1013 2.40 × 104 90.84 3.27 × 1013

±1.43 × 102 ±0.45 ±2.22 × 1013 ±1.77 × 102 ±0.48 ±3.18 × 1013 ±1.03 × 102 ±0.33 ±3.77 × 1013

GA
1.80 × 104 65.48 2.63 × 1013 2.25 × 104 84.19 3.21 × 1013 2.41 × 104 90.97 4.01 × 1013

±3.42 × 101 ±0.07 ±2.51 × 1013 ±2.36 × 102 ±0.68 ±3.04 × 1013 ±1.59 × 102 ±0.49 ±4.04 × 1013

XGBoost
1.76 × 104 63.78 3.30 × 1013 2.18 × 104 81.50 3.28 × 1013 2.38 × 104 90.04 3.10 × 1013

±9.31 × 101 ±0.29 ±1.90 × 1013 ±1.23 × 102 ±0.36 ±2.69 × 1013 ±1.47 × 102 ±0.49 ±3.40 × 1013

Table 4. Wind gust nowcast performance metrics, presenting the results, as mean ± standard
deviation, for the three forecasted time targets. The lowest error for each period is highlighted
in bold.

Target C2 2 min 10 min 20 min

Set MSE MAE MAPE Set MSE MAE MAPE Set MSE

Control
3.47 1.34 0.24 5.35 1.70 0.33 6.45 1.89 0.38
±0.01 ±<0.01 ±<0.01 ±0.04 ±0.01 ±<0.01 ±0.06 ±0.01 ±<0.01

All
3.43 1.33 0.24 5.27 1.69 0.33 6.44 1.89 0.38
±0.01 ±<0.01 ±<0.01 ±0.05 ±0.01 ±<0.01 ±0.04 ±0.01 ±<0.01

mRMR
3.63 1.37 0.24 5.55 1.75 0.34 6.81 1.95 0.40
±0.04 ±<0.01 ±<0.01 ±0.05 ±0.01 ±<0.01 ±0.07 ±0.01 ±<0.01

PCA
3.64 1.38 0.25 5.36 1.71 0.33 6.53 1.90 0.38
±0.02 ±<0.01 ±<0.01 ±0.03 ±<0.01 ±<0.01 ±0.04 ±<0.01 ±<0.01

RFECV
3.52 1.35 0.24 5.34 1.70 0.33 6.44 1.89 0.38
±0.01 ±<0.01 ±<0.01 ±0.03 ±<0.01 ±<0.01 ±0.05 ±0.01 ±<0.01

GA
3.46 1.34 0.24 5.34 1.70 0.33 6.50 1.90 0.38
±0.02 ±<0.01 ±<0.01 ±0.03 ±<0.01 ±<0.01 ±0.02 ±0.01 ±<0.01

XGBoost
3.93 1.42 0.25 5.66 1.75 0.34 6.76 1.93 0.39
±0.04 ±0.01 ±<0.01 ±0.04 ±0.01 ±<0.01 ±0.05 ±0.01 ±<0.01
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5. Discussion

This research offers an extensive examination of wind nowcasting, focusing on the role
of nowcast duration and feature selection in predictive model performance. Our findings
underscore the complexity of wind prediction as the nowcast horizon extends, as evidenced
by the rising error values between 2 min and 20 min prediction window. This complexity
stems from the inherent variability and nonlinearity of wind speed and direction, which
increase as the prediction window expands. Furthermore, the higher prediction errors
for the mean wind direction highlight the intricate atmospheric dynamics that influence
wind direction and the associated challenge for machine learning models in predicting
this variable.

