
Citation: Cha, H.-J.; Yang, H.-K.;

Song, Y.-J.; Kang, A.R. Intelligent

Anomaly Detection System through

Malware Image Augmentation in

IIoT Environment Based on Digital

Twin. Appl. Sci. 2023, 13, 10196.

https://doi.org/10.3390/

app131810196

Academic Editors: Peter R.J. Trim

and Yang-Im Lee

Received: 26 July 2023

Revised: 6 September 2023

Accepted: 7 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Intelligent Anomaly Detection System through Malware Image
Augmentation in IIoT Environment Based on Digital Twin
Hyun-Jong Cha 1 , Ho-Kyung Yang 2, You-Jin Song 3 and Ah Reum Kang 4,*

1 Department of AI Software Engineering, Pai Chai University, Daejeon 35345, Republic of Korea;
hjcha@pcu.ac.kr

2 Department of Defense Acquisition Program, Kwangwoon University, Seoul 01897, Republic of Korea;
porori0421@naver.com

3 Department of Information Management, Dongguk University WISE Campus,
Gyeongju-si 38066, Republic of Korea; song@dongguk.ac.kr

4 Department of Information Security, Pai Chai University, Daejeon 35345, Republic of Korea
* Correspondence: armk@pcu.ac.kr; Tel.: +82-42-722-2522

Abstract: Due to the recent rapid development of the ICT (Information and Communications Tech-
nology) field, the industrial sector is also experiencing rapid informatization. As a result, malware
targeting information leakage and financial gain are increasingly found within IIoT (the Industrial
Internet of Things). Moreover, the number of malware variants is rapidly increasing. Therefore, there
is a pressing need for a safe and preemptive malware detection method capable of responding to these
rapid changes. The existing malware detection method relies on specific byte sequence inclusion in
a binary file. However, this method faces challenges in impacting the system or detecting variant
malware. In this paper, we propose a data augmentation method based on an adversarial generative
neural network to maintain a secure system and acquire necessary learning data. Specifically, we
introduce a digital twin environment to safeguard systems and data. The proposed system creates
fixed-size images from malware binaries in the virtual environment of the digital twin. Additionally,
it generates new malware through an adversarial generative neural network. The image information
produced in this manner is then employed for malware detection through deep learning. As a result,
the detection performance, in preparation for the emergence of new malware, demonstrated high
accuracy, exceeding 97%.

Keywords: digital twin; IIoT; malware; generative adversarial network; image interpolation

1. Introduction

IT (Information Technology) technology combined with the Internet is evolving into a
national infrastructure. Notably, the field of factory automation is experiencing significant
advancements with the emergence of the IIoT, which aims to digitalize all manufacturing
processes beyond conventional process automation [1]. Simultaneously, the rapid devel-
opment of the 4th industrial revolution, artificial intelligence, IoT (Internet of Things),
and big data has introduced new challenges, including information theft, hacking, and
eavesdropping. Consequently, the importance of cybersecurity has grown significantly [2].

Malware refers to any software that interferes with or adversely affects normal opera-
tion. New types of malware emerge daily. As the number of new malware continues to rise,
security threats rapidly expand into the automation of industrial processes. Recently, there
has been a growing interest in technology that detects files suspected of being malware by
executing them directly in a virtual machine [3]. This interest is fueled by the development
of IoT technology and virtualization technology, which has led to the emergence of the
concept of a digital twin. The digital twin structure replicates the same virtual system
as the corresponding real physical system. It achieves near real-time synchronization of

Appl. Sci. 2023, 13, 10196. https://doi.org/10.3390/app131810196 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810196
https://doi.org/10.3390/app131810196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0451-3271
https://orcid.org/0000-0002-0732-5313
https://doi.org/10.3390/app131810196
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810196?type=check_update&version=3

Appl. Sci. 2023, 13, 10196 2 of 21

certain value changes in the real world and virtually simulates the dynamic aspects of real
objects [4].

Among the technologies using virtual machines, one method for detecting malware
involves executing a target file directly in a virtual machine to analyze its behavior. By em-
ploying the digital twin in this manner, the code operates in an isolated space, independent
of the actual system. In other words, utilizing the digital twin environment does not have
any adverse effects on the actual system. Furthermore, even if the system becomes infected
with malware, it can be quickly reset to its initial state. This capability enables the efficient
examination of multiple codes in succession.

Machine learning technology is also applied to the detection of malware. As a result,
researchers are exploring the use of image recognition technology to convert executable files
into images and subsequently determine or classify them as malicious [5]. Deep learning
eliminates the need for preprocessing to extract features from images, making it an efficient
approach for detecting and analyzing malware.

Improving the performance of deep learning models requires a significant amount of
data. Obtaining sufficient data that aligns with the learning goals of the desired model,
especially in the case of analyzing malware, poses a challenge. Insufficient data hinders
the effective training of malware classification and detection models. To overcome this
difficulty, data augmentation can be applied. Data augmentation techniques are widely
used across different fields, leading to a variety of methods [6,7].

In this paper, we propose a data augmentation method for malware using image
conversion and adversarial generative neural networks in a digital twin environment. The
proposed method consists of two parts: the image conversion method and data generation.
The image conversion method suggests suitable quality and size for detection using deep
learning. Subsequently, an adversarial generative neural network is employed to augment
the missing data. Additionally, the generated images are trained with CNN to assess their
performance. This generative network predicts and prevents the generation of malware in
the future through digital twins. By utilizing real data, a digital twin can proactively block
or defend against potential damage by simulating the virtual world. This approach enables
the detection of combinations that could potentially harm the system through advanced
simulations. Malware often involves partial modifications of existing code. Through an
adversarial generative neural network, future malware are generated, and then a detection
model is created using CNN learning. This model demonstrates robust performance in
effectively protecting the system in real-life scenarios.

The thesis comprises a total of eight sections. Section 2 provides a detailed description of
each element technology that forms the foundation of the proposed method. Section 3 examines
existing research that is comparable to the proposed system. In Section 4, the configuration of the
proposed system is explained. Moving on to Section 5, experiments are conducted to validate
and assess the performance of the proposed system. In Section 6, the experimental results are
evaluated to prove the superiority of the proposed system. Section 7 provides appropriate
insights through a summary of the research results and limitations of the proposed system.
Finally, Section 8 presents the paper’s future research directions.

2. Background
2.1. Digital Twin

In this paper, we utilize a digital twin to create a virtual environment for the detection
of dynamic and insecure malware. Our objective is to establish a framework and archi-
tecture that aligns with our research goals. Subsequently, we conduct experiments within
this virtual world, utilizing the primary functionalities of the digital twin. By doing so, we
effectively mitigate physical risks and reduce associated costs, making our approach more
efficient and feasible.

The concept of the digital twin was originally proposed by Michael Grieves of the
University of Michigan in 2002, defining it as “a digital product corresponding to a physical
product” [8]. Subsequently, NASA (National Aeronautics and Space Administration)

Appl. Sci. 2023, 13, 10196 3 of 21

further refined the digital twin concept in 2012 [9]. As General Electric of the United
States introduced an industrial cloud-based open platform [10], the concept of ‘digitizing a
real object, utilizing it, and reflecting the result in reality’ became more refined. Through
extensive research and development, it has been elaborated as ‘technology that enables
real-time prediction, optimization, monitoring, control, and decision support’ [11]. Figure 1
depicts a technical, conceptual diagram of the digital twin.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 21

The concept of the digital twin was originally proposed by Michael Grieves of the

University of Michigan in 2002, defining it as “a digital product corresponding to a phys-

ical product” [8]. Subsequently, NASA (National Aeronautics and Space Administration)

further refined the digital twin concept in 2012 [9]. As General Electric of the United States

introduced an industrial cloud-based open platform [10], the concept of ‘digitizing a real

object, utilizing it, and reflecting the result in reality’ became more refined. Through ex-

tensive research and development, it has been elaborated as ‘technology that enables real-

time prediction, optimization, monitoring, control, and decision support’ [11]. Figure 1

depicts a technical, conceptual diagram of the digital twin.

Figure 1. Technical concept of digital twin.

Essentially, before a malware is activated in the physical world, it is analyzed and

prevented from causing system malfunctions. Repeatedly implementing a safe physical

world within the virtual environment allows for iterative testing and improvement.

In this study, we propose a method to analyze and defend against new types of mal-

ware using digital twins.

2.2. Malware

Malware refers to any software that can interfere with or adversely affect the normal

operation of an electronic device. As the number of malware rapidly increases, the types

of attacks are becoming more diverse and intelligent [12]. According to the 2019 McAfee

Labs Threats Report, new malware continues to be discovered, with tens of millions of

malware being identified each quarter [13]. Table 1 provides a description of the types of

representative malware known so far, along with their characteristics.

Table 1. Types and characteristics of malware.

Category Characteristic

Worm Infects itself through the network

Worm Virus Equipped with both worm and virus infection methods

Trojan Horse No self-replicating ability

Spyware Steals user information

Adware Displays ads automatically

Hijacker Redirects to unintended sites or opens pop-up windows

Ransomware Makes files unusable and demands money for recovery

Keylogger Logs user’s keyboard input to uncover sensitive information

Figure 1. Technical concept of digital twin.

Essentially, before a malware is activated in the physical world, it is analyzed and
prevented from causing system malfunctions. Repeatedly implementing a safe physical
world within the virtual environment allows for iterative testing and improvement.

In this study, we propose a method to analyze and defend against new types of
malware using digital twins.

