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Abstract: The identification of trolley codes poses a challenge in engineering, as there are often
situations where the accuracy requirements for their detection cannot be met. YOLOv7, being the
state-of-the-art target detection method, demonstrates significant efficacy in addressing the challenge
of trolley coding recognition. Due to the substantial dimensions of the model and the presence of
numerous redundant parameters, the deployment of small terminals in practical applications is
constrained. This paper presents a real-time approach for identifying trolley codes using a YOLOv7
deep learning algorithm that incorporates channel pruning. Initially, a YOLOv7 model is constructed,
followed by the application of a channel pruning algorithm to streamline its complexity. Subsequently,
the model undergoes fine-tuning to optimize its performance in terms of both speed and accuracy.
The experimental findings demonstrated that the proposed model exhibited a reduction of 32.92% in
the number of parameters compared to the pre-pruned model. Additionally, it was observed that the
proposed model was 24.82 MB smaller in size. Despite these reductions, the mean average precision
(mAP) of the proposed model was only 0.03% lower, reaching an impressive value of 99.24%. We
conducted a comparative analysis of the proposed method against five deep learning algorithms,
namely YOLOv5x, YOLOv4, YOLOv5m, YOLOv5s, and YOLOv5n, in order to assess its effectiveness.
In contrast, the proposed method considers the speed of detection while simultaneously ensuring
a high mean average precision (mAP) value in the detection of trolley codes. The obtained results
provide confirmation that the suggested approach is viable for the real-time detection of trolley codes.

Keywords: channel pruning algorithm; YOLOv7; image identification

1. Introduction

Trolley codes in engineering are presently identified through manual means. However,
conventional methods of manual detection face challenges in meeting the necessary criteria
due to worker fatigue, suboptimal efficiency, and elevated costs. The automated identifica-
tion of shopping cart codes has the potential to enhance the precision and effectiveness of
detection. In the 1980s, Papageorgious et al. [1] introduced a framework for target detection
that aimed to acquire the relevant features directly from samples, without relying on any
prior knowledge or a pre-existing model. Lowe [2] introduced the scale-invariant feature
transform [3], while Dalal et al. [4] proposed the histogram of oriented gradients (HOG) as
a solution for the identification of pedestrians in static images. Felzenszwalb et al. (2010)
integrated the Histogram of Oriented Gradients (HOG) feature descriptor with the Support
Vector Machine (SVM) algorithm, introducing the Deformable Part Model (DPM) [3]. In
recent years, deep learning has gained significant popularity and has been extensively ap-
plied in various domains such as speech recognition, image analysis, and natural language
processing [5]. It has been of significant importance in the field of image processing [6].
AlexNet, a deep convolutional neural network (DCNN), was developed by Krizhevsky
et al. in 2012 [7]. It gained significant attention for achieving record-breaking accuracy in
image classification during the ImageNet Large Scale Visual Recognition Challenge (IL-
SRVC). Since then, several deep learning-based approaches for target detection have been
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developed [8–10]. Convolutional neural networks are widely regarded as the preferred
method for addressing challenges in image recognition and detection. For instance, in their
study, Kumar et al. [11] introduced the mask region-based convolutional neural networks
(MRCNN) model, which accurately identifies the precise location of powdery mildew
disease and its extent of infection on individual wheat plant images. Sanguansub et al. [12]
introduced a convolutional neural network (CNN) model to classify the emotional category
of songs. The YOLO series models also incorporate numerous convolutional layers, which
are extensively employed in target recognition research. Z Ji et al. [13] introduced a novel
YOLOv5-CASP model for the detection of lung nodules in medical images. In a similar
vein, Hu et al. [14] proposed an effective defect-detection model, named Sim-YOLOv5s,
specifically designed for lithium battery steel shells. However, it is worth noting that
convolutional neural networks often suffer from the presence of redundant parameters [15],
which can negatively impact their real-time performance. This presents a notable obstacle
to their implementation in models designed to detect small vehicles with specific markings
on them.