Based on Tables 2–4, when forecasting wind speeds and directions, distinct patterns
become evident over the different time horizons. For the mean wind speed, the 2 min
forecast presents the narrowest discrepancy between methods, with MAE values oscillating
between 1.00 (All methods) and 1.05 (XGBoost). Extending the prediction horizon to the
10 min forecast reveals that mRMR exhibits the most substantial deviation, with an MAE
of 1.36, while RFECV registers the lowest error at 1.31. At the 20 min mark, the variations
are more pronounced, with values spanning from 1.46 (PCA) to 1.52 (mRMR). For the
wind direction mean, the 2 min forecast sees MAE values ranging from 63.53 (RFECV) to
68.26 (PCA). This discrepancy broadens at the 10 min forecast, with RFECV at the lower
end registering an MAE of 81.30, and mRMR at the top with a significant 114.68. This trend
persists into the 20 min forecast, where MAE values fluctuate between 89.58 (control) and
117.10 (mRMR). Lastly, for the wind gust, the 2 min predictions range between 1.33 (all
method) and 1.42 (XGBoost). For the 10 min forecast, RFECV shows the least MSE at 1.70,
while mRMR records an error of 1.75. For the 20 min predictions, the error for mRMR peaks
at 1.95, contrasting with the all method’s more modest 1.89. Overall, predictions for wind
speed are relatively consistent across the methods implemented, but predictions for wind
direction exhibit more variability as the forecasting window extends.

Therefore, the impact of feature creation and selection on model performance emerged
as a significant aspect of this study. Our results suggest that generating wind features
mathematically may enhance predictive accuracy and reduce computational requirements.
Indeed, our research revealed that for wind speed nowcast, the fewer features selected
through RFECV and PCA not only maintained but improved prediction accuracy, hinting
at opportunities for computational optimization. However, when examining the wind
direction nowcast, it is clear that the errors are immense due to two factors, specifically,
the large range of the values, varying from 1◦ to 360◦, and the variations at the border
between 360◦ and 1◦. (For example, when the model forecasted the direction to be 1◦, but
the ground truth label was 360◦, it leads to an error of 359◦, enlarging the error metrics,
but in reality, the error is just 1◦.) It is also crucial to consider the complex wind patterns
in the studied location, where the wind can be considerably turbulent with fast direction
variation. Lastly, the gust nowcast error was lower in the methods that used more features,
stressing the importance of the additional information provided by the features.

The marginal improvements in nowcast accuracy achieved through advanced feature
creation and selection techniques require a careful analysis of the trade-off between the
computational cost and the predictive performance. Upon further examination of the
results, it was observed that the 14 engineered features per sensor did not yield a notable
enhancement in model accuracy. The slight variations in metrics across different feature
selection methods suggest that while some methods might yield minor improvements for
certain metrics, they may not always ensure superior performance across all metrics and
time intervals.

In Figure 8, it is noteworthy that overall, nine features were selected more than
20 times (I2, I1, H2, A3, A2, A1, C2, L1, I4), and seven other features were selected more
than 15 times (E2, L4, J2, E4, E3, L2, L3). The most selected feature, with 24 occurrences,
was I2, while the least selected, with four incidences, was H4. The control set of features
contained 12 features for each target and nowcasted time, while the group with all features
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contained 56. The mRMR and XGBoost methods each selected ten features for every target
and projected time. When considering the two-minute nowcast, the GA method’s feature
selection varied depending on the target: 26 for H2, 27 for I2, and 28 for C2. In the case of
the ten-minute nowcast, the feature selections for each respective target were 30, 26, and 28,
respectively. Lastly, the chosen features numbered 32, 26, and 35, respectively, for the most
extended nowcast period. In a similar pattern, RFECV opted for 12, 14, and 12 features,
respectively, for the first set, and 11, 14, and 18, respectively, for the second set. For the
longest prediction interval, it utilized nearly all the features, specifically 55, 55, and 56. For
PCA, the number of features was 20, 20, and 13, respectively, for the 2 min forecast, while it
was 14, 22, and 21, respectively, for the 10 min and 21, 20, and 19 for the 20 min prediction,
for H2, I2, and C2 target, respectively. It is also renowned that, in general, as the forecasted
time increases (from 2 to 20 min), the number of selected features also increases, suggesting
that the additional information of the less relevant features becomes progressively more
relevant to provide context.