2.2. Malware

Malware refers to any software that can interfere with or adversely affect the normal
operation of an electronic device. As the number of malware rapidly increases, the types
of attacks are becoming more diverse and intelligent [12]. According to the 2019 McAfee
Labs Threats Report, new malware continues to be discovered, with tens of millions of
malware being identified each quarter [13]. Table 1 provides a description of the types of
representative malware known so far, along with their characteristics.

Table 1. Types and characteristics of malware.

Category Characteristic

Worm Infects itself through the network
Worm Virus Equipped with both worm and virus infection methods
Trojan Horse No self-replicating ability

Spyware Steals user information
Adware Displays ads automatically
Hijacker Redirects to unintended sites or opens pop-up windows

Ransomware Makes files unusable and demands money for recovery
Keylogger Logs user’s keyboard input to uncover sensitive information

2.3. Image Interpolation

Interpolation is a technique used to enlarge or reduce an image. When an image is
enlarged, additional pixels must be added between the pixels of the original image. When

Appl. Sci. 2023, 13, 10196 4 of 21

an image is reduced, one pixel must replace a certain number of pixels in the existing image.
Interpolation is distinguished by how pixels are added and how many pixels are mapped
to a single pixel.

In this paper, three image interpolation methods were tested: nearest neighbor, bicubic,
and bilinear. The detection performance was measured by CNN by adjusting the image
size using each interpolation method. In the final proposed system, a method with high
performance and short processing time was applied.

The nearest neighbor method is the simplest among interpolation methods and has
the shortest processing time. This technique applies the value of the supplemented or
replaced pixel to the value of the pixel in the existing image closest to that location. That is,
if a two-dimensional image is magnified twice, one pixel is enlarged to 2 × 2 pixels, and
the same value as the existing pixel is applied to the value of the 2 × 2 pixel. When an
image is reduced by a factor of two, 2 × 2 pixels are replaced with 1 pixel, and the value
of one of the existing pixels is applied to the value of the replaced pixel [14]. The bilinear
technique considers the four adjacent pixels of a new pixel. The value of the new pixel
is determined based on the weighted average of the distances to them. Four pixels are
considered, but they are most affected by pixel values of closer distances [15]. The bicubic
method considers the 16 adjacent pixels of a new pixel and determines the value of the new
pixel based on the weighted average of the distances to them. This technique provides a
smoother result and is often preferred for image resizing due to its better preservation of
image details and reduced artifacts [16].

2.4. Generative Adversarial Network

GAN (generative adversarial network) [17,18] consists of a generator/generative
model and a discriminator/discriminator model.

Figure 2 shows the learning structure in a GAN. GANs are often described with
examples of banknote counterfeiters and the police. The generator is likened to a banknote
counterfeiter, while the discriminator is compared to the police. In this analogy, the
criminal (generator) attempts to trick the police (discriminator) with fake banknotes, and
the police strive to identify the authenticity of the counterfeit bills. Through this competitive
process, each model improves its ability to distinguish between genuine and counterfeit
banknotes. As a result, the discriminator (D) tries to make accurate judgments using
original data, while the generator (G) generates fake data to prevent the discriminator (D)
from making accurate determinations. Through this process of adversarial learning, both
models iteratively improve their performance [19].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 21

2.3. Image Interpolation

Interpolation is a technique used to enlarge or reduce an image. When an image is

enlarged, additional pixels must be added between the pixels of the original image. When

an image is reduced, one pixel must replace a certain number of pixels in the existing

image. Interpolation is distinguished by how pixels are added and how many pixels are

mapped to a single pixel.

In this paper, three image interpolation methods were tested: nearest neighbor, bicu-

bic, and bilinear. The detection performance was measured by CNN by adjusting the im-

age size using each interpolation method. In the final proposed system, a method with

high performance and short processing time was applied.

The nearest neighbor method is the simplest among interpolation methods and has

the shortest processing time. This technique applies the value of the supplemented or re-

placed pixel to the value of the pixel in the existing image closest to that location. That is,

if a two-dimensional image is magnified twice, one pixel is enlarged to 2 × 2 pixels, and

the same value as the existing pixel is applied to the value of the 2 × 2 pixel. When an

image is reduced by a factor of two, 2 × 2 pixels are replaced with 1 pixel, and the value of

one of the existing pixels is applied to the value of the replaced pixel [14]. The bilinear

technique considers the four adjacent pixels of a new pixel. The value of the new pixel is

determined based on the weighted average of the distances to them. Four pixels are con-

sidered, but they are most affected by pixel values of closer distances [15]. The bicubic

method considers the 16 adjacent pixels of a new pixel and determines the value of the

new pixel based on the weighted average of the distances to them. This technique provides

a smoother result and is often preferred for image resizing due to its better preservation

of image details and reduced artifacts [16].

2.4. Generative Adversarial Network

GAN (generative adversarial network) [17,18] consists of a generator/generative

model and a discriminator/discriminator model.

Figure 2 shows the learning structure in a GAN. GANs are often described with ex-

amples of banknote counterfeiters and the police. The generator is likened to a banknote

counterfeiter, while the discriminator is compared to the police. In this analogy, the crim-

inal (generator) attempts to trick the police (discriminator) with fake banknotes, and the

police strive to identify the authenticity of the counterfeit bills. Through this competitive

process, each model improves its ability to distinguish between genuine and counterfeit

banknotes. As a result, the discriminator (D) tries to make accurate judgments using orig-

inal data, while the generator (G) generates fake data to prevent the discriminator (D)

from making accurate determinations. Through this process of adversarial learning, both

models iteratively improve their performance [19].

Figure 2. Learning structure of GAN. Figure 2. Learning structure of GAN.

Eventually, the discriminator (D) becomes less able to distinguish between the original
data and the fake data generated by the generator (G).

Appl. Sci. 2023, 13, 10196 5 of 21

Since GANs are unsupervised, they do not require manual labeling, and by learning
the data, they can acquire the internal representation of the data. GANs are capable of
generating audio, video, text, and image data that is indistinguishable from real data. As a
versatile technology, they find applications in marketing, e-commerce, gaming, advertising,
and various other industries.

3. Literature Review
3.1. Digital Twin Application Research

Pokhrel et al. [20] provide a comprehensive overview of research on predicting cyber-
security incidents using digital twin technology. The paper covers the integration of digital
twin models and cybersecurity frameworks, machine learning, and data analysis tech-
niques for accident prediction. It also emphasizes the importance of real-time monitoring
and anomaly detection in the digital twin context.

Eckhart and Ekelhart [21] conducted a study focusing on the application of digital
twins to enhance the security of CPS (cyber-physical systems). The paper reviews the
concept of digital twins in the context of CPS security and covers various aspects, such
as modeling and simulation capabilities, real-time monitoring, and anomaly detection
and analysis.

The proposed technique learns real-time data collected from the physical world of
digital twins. Therefore, it provides an environment that can be analyzed safely without
affecting systems in the physical world.

3.2. Malware Detection through Imaging

Traditional machine learning techniques such as KNN (k-nearest neighbor) and SVM
(support vector machine) were used [22]. However, in recent years, studies that apply
deep learning are the main focus. Additionally, the malware detection performance using
deep learning is generally superior to that using machine learning techniques [23]. In 2022,
Atitallah et al. [24]. proposed detection and multiple classification of malware converted
into images. The proposed approach combines two machine learning techniques: fine-
tuned CNN and random forest voting. This approach takes advantage of CNN’s ability
to capture complex patterns in data and random forests, which reduce overfitting and
enhance generalization.

However, malware sample images of different classes to which the same packing tech-
nique is applied may appear similar. Moreover, limitations arise in terms of generalization
error and data imbalance due to the size and diversity of the dataset [25].

In this paper, the malware is expressed in grayscale and converted into an image.
Additionally, image interpolation is considered to convert the image into a suitable size
for analysis.

3.3. Malware Detection through Machine Learning

In 2009, M. Zubair Shafiq et al. [26] proposed PE-Miner (Portable Executable-Miner), a
framework for detecting malware following the PE format (Portable Executable Format)
in RAID (Redundant Array of Independent Disks). PE Miner extracts information from
PE files and creates vector values. Then, a classification model was proposed through a
preprocessing process. For more than 1000 malware, the classification time was reduced to
0.244 s, and a high performance of 99% detection rate was shown.

In 2018, Anderson and Roth [27]. proposed Ember, a machine learning model based
on machine learning static analysis. Ember extracts information from PE files through static
analysis and then creates vector values. A detection model was created using a LightGBM
(Light Gradient Boosting Machine) model, which utilizes a boosting technique, a kind of
ensemble technique. Ember showed a high detection performance of 92% for more than
800,000 malware.

In 2020, Hojjat Aghakhani et al. [28]. published a study on classifying packed malware
using static analysis-based features and machine learning-based classifiers. They then

Appl. Sci. 2023, 13, 10196 6 of 21

created a classification model using a random forest. The study utilized a real dataset
consisting of 4396 unpacked normal files, 12,647 packed normal files, and 33,681 packed
malicious files. The results showed 41.84% false negatives and 7.27% false positives for the
packed dataset. However, it was found to be difficult to accurately classify packed files
based solely on static analysis features.

3.4. Malware Detection through Deep Learning

Saxe and Berlin [29]. proposed a DNN-based PE file malware detection model. The
vector created by analyzing the PE file is used as an input for a deep learning model with
two hidden layers. Additionally, the Bayesian model is used to provide the probability of
being malicious in addition to detection. The proposed model shows a high detection rate
of 95%.

MalConv, proposed in 2017 by Edward Raff et al. [30], is a CNN model that learns
without separate feature extraction and preprocessing from PE files. To validate the model,
it was verified using two datasets and showed a high accuracy of 93%.