Given the intricate operational conditions of trolleys, this study presents a novel
approach for trolley code identification using YOLOv7 and a channel pruning algorithm.
The proposed method aims to address the challenges associated with time-consuming
manual detection, inaccurate identification, and model size reduction. The proposed
method underwent testing using images that were captured at different points in time,
with varying lighting conditions and distances between the camera and the trolley. The
YOLOv7 detection model was initially trained to achieve precise and efficient detection of
trolley codes. The trained model underwent a channel pruning algorithm to streamline its
structure and parameters, while ensuring the preservation of high accuracy.

The method proposed in this study makes a significant contribution to thermal imag-
ing image algorithms by effectively reducing the redundant channels in the model, thereby
achieving lightweighting and optimization. This approach not only decreases the compu-
tational complexity, but also enhances real-time performance. Additionally, it effectively
mitigates overfitting by addressing the challenges posed by complexity and noise in ther-
mal image data. The motivation behind this study is rooted in the necessity to enhance
efficiency in resource-limited settings and to address the unique challenges associated with
thermal imaging images. This optimized approach enables the attainment of more precise
and efficient solutions in the realm of thermal imaging image analysis.

2. Development of the Algorithm
2.1. Dataset Creation

The object of research used in this study is a rectangular block of iron that simulates
a trolley under normal working conditions. We used a Dahua A3504MG100 industrial
camera to capture images of the workpiece. We drew a horizontal line parallel to the
longest side of the rectangular iron block and marked six points at 5 cm intervals. To create
the desired configuration, it is necessary to create a large hole with a diameter of 2 cm at
the initial point, and smaller holes with a diameter of 1 cm at subsequent points along
the horizontal line. Alternatively, no holes should be made. As depicted in Figure 1, a
large hole should be punched at the first point, while small holes should be punched at
the second, third, and sixth points. No holes are required at the fourth and fifth points.
Consequently, the distance between the small holes at the third and sixth points measures
15 cm.

The study consists of four samples, namely 01111N, 01111L, 01111S, and 0111. Among
these samples, 01111L and 01111S exhibit variations in the locations of small holes. Addi-
tionally, these two samples differ in length. The sample images can be observed in Figure 2.
Detailed information regarding the collected dataset is presented in Table 1. A total of 1559
images were captured for four artifacts, with 423 images for sample 01111N, 426 images
for sample 01111L, 302 images for sample 01111S, and 408 images for sample 0111. The
resolution of these images was 778 pixels (horizontal)× 583 pixels (vertical). Eighty percent
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of the dataset, consisting of 1248 images, was allocated as the training set for the YOLOv7
object detection algorithm. The remaining 20% of the dataset, comprising 311 images, was
designated as the test set to evaluate and validate the algorithm’s performance.
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01111S, 01111L, and 01111, respectively.

Table 1. Information from the dataset.

Sample Model Coding Number of Samples

01111N 423
01111L 426
01111S 302
01111 408

The dataset utilized in this study possessed the following attributes: it consisted of
images of four distinct workpieces that were captured for the purpose of target selection.
This was to ensure that the proposed method had the capability to detect various trolley
codes, thereby demonstrating its adaptability. Additionally, the lighting, lens, and position
of the workpiece were consistently modified during the process of image acquisition. This
deliberate adjustment resulted in a dataset comprising images with varying light intensities
and the target positioned at different distances from the camera. The purpose of this
approach was to ensure the method’s adaptability to different illumination conditions and
workpieces of varying sizes. The process of manually labeling the large and small holes
in all images was conducted using the LabelMe tool. It was ensured that the holes were
accurately positioned at the center of the bounding box during the labeling process. The
label box used for this purpose was rectangular in shape and categorized into two distinct
categories. One category of boxes with red labels designates large holes, while another
category of boxes with green labels designates small holes. The corresponding text file was
generated, and Figure 3 illustrates the markers present in one image within the dataset.
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Figure 3. An image extracted from the dataset of workpieces featuring small and large holes is
presented in Figure (a). The image showcases the annotated results of the small and large holes on
sample 10111. (b) presents the identification and coordinates of the small and large holes as indicated
in (a).

2.2. Training Environment and Evaluation Indicators

All training and testing in this study were performed on an Intel(R) Core(TM) i7-7700
CPU operating at a frequency of 3.60 GHz, with a total of 32 GB of RAM. The system
utilized a 64-bit operating system, an NVIDIA GeForce GTX 1050 Ti graphics card, and
Windows 10 as the operating system. The text lacks clarity and coherence. The current
version of the Compute Unified Device Architecture (CUDA) is 11.2, and the deep learning
framework employed is PyTorch 1.7.0. The algorithm was developed using Python 3.9.