The salient outcome of this study highlights a pronounced spatial correlation among
sensors located at variable distances from the intended prediction point, which corre-
sponded to the middle of the runway, at the position of the MID wind sensor. Figure 7
extrapolates this correlation, providing computational details between each feature, target,
and prediction timeframe, particularly underscoring the strong correlation of features from
sensors such as C1, E3, H3, and E1, which rank within the top 10. An illustration of these
findings can also be seen in Figure 6, where the individual sensor features demonstrate
distinct intra-sensor distributions but exhibit similarity when compared to features across
other sensors, emphasizing a robust sensor intercorrelation. This correlation is further
supported by Figure 8, indicating the selection of features from diverse sensors across all
prediction targets and windows.

In conjunction with the observed fluctuations in feature importance across different
nowcast durations, this correlation underscores the significance of the spatial-temporal
context in enhancing prediction precision. This understanding augments our capacity
to discern intricate spatial patterns in wind behavior, thereby harboring the potential to
optimize wind nowcast models over various time spans.

Table 5 provides a comprehensive comparison of the wind speed forecasting method-
ology against existing state-of-the-art approaches. Notably, only the study by Liu et al. [17]
spanned a longer duration than this study. However, the current work boasts a time resolu-
tion that is five times finer, and its performance metrics remain comparable, underscoring
the significance and robustness of the methodology. Many of the referenced studies utilized
considerably shorter timeframes, potentially limiting their ability to discern synoptic wind
patterns effectively.

In terms of performance, the results from the current research align well with the
prevailing state of the art, even with the enhanced resolution and higher data volume. A
distinctive feature of this approach is the incorporation of feature creation, a technique not
deeply observed in other studies. Moreover, the selection methods resonate with the best
practices in the field. It is also worth noting that this research was the only one, to the best of
the authors’ knowledge, that focused on wind gust and direction using feature engineering.

Considering these findings, it becomes clear that the considerations of nowcast dura-
tion, feature selection, computational cost-benefit trade-offs, and spatial-temporal interrela-
tionships are paramount in wind nowcasting. While advanced mathematical features and
machine learning models show promise, their application should be carefully evaluated on
a case-by-case basis due to the associated computational costs. Importantly, recognizing
and leveraging spatial correlations present a promising pathway for enhancing the accu-
racy and reliability of wind nowcasting, an element vital for the operational efficiency of
wind-dependent systems and industries.
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Table 5. State-of-the-art analysis for feature selection for wind speed forecast.

Work Time Resolution FS Methods Data Performance

Salcedo-Sanz et al. [12] 10 min CRO 1 year MSE 2.50
Kong et al. [13] More than 1 h PCA-based 1 month MAE 0.20, MAPE 0.05, and RMSE 0.45

Paramasivan and Lopez [14] 15 min Relief 1 month MSE 0.48

Zhang et al. [15] 1 h Empirical mode
decomposition 1 month MAE 0.60, MAPE 13.30, and RMSE 0.79

Feng et al. [16] 1 h Deep feature selection 1 year NMAE 3.76 and NRMSE 5.21
Liu et al. [17] 10 min Mutual information based 9 months MAE 0.31, MAPE 7.13, and RMSE 0.39
Mir et al. [18] 10 min Hybrid feature selection 3 years MAE 0.47
Zha et al. [19] 15 min XGBoost based 6 months -

El-kenawy et al. [20] 1 h ADGWDTO - MAE 0.002 and RMSE 0.003
Lv and Wang [21] 1 h FWNSDEC-SSA 1 year MAE 0.04, MAPE 1.09, and RMSE 0.07

This work 2 min mRMR, PCA, RFECV, GA
and XGBoost 2 years MAE 1.00, MAPE 0.35, and MSE 1.90

6. Conclusions

This work explores the intricacies of wind nowcasting, contributing to meteorological
studies and the domain of computational modeling. The investigation proved the escalated
challenges when extending nowcast horizons, evidenced by the surge in error values from
a 2 min to a 20 min prediction window. This trend results from the inherent variability
and nonlinearity of wind speed and direction, which become increasingly conspicuous
over extended durations. Furthermore, the discrepancy in error rates between mean wind
direction and other parameters underlines the intricate, atmospheric dynamics influencing
wind direction, showing ML models’ increased difficulty in predicting this variable.