Mahmoud Kalash et al. [31]. proposed the M-CNN model at the 2018. M-CNN
converts PE files into images and classifies them using convolutional neural networks. The
resulting image is classified using the VGG-16 (Visual Geometry Group-16) model. The
model was validated using 8394 data points, achieving an accuracy of over 96%.

The proposed system in this paper applies a CNN model through digital twin to safely
execute the malware. It converts the binary of a file to a grayscale image. Afterwards, the
detection performance is measured for each size and interpolation method to select an
appropriate size and interpolation method. Additionally, the detection performance of data
generated through adversarial generative neural networks is measured.

4. Materials and Methods

The proposed system is built upon a digital twin-based malware detection system.
Figure 3 shows the architecture of the proposed system.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 21

In 2020, Hojjat Aghakhani et al. published a study on classifying packed malware

using static analysis-based features and machine learning-based classifiers. They then cre-

ated a classification model using a random forest. The study utilized a real dataset con-

sisting of 4396 unpacked normal files, 12,647 packed normal files, and 33,681 packed ma-

licious files. The results showed 41.84% false negatives and 7.27% false positives for the

packed dataset. However, it was found to be difficult to accurately classify packed files

based solely on static analysis features [28].

3.4. Malware Detection through Deep Learning

J. Saxe et al. proposed a DNN-based PE file malware detection model. The vector

created by analyzing the PE file is used as an input for a deep learning model with two

hidden layers. Additionally, the Bayesian model is used to provide the probability of be-

ing malicious in addition to detection. The proposed model shows a high detection rate

of 95% [29].

MalConv, proposed in 2017 by Edward Raff et al., is a CNN model that learns with-

out separate feature extraction and preprocessing from PE files. To validate the model, it

was verified using two datasets and showed a high accuracy of 93% [30].

Mahmoud Kalash et al. proposed the M-CNN model at the 2018. M-CNN converts

PE files into images and classifies them using convolutional neural networks. The result-

ing image is classified using the VGG-16 (Visual Geometry Group-16) model. The model

was validated using 8394 data points, achieving an accuracy of over 96% [31].

The proposed system in this paper applies a CNN model through digital twin to

safely execute the malware. It converts the binary of a file to a grayscale image. After-

wards, the detection performance is measured for each size and interpolation method to

select an appropriate size and interpolation method. Additionally, the detection perfor-

mance of data generated through adversarial generative neural networks is measured.

4. Materials and Methods

The proposed system is built upon a digital twin-based malware detection system.

Figure 3 shows the architecture of the proposed system.

Figure 3. Digital twin-based conceptual diagram of the proposed system.

The architecture is divided into three layer: physical, data, and cyber. The physical

layer represents the anomaly detection system for actual malware, consisting of data col-

lection, analysis, and system management components. The data layer includes a database

Figure 3. Digital twin-based conceptual diagram of the proposed system.

The architecture is divided into three layer: physical, data, and cyber. The physical
layer represents the anomaly detection system for actual malware, consisting of data
collection, analysis, and system management components. The data layer includes a
database for storing data and learning models, as well as a system for managing these
models. The database stores data collected from the physical layer, malware information,
and a learning model that serves as the standard for filtering. The model manager is
responsible for managing the learning model based on the stored data. The cyber layer

Appl. Sci. 2023, 13, 10196 7 of 21

encompasses digital twin applications and security control systems. The digital twin
application replicates the actual malware detection system in the virtual world. The security
control system is responsible for creating and learning about new types of malware. The
learning process is conducted based on information received from the data layer, and the
model is updated through interactions with the simulation in the digital twin application,
thereby improving the system’s detection capabilities.

The proposed system collects IoT data and classifies it through a malware detection
model. While the system can effectively filter known malware in the physical world using
pretrained models, it faces limitations in detecting new types of malware that have not
been previously learned. To address this challenge, the proposed system leverages the
digital world by creating and learning new types of malware based on existing ones. By
generating and learning these new malware variants in the digital twin environment, the
system enhances its detection capabilities and applies the knowledge gained to the physical
world’s detection system. As a result, the proposed system is capable of preemptively
detecting emerging threats, surpassing the capabilities of existing methods.

Among the proposed systems, the security control system of the cyber layer is com-
posed of three main components: image generation, new malware image generation, and
model learning. Figure 4 illustrates the pre-processing and learning process of the security
control system.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 21

for storing data and learning models, as well as a system for managing these models. The

database stores data collected from the physical layer, malware information, and a learn-

ing model that serves as the standard for filtering. The model manager is responsible for

managing the learning model based on the stored data. The cyber layer encompasses dig-

ital twin applications and security control systems. The digital twin application replicates

the actual malware detection system in the virtual world. The security control system is

responsible for creating and learning about new types of malware. The learning process

is conducted based on information received from the data layer, and the model is updated

through interactions with the simulation in the digital twin application, thereby improv-

ing the system’s detection capabilities.

The proposed system collects IoT data and classifies it through a malware detection

model. While the system can effectively filter known malware in the physical world using

pretrained models, it faces limitations in detecting new types of malware that have not

been previously learned. To address this challenge, the proposed system leverages the

digital world by creating and learning new types of malware based on existing ones. By

generating and learning these new malware variants in the digital twin environment, the

system enhances its detection capabilities and applies the knowledge gained to the phys-

ical world’s detection system. As a result, the proposed system is capable of preemptively

detecting emerging threats, surpassing the capabilities of existing methods.

Among the proposed systems, the security control system of the cyber layer is com-

posed of three main components: image generation, new malware image generation, and

model learning. Figure 4 illustrates the pre-processing and learning process of the security

control system.

Figure 4. Pre-processing and learning process of security control system.

The image creation process involves converting an input executable file into an im-

age. To achieve this, the input binary information is digitized and converted into pixel

values. Additionally, the image size must be standardized for effective learning. Image

correction techniques are employed to prevent information loss during image resizing. In

the proposed system, the image size is set to 64 × 64 pixels, and the bilinear method is

used for image correction. To determine the optimal image size and correction method,

three image sizes (32 × 32, 64 × 64, and 128 × 128) and three correction methods (nearest

neighbor, bilinear, and bicubic) are combined. The CNN classification performance is then

evaluated to select the most efficient configuration. Next, the new malware image creation

process utilizes DCGAN, a generative artificial intelligence technique. This method gen-

erates new malware images by extracting characteristics from existing malware images.

The generated images are then trained using a convolutional neural network, creating a

Figure 4. Pre-processing and learning process of security control system.

The image creation process involves converting an input executable file into an image.
To achieve this, the input binary information is digitized and converted into pixel values.
Additionally, the image size must be standardized for effective learning. Image correction
techniques are employed to prevent information loss during image resizing. In the proposed
system, the image size is set to 64 × 64 pixels, and the bilinear method is used for image
correction. To determine the optimal image size and correction method, three image sizes
(32 × 32, 64 × 64, and 128 × 128) and three correction methods (nearest neighbor, bilinear,
and bicubic) are combined. The CNN classification performance is then evaluated to
select the most efficient configuration. Next, the new malware image creation process
utilizes DCGAN, a generative artificial intelligence technique. This method generates new
malware images by extracting characteristics from existing malware images. The generated
images are then trained using a convolutional neural network, creating a model capable
of detecting malware. This approach enables the system to proactively detect and defend
against new types of malware through simulated detection in the virtual environment.

Appl. Sci. 2023, 13, 10196 8 of 21

4.1. Imaging of Malware

In Figure 5, the process of converting a binary file into an image is depicted. This
conversion enables the smooth analysis of malware through image processing. During this
process, images of all malware are used as training data after being adjusted to the same
size. This step ensures consistency and uniformity in the training data, which is crucial for
accurate and effective learning in the subsequent stages of the proposed system.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 21

model capable of detecting malware. This approach enables the system to proactively de-

tect and defend against new types of malware through simulated detection in the virtual

environment.

4.1. Imaging of Malware

In Figure 5, the process of converting a binary file into an image is depicted. This

conversion enables the smooth analysis of malware through image processing. During

this process, images of all malware are used as training data after being adjusted to the

same size. This step ensures consistency and uniformity in the training data, which is cru-

cial for accurate and effective learning in the subsequent stages of the proposed system.

Figure 5. Imaging process of malware.

Figure 6 depicts the pre-processing process of converting a malware into an image.

In this process, the size of the image is not a primary concern. The binary data of the mal-

ware file is read as a vector of 8-bit unsigned integers. Subsequently, each byte is con-

verted into one pixel of the image, with values ranging from 0 to 255, creating a grayscale

image. The size of the image is determined based on the file size. Therefore, the width and

height of the image are calculated as the square root of the total number of bytes [32]. As

the file size varies, the size of the converted image will also differ accordingly.

Figure 6. Imaging pre-process of malware.

For training purposes, all images used as inputs to the deep learning model must be

of the same size. Therefore, the malware image is resized to a specific size after the pre-

processing phase. During this process, it is crucial to adjust the size while preserving the

essential characteristics of the image as much as possible. Interpolation is employed to

resize the image while maintaining its overall shape. Depending on the interpolation

method applied and the desired size for conversion, the shape of the image may slightly

vary. In the proposed system, an experiment was conducted to assess the detection per-

formance based on different image sizes and interpolation methods. The image size op-

tions included 32 × 32, 64 × 64, and 128 × 128, while interpolation methods considered

were nearest neighbor, bilinear, and bicubic. Larger image sizes generally lead to better

detection performance, but it comes at the cost of increased processing time. Hence, in the

proposed system, the image size was standardized to 64 × 64 using bilinear interpolation,

striking a balance between performance and efficiency.