In order to make the experiment more objective and rigorous, we used three metrics
to assess the performance of the model: precision, recall, and the mAP [16]. Precision refers
to the proportion of objects detected by the model that are correct holes, and recall refers to
the proportion of all holes detected by the model. The calculation formula of the precision
rate and recall rate is shown in Equations (1) and (2), where TP represents the number of
correctly identified holes, FP represents the number of holes that are incorrectly identified
as holes, and FN is the number not correctly detected as holes.

precision =
TP

TP + FP
(1)

recall =
TP

TP + FN
(2)

The calculation formula for the mean average precision (mAP) is presented in
Equations (3) and (4). The area under the precision-recall curve (PR curve) is commonly
referred to as AP, while the average value of AP across different categories is denoted
as mAP. N represents the total number of test sample classes. The car encoding data set
contains both large and small holes, resulting in an N value of 2.

AP =
∫ 1

0
P(R)dR (3)

mAP =
∑N

1
∫ 1

0 P(R)dR
N

(4)

2.3. YOLOv7 Algorithm
2.3.1. Technical Details

Figure 4 illustrates the technical methods employed to ensure the efficient and pre-
cise identification of trolley codes during regular operational circumstances. The dataset
underwent initial manual annotation using LabelImg, followed by training the YOLOv7
network to recognize trolley codes. The YOLOv7 model underwent a channel pruning
algorithm to eliminate redundant channels and weights of its parameters. This process
aimed to simplify the model’s structure and reduce its parameter count, while preserving
its accuracy.
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2.3.2. Identifying Trolley Codes Based on YOLOv7

In order to mitigate the negative impact of background variations and changes in
illumination caused by constant changes in lighting conditions and the position of the
workpiece during image acquisition, we employed a deep learning-based approach for
object detection. This method allows us to accurately identify trolley codes [17,18] and
enhance the algorithm’s robustness.

The You-Only-Look-Once (YOLO) network is an algorithm for target detection that
operates in a single stage [19]. It utilizes convolutional kernels of sizes 1 × 1 and 3 × 3
and is built upon the architecture of GoogleNet [17]. The proposed approach employs
a singular convolutional neural network (CNN) to analyze the image, enabling simul-
taneous computation of both classification outcomes and object coordinates. The speed
of YOLO is greatly improved by employing end-to-end target localization and classifica-
tion techniques [19]. YOLO has gained widespread popularity in the domain of target
recognition due to its exceptional real-time performance and ability to detect multiple
targets [20–24]. Compared to its predecessors in the YOLO series, YOLOv7 incorporates
the ELAN network architecture, which enhances the model’s ability to understand image
content and consequently improves detection accuracy. YOLOv7 incorporates a multi-scale
detection mechanism, which enables target detection on feature maps of varying scales.
This integration enhances the model’s ability to detect objects of different sizes, including
both small and large objects. Additionally, YOLOv7 incorporates a wider range of complex
data augmentation techniques, including CutMix and Mosaic. These strategies aim to
augment the diversity of the training data, thereby enhancing the model’s generalization
capability [25].

As depicted in Figure 5, the preprocessed image is fed into the backbone network.
According to the three-layer output in the backbone network, the head layer consistently
generates three layers of feature maps with varying sizes through the backbone network.
After the implementation of the RepVGG block and convolution, the model is capable
of performing three types of image detection tasks, namely classification, front and rear
background classification, and border detection. The final results are then generated based
on these tasks.
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The basis of our research lies in the thorough collection of data, encompassing a diverse
range of real-world images that feature tram codes in different environmental conditions and
scenarios. After the completion of data collection, the data set is labeled using LabelMe 4.5.13
software, and the resulting labels are saved in a txt format. The annotated dataset was divided
into two subsets, namely a training set consisting of 1248 images and a test set consisting of
311 images. The ratio between the training and testing sets was maintained at 4:1.