A key facet of this study was the emphasis on feature creation and selection and
determining the efficacy of the resulting prediction models. The data suggest that the
mathematical generation of wind features could slightly enhance predictive accuracy.
Notably, the research demonstrated that a reduction in features, through feature selection
methods, in certain instances, did not compromise accuracy but improved it, implying
potential avenues for optimizing computational efficiency.

Nonetheless, the marginal enhancement in nowcast accuracy through advanced fea-
ture creation and selection mechanisms necessitates a thorough examination of the trade-off
between computational cost and predictive performance for each application. The limited
variation in metrics across distinct feature selection methodologies indicates that while
certain methods may render marginal improvements for specific evaluation metrics, they
only sometimes assure superior performance across all metrics and time intervals.

One of the most significant revelations from this research was the robust spatial corre-
lation detected among sensors positioned at varying distances from the target prediction
point. This correlation, coupled with the observation of shifting feature importance about
varying nowcast durations, suggests a valuable spatial-temporal context that can enhance
prediction accuracy. This insight enables the recognition of complex spatial patterns in wind
behavior, potentially improving the performance of wind nowcast models over various
nowcast periods.

These findings underline the importance of careful consideration of nowcast duration,
feature selection, computational cost-benefit trade-offs, and spatial-temporal interrelation-
ships in wind nowcasting. While advanced mathematical features and machine learning
models exhibit potential, their implementation should be cautiously assessed on a case-by-
case basis due to the associated computational expense. Notably, the acknowledgment of
spatial correlations propounds a promising direction for augmenting the accuracy and relia-
bility of wind nowcasting, a critical aspect for the operational efficiency of wind-dependent
systems and sectors.

By addressing the difficulties of wind predictions, this research aims to enhance wind
prediction accuracy while also identifying methods to boost computational efficiency, using
features engineering methods. These advancements seek to add knowledge, particularly in
the aeronautics sector, by improving the speed and accuracy of wind information.

A general conclusion of this study is that employing feature engineering to wind
speed and direction using mathematical approaches can result in significant computational
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expenses with marginal benefits. A closer examination of the results clearly indicates
that the performance of the control dataset was often as effective, if not more so, than
the datasets with engineered features. Regarding feature selection, while it is effective in
reducing the feature count and easing the model training process, it might not be essential
for wind speed and direction. This is mainly because creating additional features for these
parameters might be impractical.

Future research should delve more deeply into wind direction nowcasting, with a
focus on predicting wind components and incorporating observed spatial correlations
among sensors into prediction models. Furthermore, additional studies are warranted to
evaluate the benefits of more complex and deeper machine learning models, considering the
trade-off between the computational cost and improved performance. Such efforts could
significantly enhance wind nowcasting, benefiting all sectors reliant on wind nowcast data.

The principal limitations of this study reside in its geographic scope, the temporal
extent of the data assembled, and the inherent challenges of utilizing regression trees.
The study’s confinement to a specific geographic region might limit the universality of its
findings, potentially affecting their applicability to diverse locations. Regression trees can
be sensitive to minor data variations, leading to potential inconsistencies in predictions, and
can easily overfit to the training data if not adequately pruned, which can compromise their
generalizability to new datasets. Furthermore, while the two-year data timeframe provides
valuable insights, it might restrict the breadth of the study’s conclusions, especially when
identifying trends and patterns over longer time periods.
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