4.2. Data Augmentation through Generative Adversarial Networks

Figure 5. Imaging process of malware.

Figure 6 depicts the pre-processing process of converting a malware into an image. In
this process, the size of the image is not a primary concern. The binary data of the malware
file is read as a vector of 8-bit unsigned integers. Subsequently, each byte is converted into
one pixel of the image, with values ranging from 0 to 255, creating a grayscale image. The
size of the image is determined based on the file size. Therefore, the width and height of
the image are calculated as the square root of the total number of bytes [32]. As the file size
varies, the size of the converted image will also differ accordingly.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 21

model capable of detecting malware. This approach enables the system to proactively de-

tect and defend against new types of malware through simulated detection in the virtual

environment.

4.1. Imaging of Malware

In Figure 5, the process of converting a binary file into an image is depicted. This

conversion enables the smooth analysis of malware through image processing. During

this process, images of all malware are used as training data after being adjusted to the

same size. This step ensures consistency and uniformity in the training data, which is cru-

cial for accurate and effective learning in the subsequent stages of the proposed system.

Figure 5. Imaging process of malware.

Figure 6 depicts the pre-processing process of converting a malware into an image.

In this process, the size of the image is not a primary concern. The binary data of the mal-

ware file is read as a vector of 8-bit unsigned integers. Subsequently, each byte is con-

verted into one pixel of the image, with values ranging from 0 to 255, creating a grayscale

image. The size of the image is determined based on the file size. Therefore, the width and

height of the image are calculated as the square root of the total number of bytes [32]. As

the file size varies, the size of the converted image will also differ accordingly.

Figure 6. Imaging pre-process of malware.

For training purposes, all images used as inputs to the deep learning model must be

of the same size. Therefore, the malware image is resized to a specific size after the pre-

processing phase. During this process, it is crucial to adjust the size while preserving the

essential characteristics of the image as much as possible. Interpolation is employed to

resize the image while maintaining its overall shape. Depending on the interpolation

method applied and the desired size for conversion, the shape of the image may slightly

vary. In the proposed system, an experiment was conducted to assess the detection per-

formance based on different image sizes and interpolation methods. The image size op-

tions included 32 × 32, 64 × 64, and 128 × 128, while interpolation methods considered

were nearest neighbor, bilinear, and bicubic. Larger image sizes generally lead to better

detection performance, but it comes at the cost of increased processing time. Hence, in the

proposed system, the image size was standardized to 64 × 64 using bilinear interpolation,

striking a balance between performance and efficiency.

4.2. Data Augmentation through Generative Adversarial Networks

Figure 6. Imaging pre-process of malware.

For training purposes, all images used as inputs to the deep learning model must
be of the same size. Therefore, the malware image is resized to a specific size after the
pre-processing phase. During this process, it is crucial to adjust the size while preserving
the essential characteristics of the image as much as possible. Interpolation is employed
to resize the image while maintaining its overall shape. Depending on the interpolation
method applied and the desired size for conversion, the shape of the image may slightly
vary. In the proposed system, an experiment was conducted to assess the detection perfor-
mance based on different image sizes and interpolation methods. The image size options
included 32 × 32, 64 × 64, and 128 × 128, while interpolation methods considered were
nearest neighbor, bilinear, and bicubic. Larger image sizes generally lead to better detection
performance, but it comes at the cost of increased processing time. Hence, in the proposed
system, the image size was standardized to 64 × 64 using bilinear interpolation, striking a
balance between performance and efficiency.

4.2. Data Augmentation through Generative Adversarial Networks

The generative model of the proposed system uses DCGAN. The process of creating
a new malware image is shown in Figure 7. In the generative model of the proposed
system, there is one generator and one discriminator. The generator considers as input
an image made of random noise, while the discriminator receives the malware image and
the image created by the generator to determine their authenticity. Malware images are
generated by converting binary files into images, and then resizing them to 64 × 64 size.

Appl. Sci. 2023, 13, 10196 9 of 21

Among these images, we divide them into a training set and a test set to evaluate the
system’s performance.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21

The generative model of the proposed system uses DCGAN. The process of creating

a new malware image is shown in Figure 7. In the generative model of the proposed sys-

tem, there is one generator and one discriminator. The generator considers as input an

image made of random noise, while the discriminator receives the malware image and the

image created by the generator to determine their authenticity. Malware images are gen-

erated by converting binary files into images, and then resizing them to 64 × 64 size.

Among these images, we divide them into a training set and a test set to evaluate the

system’s performance.

Figure 7. Process of creating malware images.

The discriminator’s goal is to predict whether an image is real or fake. This is similar

to an image classification problem in supervised learning. Therefore, it is possible to use

a network structure in which convolutional layers are stacked, and the output layer serves

as the connection layer. The structure of the discriminator model in the proposed system

is illustrated in Figure 8.

Figure 8. Composition of the discriminator model of the proposed system.

The input is an image of size 64 × 64. The first convolutional layer, Conv2D, employs

64 filters, reducing the feature map size to 32 × 32. In the second convolutional layer, 64

filters are used, further reducing the feature map to 16 × 16. Subsequently, the third con-

volutional layer utilizes 128 filters, resulting in an 8 × 8 feature map. The last convolutional

layer also employs 128 filters, preserving the 8 × 8 feature map size. The feature map is

then flattened and converted into a vector. Passing through a dense layer with a single

unit, the output is transformed into a value between 0 and 1. This model considers an

image as input and outputs a number that distinguishes real from fake. Next, we consider

the number of parameters in the discriminator. The first convolutional layer contains 64

filters, resulting in 1664 parameters. The second convolutional layer, with 64 filters, con-

tributes 102,464 parameters. The third convolutional layer employs 128 filters and adds

204,928 parameters. Finally, the last convolutional layer has 128 filters and 409,728 param-

eters. When these parameters are flattened and connected as a single unit, the count be-

comes 8193. The total number of discriminator parameters sums up to 726,977.

The generator typically considers a vector sampled from a multivariate standard nor-

mal distribution as input and produces an image of the same dimensions as the original

Figure 7. Process of creating malware images.

The discriminator’s goal is to predict whether an image is real or fake. This is similar
to an image classification problem in supervised learning. Therefore, it is possible to use a
network structure in which convolutional layers are stacked, and the output layer serves as
the connection layer. The structure of the discriminator model in the proposed system is
illustrated in Figure 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 21

The generative model of the proposed system uses DCGAN. The process of creating

a new malware image is shown in Figure 7. In the generative model of the proposed sys-

tem, there is one generator and one discriminator. The generator considers as input an

image made of random noise, while the discriminator receives the malware image and the

image created by the generator to determine their authenticity. Malware images are gen-

erated by converting binary files into images, and then resizing them to 64 × 64 size.

Among these images, we divide them into a training set and a test set to evaluate the

system’s performance.

Figure 7. Process of creating malware images.

The discriminator’s goal is to predict whether an image is real or fake. This is similar

to an image classification problem in supervised learning. Therefore, it is possible to use

a network structure in which convolutional layers are stacked, and the output layer serves

as the connection layer. The structure of the discriminator model in the proposed system

is illustrated in Figure 8.

Figure 8. Composition of the discriminator model of the proposed system.

The input is an image of size 64 × 64. The first convolutional layer, Conv2D, employs

64 filters, reducing the feature map size to 32 × 32. In the second convolutional layer, 64

filters are used, further reducing the feature map to 16 × 16. Subsequently, the third con-

volutional layer utilizes 128 filters, resulting in an 8 × 8 feature map. The last convolutional

layer also employs 128 filters, preserving the 8 × 8 feature map size. The feature map is

then flattened and converted into a vector. Passing through a dense layer with a single

unit, the output is transformed into a value between 0 and 1. This model considers an

image as input and outputs a number that distinguishes real from fake. Next, we consider

the number of parameters in the discriminator. The first convolutional layer contains 64

filters, resulting in 1664 parameters. The second convolutional layer, with 64 filters, con-

tributes 102,464 parameters. The third convolutional layer employs 128 filters and adds

204,928 parameters. Finally, the last convolutional layer has 128 filters and 409,728 param-

eters. When these parameters are flattened and connected as a single unit, the count be-

comes 8193. The total number of discriminator parameters sums up to 726,977.

The generator typically considers a vector sampled from a multivariate standard nor-

mal distribution as input and produces an image of the same dimensions as the original

Figure 8. Composition of the discriminator model of the proposed system.

The input is an image of size 64 × 64. The first convolutional layer, Conv2D,
employs 64 filters, reducing the feature map size to 32 × 32. In the second convolutional
layer, 64 filters are used, further reducing the feature map to 16 × 16. Subsequently, the
third convolutional layer utilizes 128 filters, resulting in an 8 × 8 feature map. The last
convolutional layer also employs 128 filters, preserving the 8 × 8 feature map size. The
feature map is then flattened and converted into a vector. Passing through a dense layer
with a single unit, the output is transformed into a value between 0 and 1. This model
considers an image as input and outputs a number that distinguishes real from fake.
Next, we consider the number of parameters in the discriminator. The first convolutional
layer contains 64 filters, resulting in 1664 parameters. The second convolutional layer,
with 64 filters, contributes 102,464 parameters. The third convolutional layer employs
128 filters and adds 204,928 parameters. Finally, the last convolutional layer has 128 filters
and 409,728 parameters. When these parameters are flattened and connected as a single
unit, the count becomes 8193. The total number of discriminator parameters sums up
to 726,977.

The generator typically considers a vector sampled from a multivariate standard
normal distribution as input and produces an image of the same dimensions as the original
training data. Its role is to transform latent space vectors into images. The structure of the
proposed system’s generator model is illustrated in Figure 9.