For the purpose of object detection, we have selected the well-established YOLOv7
model, renowned for its exceptional performance in various object detection tasks. To
leverage the benefits of transfer learning, we initiated the training process by utilizing the
YOLOv7 model that had been pre-trained on the COCO dataset. However, in order to
tailor the model to our particular task of tram code recognition, we implemented parameter
modifications. Key adjustments encompass modifying the batch size, altering the number
of iterations, fine-tuning the learning rate, and specifying object classes.

Before commencing the training of the model, the images were resized to a standard-
ized input size of 640 × 640 pixels, ensuring their compatibility with the model’s input
specifications. The model’s learning rate is set at 0.01, and the number of iterations is
determined to be 300 rounds. Taking into consideration the image characteristics and GPU
performance of the car encoding dataset, we initially chose a batch size of 16. Throughout
the training procedure, it was observed that the training speed was relatively sluggish,
the utilization of memory resources was not substantial, and the loss function exhibited
significant fluctuations. According to the Batch Size Doubling Strategy, the batch size was
adjusted to 32. The GPU’s parallel performance was fully utilized, resulting in a significant
acceleration of the model’s training speed and a notable reduction in the fluctuation of the
loss function. In order to enhance the training process and identify the most suitable batch
size, we made an adjustment to the batch size, setting it to 64. However, the training was
unsuccessful due to limited memory resources. After conducting a series of experiments,
we determined that the optimal batch size for training is 32. This decision was influenced
by the specific characteristics of the dataset’s images and the GPU’s capabilities, in order
to achieve the most favorable training outcome. The parameters of YOLOv7 used in this
study are presented in Table 2.

Table 2. Parameters of the YOLOv7 model.

Parameter Value

Image size 640 × 640
Learning rate 0.001

Batch 32
Number of categories 2
Number of iterations 300
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In terms of loss function, YOLOv7 is similar to YOLOv5. As shown in Equation (5),
YOLOv7 is divided into classification loss (cls_loss), bounding box position loss (box_loss),
and confidence loss (obj_loss).

Ltotal_loss = Lobj_loss + Lbox_loss + Lcls_loss (5)

Confidence loss and classification loss use BCE cross-entropy loss. The calculation
formula of BCE cross-entropy loss is displayed as Equations (6) and (7), where σ(xn)
represents the sigmoid function, wn represents the average of the results, and yn represents
the real sample label.

Ln = −wn[yn · logσ(xn) + (1− yn) · log(1− σ(xn))] (6)

σ(xn) =
1

1 + e−x (7)

The bounding box position loss adopts CIoU loss, and the calculation formula is
represented by Equations (8)–(12), where A represents the predicted frame, B represents
the real frame, α is the weight function, and ν is used to measure the consistency of the
aspect ratio. wgt and hgt are the width and height of the ground truth bounding box, while
w and h represent the width and height of the predicted bounding box. ρ2(b, bgt) is the
center point distance between two bounding boxes, and c is the diagonal distance of a
bounding box that can at least enclose the two bounding boxes.

IoU =
|A ∩ B|
|A ∪ B| (8)

α =
ν

1− IoU + ν
(9)

ν =
4

π2

(
arctan

wgt

hgt − arctan
w
h

)2

(10)

CIoU = IoU −
ρ2(b, bgt)

c2 + αν (11)

Lbox_loss = 1− CIoU (12)

Figure 6 illustrates the loss curves for box_loss, obj_loss, cls_loss, and total_loss through-
out the training process. After 300 iterations, the values of box_loss, obj_loss, cls_loss, and
total_loss were 0.006604, 0.003979, 0.0002599, and 0.01084, respectively. It is evident from the
analysis of Figure 6 that the model demonstrated efficient learning capabilities, as indicated
by the rapid convergence of the training curves during the initial stage of training. As the
training advanced, the rate of change of the curve gradually diminished. The learning
efficiency of the model reached a plateau after 50 iterations.

The outcomes of trolley code identification using the YOLOv7 algorithm, which has
been trained, are depicted in Figure 7. The algorithm demonstrated the capability to
precisely detect both small holes and big holes in the images of samples 01111N, 01111L,
01111S, and 0111. This step establishes the foundation for the process of model pruning.