Appl. Sci. 2023, 13, 10196 10 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21

training data. Its role is to transform latent space vectors into images. The structure of the

proposed system’s generator model is illustrated in Figure 9.

Figure 9. Configuration of the generator model of the proposed system.

The constructor considers a vector of length 100 as input and passes it through a

dense layer with 16,384 units. Batch normalization and ReLU activation functions are ap-

plied to transform the feature map into a size of 16 × 16 with 64 filters. Subsequently, an

upsampling layer increases the feature map to 32 × 32. The first convolutional layer uses

128 filters. Another upsampling layer increases the feature map to 64 × 64. Through two

additional convolutional layers with 64 filters, a final 64 × 64 feature map is obtained,

which matches the size of the original image. This model considers a vector of length 100

as input and outputs a 64 × 64 image. Next, let us consider the parameter sizes of the

constructor model. The initial input of 100 vectors is connected to 16,384 neurons, result-

ing in 1,654,784 parameters. After applying batch normalization, there are 65,536 param-

eters. The first convolutional layer has 204,928 parameters, and after applying batch nor-

malization, there are 512 parameters. The second convolutional layer contains 204,864 pa-

rameters, and batch normalization contributes 256 parameters. The third convolutional

layer has 102,464 parameters. Lastly, the final convolutional layer adds 1601 parameters.

The total number of parameters is 2,235,201. Among them, 33,280 parameters are un-

learned, leaving 2,201,921 parameters used for learning.

4.3. Deep Learning Model for Malware Detection

The proposed system’s malware detection model utilizes a convolutional neural net-

work (CNN) architecture. The model’s structure is illustrated in Figure 10. It consists of a

series of layers, including a convolutional layer, a pooling layer, and a Rectified Linear

Unit (ReLU) activation function.

Figure 10. Composition of malicious code detection model.

Figure 9. Configuration of the generator model of the proposed system.

The constructor considers a vector of length 100 as input and passes it through a
dense layer with 16,384 units. Batch normalization and ReLU activation functions are
applied to transform the feature map into a size of 16 × 16 with 64 filters. Subsequently,
an upsampling layer increases the feature map to 32 × 32. The first convolutional
layer uses 128 filters. Another upsampling layer increases the feature map to 64 × 64.
Through two additional convolutional layers with 64 filters, a final 64 × 64 feature
map is obtained, which matches the size of the original image. This model considers a
vector of length 100 as input and outputs a 64 × 64 image. Next, let us consider the
parameter sizes of the constructor model. The initial input of 100 vectors is connected
to 16,384 neurons, resulting in 1,654,784 parameters. After applying batch normalization,
there are 65,536 parameters. The first convolutional layer has 204,928 parameters, and
after applying batch normalization, there are 512 parameters. The second convolutional
layer contains 204,864 parameters, and batch normalization contributes 256 parameters.
The third convolutional layer has 102,464 parameters. Lastly, the final convolutional
layer adds 1601 parameters. The total number of parameters is 2,235,201. Among them,
33,280 parameters are unlearned, leaving 2,201,921 parameters used for learning.

4.3. Deep Learning Model for Malware Detection

The proposed system’s malware detection model utilizes a convolutional neural
network (CNN) architecture. The model’s structure is illustrated in Figure 10. It consists of
a series of layers, including a convolutional layer, a pooling layer, and a Rectified Linear
Unit (ReLU) activation function.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21

training data. Its role is to transform latent space vectors into images. The structure of the

proposed system’s generator model is illustrated in Figure 9.

Figure 9. Configuration of the generator model of the proposed system.

The constructor considers a vector of length 100 as input and passes it through a

dense layer with 16,384 units. Batch normalization and ReLU activation functions are ap-

plied to transform the feature map into a size of 16 × 16 with 64 filters. Subsequently, an

upsampling layer increases the feature map to 32 × 32. The first convolutional layer uses

128 filters. Another upsampling layer increases the feature map to 64 × 64. Through two

additional convolutional layers with 64 filters, a final 64 × 64 feature map is obtained,

which matches the size of the original image. This model considers a vector of length 100

as input and outputs a 64 × 64 image. Next, let us consider the parameter sizes of the

constructor model. The initial input of 100 vectors is connected to 16,384 neurons, result-

ing in 1,654,784 parameters. After applying batch normalization, there are 65,536 param-

eters. The first convolutional layer has 204,928 parameters, and after applying batch nor-

malization, there are 512 parameters. The second convolutional layer contains 204,864 pa-

rameters, and batch normalization contributes 256 parameters. The third convolutional

layer has 102,464 parameters. Lastly, the final convolutional layer adds 1601 parameters.

The total number of parameters is 2,235,201. Among them, 33,280 parameters are un-

learned, leaving 2,201,921 parameters used for learning.

4.3. Deep Learning Model for Malware Detection

The proposed system’s malware detection model utilizes a convolutional neural net-

work (CNN) architecture. The model’s structure is illustrated in Figure 10. It consists of a

series of layers, including a convolutional layer, a pooling layer, and a Rectified Linear

Unit (ReLU) activation function.

Figure 10. Composition of malicious code detection model. Figure 10. Composition of malicious code detection model.

In the convolutional layer, the model performs convolutions on the input data to
extract relevant features. The pooling layer reduces the spatial dimensions of the feature
maps, aiding in feature extraction and dimensionality reduction. Additionally, the ReLU
activation function introduces non-linearity to the model, enhancing its capacity to capture
complex patterns and relationships in the data.

Appl. Sci. 2023, 13, 10196 11 of 21

The model receives an input of size 64 × 64. The first convolutional layer, Conv2D,
employs 32 filters with the ReLU activation function. Subsequently, a pooling layer is added,
reducing the feature map size to 32 × 32. Moving on, the second convolutional layer and
pooling layer use 64 filters, resulting in a feature map size of 16 × 16. The 3D feature maps
are then flattened to facilitate feature classification. To prevent overfitting, a dense hidden
layer and an output layer are added, enabling multi-classification into 60 categories. For the
experiments using the Mal60 dataset, the model classifies 60 types of malware. In the case
of Malimg, the classification is adjusted to 25 types. To calculate the number of parameters
in the model, the first convolutional layer with 32 filters has 320 parameters. The second
convolutional layer with 64 filters contributes 18,496 parameters. Flattening the feature
maps and connecting them with 100 neurons results in 1,638,500 parameters. The total
number of parameters in the model sums up to 1,663,376.

5. Experiment
5.1. Experimental Data

The proposed model was validated using three datasets. The first dataset is the
Malimg dataset [33], which was also utilized in previous studies by Kamundala and
Kim [34], AlGarni et al. [35], Go et al. [36], and Bhodia et al. [37]. The second dataset used is
the Mal60 dataset [38], as studied by Kang and Kim [39]. The last dataset was VXHeaven’s
2010 virus collection dataset [40].

The Malimg dataset used in malware imaging research is categorized into 25 families.
The dataset comprises a total of 9458 malware samples. However, for the purpose of this
paper, which focuses on classification with a limited number of samples, only 20 sam-
ples were randomly selected from each family, resulting in a total of 500 samples in the
composed dataset.

The Mal60 dataset used in this research is classified into 60 families, each containing
a total of 20 malware samples, resulting in a dataset size of 1200 samples. Notably, each
family represents a unique category of malware. In some cases, different security companies
may assign different names to the same family of malware based on their naming criteria.
However, despite these naming differences, the code samples are classified under the same
group as they exhibit similar malicious behavior or characteristics. Additionally, certain
malware samples in Kaspersky and Bitdefender products may have diagnosis names
that cannot be confirmed or are classified as heuristic diagnosis names. Specifically, two
examples of such samples are identified as belonging to the Akdoor and Rifdoor families,
targeting specific areas.

The VXHeaven dataset comprises 270 k malware executable files, but it does not
include malware family information. To determine the family of each sample in the
VXHeaven dataset, we added family labels through Virustotal [41], a malware analysis
site. When a suspected malware file is uploaded to Virustotal, the site analyzes it for family
prediction using various antivirus engines. The malware family label is assigned based on
the results obtained from the Microsoft Antivirus engine.

A total of 70% of each dataset is used for training, and the remaining 30% for testing.

5.2. Experiment Environment

The proposed system underwent testing by dividing it into two stages: the imaging
stage and the data generation stage. In the imaging stage, the detection performance
was measured for each image size and correction method. Additionally, in the data
generation stage, data was generated, and the detection performance of the generated
data was measured.

To ensure a robust and efficient experimental environment, the experiments were
conducted using Google Colaboratory’s GPU environment, which helped overcome the
limitations of local environments and enabled consistent research in the same environment.
The hardware environment and experimental setup used for learning and implementing
the model are summarized in Table 2.

Appl. Sci. 2023, 13, 10196 12 of 21

Table 2. Experiment environment.

Experimental Elements Element Value

Local System

CPU Intel® Core™ i5-12500 3.00 GHz
Memory 32 GB

Main Storage Samsung SSD 256 G
Support Storage Seagate HDD 1 TB

Google Colaboratory

Engine Python 3 Google Compute Engine
RAM 13 GB

CPU type NVIDIA T4
GPU RAM 15 GB

Storage 78.2 GB

Model Learning
DCGAN epochs 20,000

CNN epochs 200
Batch size 128

5.3. Experimental Setup of Imaging

The experimental procedure, as depicted in Figure 11, involves the following steps:
Step 1. Data Preparation: The training data and test data are adjusted to create nine different
cases based on the image size (32 × 32, 64 × 64, 128 × 128) and interpolation method
(nearest neighbor, bilinear, and bicubic).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 21

stage, data was generated, and the detection performance of the generated data was meas-

ured.

To ensure a robust and efficient experimental environment, the experiments were

conducted using Google Colaboratory’s GPU environment, which helped overcome the

limitations of local environments and enabled consistent research in the same environ-

ment. The hardware environment and experimental setup used for learning and imple-

menting the model are summarized in Table 2.

Table 2. Experiment environment.

Experimental Elements Element Value

Local System

CPU Intel® Core™ i5-12500 3.00 GHz

Memory 32 GB

Main Storage Samsung SSD 256 G

Support Storage Seagate HDD 1 TB

Google Colaboratory

Engine Python 3 Google Compute Engine

RAM 13 GB

CPU type NVIDIA T4

GPU RAM 15 GB

Storage 78.2 GB

Model Learning

DCGAN epochs 20,000

CNN epochs 200

Batch size 128

5.3. Experimental Setup of Imaging

The experimental procedure, as depicted in Figure 11, involves the following steps:

Step 1. Data Preparation: The training data and test data are adjusted to create nine differ-

ent cases based on the image size (32 × 32, 64 × 64, 128 × 128) and interpolation method

(nearest neighbor, bilinear, and bicubic).

Figure 11. Experimental process of imaging.

Step 2. Model Training: The adjusted training data is used to train a CNN-based deep

learning model. As a result, nine different models are generated, each corresponding to a

specific combination of image size and interpolation method. During the training process,

a batch size of 128 is used, and the learning is repeated for 200 epochs.

Step 3. Model Evaluation: Evaluation of the models is performed separately for each

image size. First, a sample image is tested to verify the model’s performance. Then, the

test is conducted using malware samples. By following this experimental procedure, we

can assess the detection performance of the CNN-based models under various settings,

such as different image sizes and interpolation methods.

Figure 11. Experimental process of imaging.

Step 2. Model Training: The adjusted training data is used to train a CNN-based deep
learning model. As a result, nine different models are generated, each corresponding to a
specific combination of image size and interpolation method. During the training process,
a batch size of 128 is used, and the learning is repeated for 200 epochs.

Step 3. Model Evaluation: Evaluation of the models is performed separately for each
image size. First, a sample image is tested to verify the model’s performance. Then, the test
is conducted using malware samples. By following this experimental procedure, we can
assess the detection performance of the CNN-based models under various settings, such as
different image sizes and interpolation methods.

5.4. Experimental Setup of Data Augmentation through Generative Adversarial Networks

The experimental procedure is shown in Figure 12. The image required for the ex-
periment determines the size and correction method based on the results of the imaging
experiment. Therefore, the experiment is conducted using a 64 × 64 size image with good
performance results, corrected by the bilinear method. The experiment proceeds in two
stages. The first step involves the similarity evaluation for fake images generated using
GAN. Step 2 is the CNN performance evaluation for both existing data and generated data.

Appl. Sci. 2023, 13, 10196 13 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21

5.4. Experimental Setup of Data Augmentation through Generative Adversarial Networks

The experimental procedure is shown in Figure 12. The image required for the exper-

iment determines the size and correction method based on the results of the imaging ex-

periment. Therefore, the experiment is conducted using a 64 × 64 size image with good

performance results, corrected by the bilinear method. The experiment proceeds in two

stages. The first step involves the similarity evaluation for fake images generated using

GAN. Step 2 is the CNN performance evaluation for both existing data and generated

data.

Figure 12. Data generation experiment process.

Step 1 involves creating a new image using DCGAN. The image created in the pre-

processing process has a size of 64 × 64 pixels, and the image generated by DCGAN is also

64 × 64 pixels. The time taken to create the image increases with higher resolution. The

evaluation assesses the similarity between the real and generated images, using factors

such as FID (Fréchet Inception Distance) and the cross-correlation coefficient. Addition-

ally, the loss value is checked to ensure that mode collapses are minimized during crea-

tion. The batch size was set to 128, and the learning process was repeated 20,000 times.

In the second step, the detection performance of the generated images and the exist-

ing images, which are the results of the first step, is measured. The detection process uses

the same CNN model as used in the imaging experiment. The experiment evaluates the

detection performance of the generated images. The training and test images are classified

in a ratio of 8:2. Evaluation factors include precision, recall, f1-score, and accuracy. The

batch size is set to 128, and the learning process is repeated 200 times.

6. Performance Evaluation

6.1. Performance Evaluation of Imaging

When a malicious code file is expressed as an image, the width or length of the image

is usually fixed to a certain size. Since the file size of the malicious code is different, the

size of the converted image also appears in various ways. Figure 13 shows only a portion

of the results of converting malicious code into an image. Malicious code images are con-

verted into images with a fixed length. In other words, it can be seen that Adialer.C mal-

ware is the largest. And Agent.FYI malware has the smallest size.

Figure 13. Sample images from the Malimg dataset. (a) Adialer.C, (b) Agent.FYI, (c) Allaple.A, and

(d) Allaple.L.

Figure 12. Data generation experiment process.

Step 1 involves creating a new image using DCGAN. The image created in the prepro-
cessing process has a size of 64 × 64 pixels, and the image generated by DCGAN is also
64 × 64 pixels. The time taken to create the image increases with higher resolution. The
evaluation assesses the similarity between the real and generated images, using factors
such as FID (Fréchet Inception Distance) and the cross-correlation coefficient. Additionally,
the loss value is checked to ensure that mode collapses are minimized during creation. The
batch size was set to 128, and the learning process was repeated 20,000 times.

In the second step, the detection performance of the generated images and the existing
images, which are the results of the first step, is measured. The detection process uses
the same CNN model as used in the imaging experiment. The experiment evaluates the
detection performance of the generated images. The training and test images are classified
in a ratio of 8:2. Evaluation factors include precision, recall, f1-score, and accuracy. The
batch size is set to 128, and the learning process is repeated 200 times.

6. Performance Evaluation
6.1. Performance Evaluation of Imaging

When a malicious code file is expressed as an image, the width or length of the image
is usually fixed to a certain size. Since the file size of the malicious code is different, the size
of the converted image also appears in various ways. Figure 13 shows only a portion of the
results of converting malicious code into an image. Malicious code images are converted
into images with a fixed length. In other words, it can be seen that Adialer.C malware is
the largest. And Agent.FYI malware has the smallest size.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21

5.4. Experimental Setup of Data Augmentation through Generative Adversarial Networks

The experimental procedure is shown in Figure 12. The image required for the exper-

iment determines the size and correction method based on the results of the imaging ex-

periment. Therefore, the experiment is conducted using a 64 × 64 size image with good

performance results, corrected by the bilinear method. The experiment proceeds in two

stages. The first step involves the similarity evaluation for fake images generated using

GAN. Step 2 is the CNN performance evaluation for both existing data and generated

data.

Figure 12. Data generation experiment process.

Step 1 involves creating a new image using DCGAN. The image created in the pre-

processing process has a size of 64 × 64 pixels, and the image generated by DCGAN is also

64 × 64 pixels. The time taken to create the image increases with higher resolution. The

evaluation assesses the similarity between the real and generated images, using factors

such as FID (Fréchet Inception Distance) and the cross-correlation coefficient. Addition-

ally, the loss value is checked to ensure that mode collapses are minimized during crea-

tion. The batch size was set to 128, and the learning process was repeated 20,000 times.

In the second step, the detection performance of the generated images and the exist-

ing images, which are the results of the first step, is measured. The detection process uses

the same CNN model as used in the imaging experiment. The experiment evaluates the

detection performance of the generated images. The training and test images are classified

in a ratio of 8:2. Evaluation factors include precision, recall, f1-score, and accuracy. The

batch size is set to 128, and the learning process is repeated 200 times.

6. Performance Evaluation

6.1. Performance Evaluation of Imaging

When a malicious code file is expressed as an image, the width or length of the image

is usually fixed to a certain size. Since the file size of the malicious code is different, the

size of the converted image also appears in various ways. Figure 13 shows only a portion

of the results of converting malicious code into an image. Malicious code images are con-

verted into images with a fixed length. In other words, it can be seen that Adialer.C mal-

ware is the largest. And Agent.FYI malware has the smallest size.

Figure 13. Sample images from the Malimg dataset. (a) Adialer.C, (b) Agent.FYI, (c) Allaple.A, and

(d) Allaple.L.

Figure 13. Sample images from the Malimg dataset. (a) Adialer.C, (b) Agent.FYI, (c) Allaple.A, and
(d) Allaple.L.

For training purposes, all images utilized as inputs for the deep learning model need
to share the same dimensions. Consequently, the malicious code images are transformed
to a predetermined size. During this process, interpolation is employed to adjust the
size while preserving the image’s characteristics to the greatest extent possible. Nearest
neighbor, bilinear, and bicubic techniques are employed for image refinement. Nearest
neighbor, although simple and swift, sacrifices visual quality, resulting in jagged edges,
particularly during magnification. This technique is straightforward to implement and
comprehend, suitable when prioritizing speed and accepting some degree of quality loss.

Appl. Sci. 2023, 13, 10196 14 of 21

The bilinear technique yields smoother outcomes but may lack sharpness, potentially lead-
ing to slightly blurred edges. It is slower than nearest neighbor but remains a fast method,
delivering superior quality compared to the former and serving well for general-purpose
scaling. On the other hand, the bicubic technique affords the highest quality but comes
with increased computational complexity. This involves intricate calculations, typically
considering 16 adjacent pixels. Bicubic produces considerably smoother images than bi-
linear and is the preferred choice for high-quality resizing, especially when maintaining
sharpness is crucial.