2.3.3. Pruning YOLOv7 Model

Although the YOLOv7 model, which has been trained, demonstrates accurate identifi-
cation of trolley codes, its extensive parameterization necessitates significant computational
resources. We pruned the model in order to decrease the number of parameters and,
consequently, its complexity. This was to enable deployment on devices with limited
computational capabilities [26].
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Figure 6. Curves depicting the training loss of the YOLOv7 model. The terms box_loss, obj_loss,
cls_loss, and total_loss are denoted as (a–d), respectively.
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and 01111N, respectively.

The channel pruning algorithm was employed to decrease the size and parameter
count of the model by eliminating redundant parameters [27]. The simultaneous reduction
in both the amount of necessary computation and the number of parameters is more
advantageous compared to compression techniques that only decrease the number of
parameters without affecting the actual number of model operations [28].

As depicted in Figure 8, the gamma coefficients of the Batch Normalization (BN) layer
were employed in the channel pruning algorithm to assess the individual contributions of
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the channels. Channels that made significant contributions (blue channels) were retained,
while channels that made minimal contributions (orange channels) were eliminated. This
decision was made by considering the distribution of the gamma coefficients and the rate
at which the channel pruning algorithm pruned the channels.
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The steps of the channel pruning algorithm are as follows:

1. In order to incorporate structural sparsity into the YOLOv7 model, the L1 regulariza-
tion technique was utilized. Specifically, L1 regularization constraints were applied
to the coefficients of the Batch Normalization (BN) layer within the YOLOv7 model.
The objective of this phase was to fine-tune the model’s parameters by imposing
L1 regularization.

2. Following the initial training phase, we proceeded to implement channel pruning.
This crucial procedure entailed the elimination of branches or channels within the
YOLOv7 model, in accordance with a predetermined pruning ratio. The pruning
ratio plays a crucial role in determining the proportion of channels that will be
preserved, leading to a more streamlined and storage-efficient model. By selectively
removing channels, we were able to substantially decrease the storage demands of
the model, rendering it more manageable and appropriate for environments with
limited resources. This particular step played a crucial role in optimizing the size of
the model while simultaneously preserving its effectiveness.

3. Following the process of channel pruning, our foremost objective was to mitigate
any potential decrease in accuracy. We conducted a meticulous fine-tuning process to
carefully adjust and retrain the pruned model. Throughout the fine-tuning phase, we
diligently balanced the parameters of the model to guarantee that, while achieving a
reduction in size, we did not compromise significantly on accuracy. This step was un-
dertaken with the objective of optimizing the pruned model, with a focus on achieving
both compactness and performance, as both factors are of utmost importance.

The total loss function of the channel pruning algorithm is shown in Equation (13):

L = ∑
(x,y)

l( f (x, W), y) + λ ∑
γ∈Γ

g(γ) (13)

The first term on the right side of the equal sign is the loss function for network training;
x and y are the training inputs and outputs, respectively. W is the training parameter of the
network. The second term is the L1 regular constraint term for the gamma coefficient of the
BN layer; and λ is the penalty factor.

The parameter settings for the channel pruning process are shown in Table 3.
Initially, sparse training was conducted, followed by the application of a pruning

rate of 0.8 to eliminate channels from the YOLOv7 model. The alterations in the channels
within each layer following the process of pruning are depicted in Figure 9. The number of
reduced channels in each layer ranged from 60 to 1,046,860, with an average reduction of
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158,826 channels per layer. Furthermore, it can be observed from Figure 9 that the majority
of the convolutional layers experienced a substantial reduction in the number of channels,
suggesting the effectiveness of the pruning algorithm.

Table 3. The main parameters of channel pruning.

Step Phase Parameter Value

Sparse training
Sparse training batch size 32

Learning rate 0.001
Number of iterations 300

Channel pruning Access pruning; pruning rate 0.8

Fine-tuning Model fine-tuning batch size 32
Number of iterations 100
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Figure 9. Changes in access before and after pruning. (a) Number of channels before pruning.
(b) Number of channels after pruning.

The findings presented in Table 4 demonstrate that the pruned model exhibited a
reduction of 32.92% in the number of parameters compared to the original model. This
reduction corresponded to a decrease in size of 24.82 MB. Additionally, the pruned model
demonstrated a decrease in the time required for forward inferences by 7.6 ms. Despite
these modifications, the pruned model only experienced a marginal decrease of 0.034% in
its mAP (mean accuracy), resulting in an accuracy level that closely resembled that of the
original model. Channel pruning simplifies the model while preserving its accuracy.