Table 3 showcases the results of time measurements required for image conversion.
The time needed was gauged with respect to each interpolation method. A total of 2210 mal-
ware images were utilized for time assessment, with time measured in seconds. The results
of the measurements were presented with two decimal places. The outcomes illustrate
that computation time diminishes in the sequence of nearest neighbor, bilinear, and bicu-
bic techniques.

Table 3. Time required for each interpolation method.

Nearest Neighbor Bilinear Bicubic

32 × 32 5.03 5.50 6.37
64 × 64 20.11 22.02 25.47

128 × 128 80.44 88.08 101.88

Table 4 present the f1-score results for imaging. Overall, the detection performance
is relatively better when bilinear or bicubic interpolation methods are applied than when
nearest neighbor is used. Additionally, the larger the size of the image, the better the
detection performance. However, selecting the optimal interpolation method and image
size to be applied to the model should not be solely based on detection performance. It
is essential to consider other factors, such as computation requirements. As the size of
the image increases, the amount of computation also increases, with bilinear and bicubic
methods requiring more computation than nearest neighbor. Therefore, depending on
the type of service to be implemented, the interpolation method and image size must be
selected, taking into consideration both detection performance and processing time. In
this paper, a data generation experiment was conducted using 64 × 64 size images and the
bilinear interpolation method. The average accuracy of the entire experiment was 98.2%,
the average precision was 96.5%, and the average recall was 97.5%.

Table 4. F1-score analysis results.

Nearest Neighbor Bilinear Bicubic

32 × 32 0.9254 0.9799 0.9784
64 × 64 0.9766 0.9763 0.9762

128 × 128 0.9899 0.9971 0.9948
Mean of f1-score 0.9654 0.9872 0.9855

Figures 14–16 are some of the results of creating an image and adjusting its size using
a correction method.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Figure 14. Sample image from Mal60 dataset. (a) Abnores, (b) Adposhel, (c) Akdoor, (d) CRyptXXX,

and (e) Downloader.

Figure 15. Sample image from Malimg dataset. (a) Adialer.C, (b) Agent.FYI, (c) Allaple.A, (d) Al-

laple.L, and (e) Alueron.gen!J.

Figure 16. Sample image from VXHeavens dataset. (a) C2Lop.A, (b) Helpud.A, (c) Treemz.gen!A,

(d) Seimon.D, and (e) Storark.A.

6.2. Performance Evaluation for Data Generation

For data generation, training was performed with 20,000 epochs, and this study was

repeated four times. Figure 17 shows the progression of fake images generated from the

generative network during the learning process. Figure 17a represents the real image of

the Abnores type among malware. Subsequent images, Figure 17b–d, depict the results at

1000, 10,000, and 20,000 epochs, respectively.

Figure 17. Fake image according to epochs.

At 1000 epochs, the generated fake images lack proper features and exhibit a notice-

able presence of different noise patterns compared to the real images. As training pro-

gresses to 10,000 epochs, the ambient noise in the generated images starts to somewhat

Figure 14. Sample image from Mal60 dataset. (a) Abnores, (b) Adposhel, (c) Akdoor, (d) CRyptXXX,
and (e) Downloader.

Appl. Sci. 2023, 13, 10196 15 of 21

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Figure 14. Sample image from Mal60 dataset. (a) Abnores, (b) Adposhel, (c) Akdoor, (d) CRyptXXX,

and (e) Downloader.

Figure 15. Sample image from Malimg dataset. (a) Adialer.C, (b) Agent.FYI, (c) Allaple.A, (d) Al-

laple.L, and (e) Alueron.gen!J.

Figure 16. Sample image from VXHeavens dataset. (a) C2Lop.A, (b) Helpud.A, (c) Treemz.gen!A,

(d) Seimon.D, and (e) Storark.A.

6.2. Performance Evaluation for Data Generation

For data generation, training was performed with 20,000 epochs, and this study was

repeated four times. Figure 17 shows the progression of fake images generated from the

generative network during the learning process. Figure 17a represents the real image of

the Abnores type among malware. Subsequent images, Figure 17b–d, depict the results at

1000, 10,000, and 20,000 epochs, respectively.

Figure 17. Fake image according to epochs.

At 1000 epochs, the generated fake images lack proper features and exhibit a notice-

able presence of different noise patterns compared to the real images. As training pro-

gresses to 10,000 epochs, the ambient noise in the generated images starts to somewhat

Figure 15. Sample image from Malimg dataset. (a) Adialer.C, (b) Agent.FYI, (c) Allaple.A, (d) Al-
laple.L, and (e) Alueron.gen!J.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Figure 14. Sample image from Mal60 dataset. (a) Abnores, (b) Adposhel, (c) Akdoor, (d) CRyptXXX,

and (e) Downloader.

Figure 15. Sample image from Malimg dataset. (a) Adialer.C, (b) Agent.FYI, (c) Allaple.A, (d) Al-

laple.L, and (e) Alueron.gen!J.

Figure 16. Sample image from VXHeavens dataset. (a) C2Lop.A, (b) Helpud.A, (c) Treemz.gen!A,

(d) Seimon.D, and (e) Storark.A.

6.2. Performance Evaluation for Data Generation

For data generation, training was performed with 20,000 epochs, and this study was

repeated four times. Figure 17 shows the progression of fake images generated from the

generative network during the learning process. Figure 17a represents the real image of

the Abnores type among malware. Subsequent images, Figure 17b–d, depict the results at

1000, 10,000, and 20,000 epochs, respectively.

Figure 17. Fake image according to epochs.

At 1000 epochs, the generated fake images lack proper features and exhibit a notice-

able presence of different noise patterns compared to the real images. As training pro-

gresses to 10,000 epochs, the ambient noise in the generated images starts to somewhat

Figure 16. Sample image from VXHeavens dataset. (a) C2Lop.A, (b) Helpud.A, (c) Treemz.gen!A,
(d) Seimon.D, and (e) Storark.A.

6.2. Performance Evaluation for Data Generation

For data generation, training was performed with 20,000 epochs, and this study was
repeated four times. Figure 17 shows the progression of fake images generated from the
generative network during the learning process. Figure 17a represents the real image of the
Abnores type among malware. Subsequent images, Figure 17b–d, depict the results at 1000,
10,000, and 20,000 epochs, respectively.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 21

Figure 14. Sample image from Mal60 dataset. (a) Abnores, (b) Adposhel, (c) Akdoor, (d) CRyptXXX,

and (e) Downloader.

Figure 15. Sample image from Malimg dataset. (a) Adialer.C, (b) Agent.FYI, (c) Allaple.A, (d) Al-

laple.L, and (e) Alueron.gen!J.

Figure 16. Sample image from VXHeavens dataset. (a) C2Lop.A, (b) Helpud.A, (c) Treemz.gen!A,

(d) Seimon.D, and (e) Storark.A.

6.2. Performance Evaluation for Data Generation

For data generation, training was performed with 20,000 epochs, and this study was

repeated four times. Figure 17 shows the progression of fake images generated from the

generative network during the learning process. Figure 17a represents the real image of

the Abnores type among malware. Subsequent images, Figure 17b–d, depict the results at

1000, 10,000, and 20,000 epochs, respectively.

Figure 17. Fake image according to epochs.

At 1000 epochs, the generated fake images lack proper features and exhibit a notice-

able presence of different noise patterns compared to the real images. As training pro-

gresses to 10,000 epochs, the ambient noise in the generated images starts to somewhat

Figure 17. Fake image according to epochs.

At 1000 epochs, the generated fake images lack proper features and exhibit a noticeable
presence of different noise patterns compared to the real images. As training progresses to
10,000 epochs, the ambient noise in the generated images starts to somewhat resemble the
real images. Finally, at 20,000 epochs, we can observe a significant improvement, with the
generated images exhibiting a closer resemblance to the real images. This iterative learning
process demonstrates that with sufficient training, the generative model can achieve images
that are more similar to the real ones.

Figure 18 depicts the loss values of the generator and discriminator during the data
generation process. In both the first and second experiments, we observe that the generator
loss value stabilizes around 3000 epochs. This indicates that the model is progressing
without experiencing mode collapse during the generation of data. Mode collapse occurs
when the generator fails to produce diverse samples and is stuck generating only a limited
set of outputs. The stable loss values suggest that the training process is robust, ensuring

Appl. Sci. 2023, 13, 10196 16 of 21

that the generator continues to generate diverse and meaningful data throughout the epochs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 21

resemble the real images. Finally, at 20,000 epochs, we can observe a significant improve-

ment, with the generated images exhibiting a closer resemblance to the real images. This

iterative learning process demonstrates that with sufficient training, the generative model

can achieve images that are more similar to the real ones.

Figure 18 depicts the loss values of the generator and discriminator during the data

generation process. In both the first and second experiments, we observe that the genera-

tor loss value stabilizes around 3000 epochs. This indicates that the model is progressing

without experiencing mode collapse during the generation of data. Mode collapse occurs

when the generator fails to produce diverse samples and is stuck generating only a limited

set of outputs. The stable loss values suggest that the training process is robust, ensuring

that the generator continues to generate diverse and meaningful data throughout the

epochs.

Figure 18. Loss value of generative model.

Table 5 presents the FID and cross-correlation values for each count. A smaller FID

value indicates that the model generates data more similar to the original data. The aver-

age FID index obtained is 5.4603, which suggests that the generated data is relatively sim-

ilar to the original data. Additionally, the average correlation coefficient is 0.8898, indicat-

ing a high degree of similarity between the original data and the generated data. These

results, along with the FID, demonstrate that the generative model has successfully pro-

duced data that closely resembles the characteristics of the original data.