Table 4. Changes in the parameters of the model after channel pruning.

Parameter Original
Network Pruned Network Fine-Tuned Network

Number of parameters 37,201,950 25,289,954 24,813,245
mAP (%) 99.58 99.15 99.24

Model size (MB) 73.0 48.6 47.63
Forward extrapolation time (ms) 15.7 9.75 8.1

3. Results and Analysis

The proposed method was employed to detect both large and small holes in the
311 images of the test set in order to evaluate its performance. The outcomes of this
evaluation are presented in Figure 10. The mean average precision (mAP), precision,
and recall achieved values of 99.24%, 99.17%, and 99.71%, respectively. This observation
demonstrates the high level of accuracy associated with the proposed method.
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Figure 10. Results of the fine-tuned model in terms of detecting holes. (a–c) are its precision, recall
and mAP_0.5, respectively.

3.1. Comparison with Other Target Detection Algorithms

To assess the efficacy of the proposed method, a comparison was conducted with
five widely used target detection algorithms, namely YOLOv5x, YOLOv4, YOLOv5m,
YOLOv5s, and YOLOv5n. The findings are presented in Table 5.

Table 5. Results of different target detection algorithms in terms of identifying small and large holes.

Algorithm Number of Parameters Model Size
(MB) mAP (%) Forward Propagation

Time (ms)

YOLOv5x 88,922,205 166 98.38 114
YOLOv4 62,941,672 237.83 97.52 163

YOLOv5m 21,172,173 40.8 98.21 33.9
YOLOv5s 7,025,023 14.1 98.06 18.8
YOLOv5n 1,867,405 3.87 97.73 8.6

Ours 24,813,245 47.63 99.24 8.1

The rapid and precise detection of both large and small openings can not only be used
to identify trolley codes, but also to generate insights for the identification of other targets
in the field of engineering. The results indicate that the mean average precision (mAP)
values for the six target detection algorithms were 98.38%, 97.52%, 98.21%, 98.06%, 97.73%,
and 99.24%. Additionally, the sizes of the corresponding models were 166 MB, 243.97 MB,
40.8 MB, and 141 MB. The sizes of the files were 2.87 MB, 3.87 MB, and 47.63 MB, and the
durations of the forward inference processes were 114 ms, 163 ms, 33.9 ms, 18.8 ms, 8.6 ms,
and 8.1 ms.

In relation to mean average precision (mAP), our proposed method demonstrates an
outstanding achievement of 99.24% mAP, surpassing the performance of all five models.
In contrast to YOLOv5x, YOLOv4, YOLOv5m, YOLOv5s, and YOLOv5n, our model
demonstrates a significant improvement in accuracy for object detection tasks. Specifically,
our model achieves a mAP increase of 0.86%, 1.72%, 1.03%, 1.18%, and 1.51% for YOLOv5x,
YOLOv4, YOLOv5m, YOLOv5s, and YOLOv5n, respectively. This highlights the superior
performance of our model in accurately detecting objects.

Moving forward to the inference time, the proposed method demonstrates exceptional
performance with a mere 8.1 ms, thereby establishing a new benchmark among the five
models. In comparison to YOLOv5x, YOLOv4, YOLOv5m, YOLOv5s, and YOLOv5n,
our model demonstrates a significant reduction in inference time, with decreases of
105.9 ms, 154.9 ms, 25.8 ms, 10.7 ms, and 0.5 ms, respectively. This statement highlights the
advantageous positioning of our model, enabling efficient processing of input images to
meet the requirements of real-time applications and high-performance scenarios.



Appl. Sci. 2023, 13, 10202 12 of 16

Regarding the size of the model, our proposed method is 122.37 MB and 196.34 MB
smaller than YOLOv5x and YOLOv4, respectively. In contrast to YOLOv5s, YOLOv5m, and
YOLOv5n, our model exhibits larger sizes of 8.27 MB, 6.83 MB, and 43.76 MB, respectively.
However, it still maintains its advantage in terms of overall size efficiency. This indicates
that our model is highly effective in minimizing storage space consumption, making it
particularly well-suited for deployment in resource-constrained environments, such as
small end devices.

In summary, our model demonstrates several advantages in terms of its model size, av-
erage accuracy, and forward inference time. Our model demonstrates superior performance
compared to YOLOv5x and YOLOv4 in terms of model size. Additionally, it outperforms
the other five models in terms of average accuracy and forward inference time. This implies
that our model possesses a reduced model size, yet it maintains a high level of accuracy
and low inference time. Consequently, it becomes more appropriate for implementation in
compact end devices and environments with limited resources.

3.2. Comparison with Previous Studies

J M et al. [29] proposed an enhanced YOLOv3-based model for target detection. The
model incorporates an up-sampling technique to increase the resolution of the feature map,
which is initially downsampled by a factor of eight. This up-sampled feature map is then
stitched together with a two-fold up-sampled feature map obtained from the output of
the second residual block. Additionally, a target detection layer is constructed to fuse the
features, resulting in a four-fold downsampling of the output. The model exhibits a notably
elevated recall and average accuracy of detection in comparison to the original YOLOv3
model. However, despite exhibiting a 6.5% higher average accuracy compared to YOLOv3,
the model fails to meet the engineering-related criteria necessary for its deployment on
small terminals.

Mei et al. [30] introduced an enhanced R-CNN-based approach for detecting aerial
targets. This R-CNN-based incorporates expansion-based accumulation, region ampli-
fication, local annotation, adaptive thresholding and consideration of the context. The
proposed method addresses the limitation of the insensitivity of the Faster R–CNN [31]
by improving its sensitivity towards targets, while also enhancing the detection speed
accuracy. However, the precision of this approach fails to meet the demands of engineering
applications. Additionally, the substantial size of the faster R-CNN model poses challenges
for deployment on compact terminals even after optimization efforts have been made.

We utilized our dataset comprising images containing trolley codes to both train and
evaluate the YOLOv7 model that was proposed. Subsequently, a pruning algorithm was
employed to remove redundant parameters from the model, thereby simplifying it without
compromising its detection accuracy. The implementation of this approach resulted in
a significant reduction of 32.92% in the total number of parameters when compared to
the original model. Additionally, the optimized model exhibited a reduction in size by
24.82 MB compared to the original model, while achieving a mean average precision (mAP)
of 99.24%.

The detection method proposed in this research addresses the limitations of previous
deep learning-based methods, including excessive model parameters, large size, slow
detection speed, and low accuracy.

3.3. Discussion

The identification of codes on trolleys takes place in a complex environment, primarily
due to the presence of significant interference levels. We conducted an analysis of the primary
factors that impact the performance of the proposed method within an empirical setting.

3.3.1. Influence of Distance between Industrial Camera and Workpiece

We employed a range of distances between the target and the camera, spanning from
15 cm to 30 cm. Figure 11 illustrates an instance where the detection of a hole is incorrect.
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When the camera-to-target distance varied between 15 cm and 25 cm, the proposed 
method successfully detected both large and small holes. When the distance was increased 
to 30 cm, erroneous decisions were made. In Figure 11a, the hole pattern located in the 
bottom left corner is identified as a large hole. Similarly, in Figure 11b, the pattern in the 
same corner is erroneously identified as both a large hole and a small hole in the work-
piece is overlooked. The primary factor contributing to this issue is the significant shoot-
ing distance. At such distances, the small holes and the background exhibit similar color 

Figure 11. Example of a hole not being detected correctly when the shooting distance is 30 cm.
(a) Case of not correctly identifying the correct position of the hole in sample 0111. (b) Case of not
correctly identifying the correct position of the hole in sample 011.

When the camera-to-target distance varied between 15 cm and 25 cm, the proposed
method successfully detected both large and small holes. When the distance was increased
to 30 cm, erroneous decisions were made. In Figure 11a, the hole pattern located in the
bottom left corner is identified as a large hole. Similarly, in Figure 11b, the pattern in
the same corner is erroneously identified as both a large hole and a small hole in the
workpiece is overlooked. The primary factor contributing to this issue is the significant
shooting distance. At such distances, the small holes and the background exhibit similar
color characteristics, while the large hole features resemble the hole pattern features of the
background plate. Consequently, this similarity poses challenges in extracting the relevant
features, ultimately resulting in the missed detection of certain large and small holes.

The distance between the trolley and the industrial camera lens was consistently
maintained at a fixed distance of 20 cm during regular operational circumstances. The
findings indicated that the proposed method exhibited superior accuracy in detecting small
holes. However, it was observed that the accuracy of the method decreased as the distance
between the camera and the workpiece increased to 1.5 times the distance observed under
normal working conditions. When the distance between the lens and the workpiece varied
between 15 cm and 25 cm, indicating non-standard working conditions, the proposed
algorithm demonstrated the capability to accurately and efficiently detect both small and
large holes. This finding demonstrates the robustness of the proposed method in relation
to the distance at which the image is captured.

In order to enhance the model’s ability to accurately and efficiently identify holes of
different sizes under diverse conditions, the merging and fusion of feature maps can be
employed to extract more comprehensive information. For example, various techniques can
be employed to achieve this, including element-wise addition, element-wise multiplication,
channel concatenation, attention mechanisms [32], and other methods.

3.3.2. Effect of Light Intensity on Detection

Industrial cameras typically employ a stationary light source for capturing footage
under standard operating conditions. However, fluctuations in natural lighting can lead to
variations in the recorded images at different points in time.

When the light intensity was high, it resulted in a brighter appearance of the workpiece,
which had an impact on the accuracy of feature extraction by the model. Conversely,
when the light intensity was weak, the image appeared darker, making it challenging
to distinguish between the large and small holes due to their similar color to that of the
workpiece. This further complicated the process of feature extraction. Figure 12 presents
the outcomes of code-based detection using the proposed method across varying levels
of light intensity. Figure 12a,b demonstrate the successful identification of both small and
large holes.
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Figure 12. Results of identification of large and small holes under different intensities of light. (a) A
case of correctly identifying the hole position in sample 01111S under low light conditions. (b) A case
of correctly identifying the position of the hole in sample 01111L under bright light conditions.

We made continuous adjustments to the intensity of light during the process of captur-
ing images of the workpieces. The obtained results, which demonstrated an impressive
mean average precision (mAP) of 99.24%, indicate the high accuracy of the proposed
method in identifying marked trolleys within images.

4. Conclusions

Based on extensive research conducted on the yolov7 model, this paper utilizes the
YOLOv7 architecture and integrates an optimized channel pruning algorithm to present a
novel approach for accurately detecting trolley codes in real-time within standard operating
scenarios. The primary purpose of this technology is to address the challenge of identifying
trolley codes in real-world engineering applications. The primary outcomes of the study
are succinctly outlined as follows:

• The proposed method not only demonstrates a high level of accuracy, but also enables the
efficient detection of trolley codes. By implementing the channel-pruning-based YOLOv7
deep learning algorithm, notable reductions in the number of parameters, model size,
and forward inference time are achieved when compared to the unmodified model.
Specifically, there is a decrease of 32.92% in the number of parameters, a reduction
of 34.1% in model size, and a decrease of 48.8% in forward inference time. These
enhancements have been implemented while ensuring accuracy is not compromised.
Experiments have been conducted to demonstrate the method’s resistance to variations
in factors such as the target camera distance and ambient lighting. These experiments
aim to ensure consistent results under typical operating conditions. This demonstration
of robustness further validates the practical viability of the proposed method.

• The method presented in this study generates a simplified model that demonstrates
the ability to accurately identify tram codes in typical operational environments.
The experimental results exhibit a remarkable average precision (mAP) value of
99.24%, surpassing YOLOv5x, YOLOv4, YOLOv5m, YOLOv5s, and YOLOv5n by
0.86%, 1.72%, 1.03%, 1.18%, and 1.51%, respectively. In relation to the time taken for
forward inference, the enhanced model achieved a duration of 8.1ms, representing
a reduction of 7.6 ms compared to YOLOv7. The objective of this study was to offer
valuable technical insights into the implementation of tram code recognition models in
compact terminals and the potential integration of automatic target detection models
in engineering applications. The aforementioned contribution serves as a fundamental
basis for future investigations within this particular field. In subsequent research, it is
recommended to explore the development of algorithms aimed at enhancing feature
extraction. This can be achieved through the implementation of attention mechanisms
or other multi-scale fusion algorithms. By improving the feature extraction capabilities
of the model, the performance of trolley coding detection can be significantly enhanced.
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