Table 5. FID and cross-correlation for each count.

Count FID Cross-Correlation

1 1.6798 0.9845

2 8.2314 0.7722

3 0.7558 0.9513

4 11.1742 0.8512

Average 5.4603 0.8898

Figure 18. Loss value of generative model.

Table 5 presents the FID and cross-correlation values for each count. A smaller FID
value indicates that the model generates data more similar to the original data. The average
FID index obtained is 5.4603, which suggests that the generated data is relatively similar to
the original data. Additionally, the average correlation coefficient is 0.8898, indicating a
high degree of similarity between the original data and the generated data. These results,
along with the FID, demonstrate that the generative model has successfully produced data
that closely resembles the characteristics of the original data.

Table 5. FID and cross-correlation for each count.

Count FID Cross-Correlation

1 1.6798 0.9845
2 8.2314 0.7722
3 0.7558 0.9513
4 11.1742 0.8512

Average 5.4603 0.8898

6.3. Detection Performance Evaluation of Generated Data

CNN was used to verify the usability of the data generated using the generative model.
Training was conducted by constructing generated images and noise images. The test for
verification consisted of images not used in the generative model, generated images, and
noise images. The CNN model for learning the generated image used the same model as
Figure 11. This is the same model that tested the detection performance of the image size.

The model’s performance is presented in Table 6, using evaluation indices such as
accuracy, precision, recall, and f1-score. The training results demonstrate high performance,
achieving an accuracy of approximately 0.98, a precision of 0.94, a recall of 0.96, and an
f1-score value of 0.95 when training was conducted solely with generated images. However,
the detection performance using the test set appears to be relatively lower. This can be

Appl. Sci. 2023, 13, 10196 17 of 21

attributed to the fact that the model was well-trained to distinguish the characteristics of
the images during the training stage. Moreover, the inclusion of both malware and normal
images in the practice may lead to slightly lower performance for detecting normal images.
Nevertheless, the overall training results indicate promising performance, showcasing the
model’s ability to accurately classify and distinguish between different image types.

Table 6. Performance comparison results.

Accuracy Precision Recall F1-Score

performance on
the training set 0.989957 0.955587 0.968748 0.968128

performance on
the test set 0.968812 0.917035 0.927126 0.923067

Table 7 presents the results of the comparison with other models. It has been observed
that the accuracy of our model surpasses that of previous studies. While precision, recall,
and f1-score were only available in certain studies, our model still exhibited superior
performance compared to the previous approaches.

Table 7. Performance comparison with existing research.

Model Accuracy Precision Recall F1-Score

Proposed model 0.973134 0.930811 0.942937 0.940597
L. Nataraj et al., 2011 [22] 0.8397 - - -

Seok S.H. & Kim H., 2016 [23] 0.962 0.917158 0.921102 0.919126
M. Shafiq et al., 2009 [26] 0.96 - - -

Anderson H.S. & Roth P., 2018 [27] 0.9299 - - -
H. Aghakhani et al., 2020 [28] 0.92 - - 0.92
Saxe, J. & Berlin K., 2015 [29] 0.995785 - - -

E. Raff et al., 2017 [30] 0.826 - - -

The proposed model offers several distinct advantages over simulation in a digital
twin environment. First, it demonstrates the ability to effectively detect new malware that
did not exist before and combat new threats. Second, the detection model is trained without
separate pre-work for the detection model. Unlike previous studies, our model simplifies
the overall workflow by eliminating the need for feature extraction via specific filters or
APIs. Third, it simplifies and streamlines the process by eliminating the requirement to
directly run the model in a separate sandbox.

Leveraging these advantages, our proposed model represents a significant advance in
malware detection, providing a more streamlined and robust approach compared to exist-
ing methods in the field. Simulation results of the digital twin environment demonstrate the
robustness and effectiveness of the proposed model in protecting against evolving threats.

7. Discussion

In this paper, we present an innovative intelligent detection technology that leverages
generative neural networks within a digital twin-based Industrial Internet of Things (IIoT)
environment. Moreover, we propose a novel method for detecting malware solely based on
images of the malware using convolutional neural networks (CNN), which is a powerful
technique employing deep neural networks.

Three different datasets were used to test the performance of the proposed system.
The performance of the system was measured in three stages. First, in the imaging stage,
the detection performance of the 64 × 64 bilinear technique was the best. Second, a new
malware image was created using the image interpolation method and size determined in
the previous experiment, and similarity with the original images was measured. As a result
of the measurement, the FID index was 5.4403 and the correlation coefficient was 0.8698,
confirming high similarity. Third, the malware detection performance using the generated

Appl. Sci. 2023, 13, 10196 18 of 21

malware image was measured. The performance measurement result was detected with an
accuracy of 0.97, and was measured with a precision of 0.93, a recall of 0.94, and an f1-score
of 0.94. This confirmed a higher level of performance than previous studies.

The proposed system does not analyze the data collected in the IIoT environment on
the user’s system. Instead, it utilizes the digital twin to analyze malware in the digital space.
As a result, it does not adversely affect the actual system, providing a safer and more secure
analysis environment. Additionally, the system offers the advantage of quick initialization
if any problem occurs in the digital space. By converting malware into images that reflect
their characteristics, the proposed system eliminates the need to execute or directly analyze
the code, minimizing potential risks. Leveraging generative adversarial networks allows
for the generation of synthetic malware, which enhances the efficiency of the analysis
process. The unpredictable nature of when and in what form malware will emerge poses
a challenge for traditional detection methods. However, in the digital twin environment,
the proposed system can quickly respond to new forms of malware by generating and
analyzing them based on existing malware. This adaptability and responsiveness make the
system well-suited for addressing emerging threats in the digital space.

The table provided below (Table 8) illustrates the datasets that will be contrasted with
the research findings presented in Table 7. In this paper, the Mal60 dataset, the Malimg
dataset and the VXHeaven dataset were employed. To enable an objective comparison
of studies, we utilized datasets from prior research. The datasets from earlier studies
predominantly comprise data made available from 2010 to 2015.

Table 8. Dataset status of research for performance comparison.

Model Dataset

L. Nataraj et al., 2011 [22]
Host-Rx reference dataset

Malhuer dataset
VX Heavens virus collection

Seok S.H. & Kim H., 2016 [23]
Microsoft Malware Classification Challenge

VX Heavens virus collection

M. Shafiq et al., 2009 [26] VX Heavens virus collection
Malfease dataset

Anderson H.S. & Roth P., 2018 [27]
VX Heavens virus collection

Malfease dataset

H. Aghakhani et al., 2020 [28] A commercial anti-malware vendor provided executables
EMBER dataset

Saxe, J. & Berlin K., 2015 [29] Invincea’s own computer systems and customers
networks

E. Raff et al., 2017 [30] Provided by an anti-virus industry partner

This study has certain limitations. During the image downsizing process aimed at
reducing computational complexity, some intricate characteristics of the malicious code
may diminish. Detection can be influenced by various factors such as the chosen image
interpolation method, image size, and the aspect ratio of image width and height. Addi-
tionally, accuracy can be compromised when the flows and patterns of malicious codes
exhibit similarity only in minute sections. Moreover, augmenting the model’s reliability
necessitates training it with a contemporary and comprehensive dataset.

8. Conclusions

Research efforts persist in the realm of malicious code detection. Prior investigations
have involved feature extraction through methods like image conversion or direct analysis
of PE files for malicious code detection. Conversely, the exploration of techniques for
real-time detection within virtual machines has also been pursued. Notably, there has been
a surge in research centered on detection through machine learning technologies. Nonethe-

Appl. Sci. 2023, 13, 10196 19 of 21

less, the extraction of feature points constitutes an additional requisite step. Furthermore,
the analysis conducted within a user’s system might potentially trigger system-related
issues, thus presenting a drawback. Machine learning, by its nature, necessitates substantial
volumes of data.

Therefore, in this study, an intelligent detection technology was introduced within
a digital twin environment that replicates the real-world scenario digitally. By operating
within a separate space from the actual system, this approach ensures no impact on the
genuine system. Moreover, even in the event of an issue, swift reinitialization is feasible.
Among the techniques harnessing deep neural networks for detection, convolutional neural
networks (CNN) are utilized to identify malicious code solely using images of such code.
Additionally, generative neural networks were employed to augment insufficient malicious
code data or generate new instances of malicious code data. A comparison was conducted
against seven models from previous studies. The results indicated that the proposed system
achieved an f1-score of 0.94, showcasing the effectiveness of the proposed approach. The
system exhibited a slightly favorable performance outcome.

In the future, our research will focus on developing technologies capable of surmount-
ing and rectifying the aforementioned limitations. In pursuit of this objective, we will
analyze the correspondence between the technique of categorizing malicious code by its
function and representing it through intricate images, and the disassembly code associated
with each function. Furthermore, we will explore methods to avert the loss of intricate
features during image correction. Additionally, we plan to undertake supplementary
investigations that encompass other factors, including the horizontal and vertical ratios
of images.

Author Contributions: Conceptualization and methodology, H.-J.C., H.-K.Y., Y.-J.S. and A.R.K.;
validation, Y.-J.S. and A.R.K.; formal analysis, H.-J.C. and H.-K.Y.; resources, H.-K.Y.; supervision,
Y.-J.S. and A.R.K.; writing—original draft preparation, H.-J.C.; writing—review and editing, H.-K.Y.,
Y.-J.S. and A.R.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
Innovative Human Resource Development for Local Intellectualization support program (IITP-2023-
RS-2022-00156334) supervised by the IITP (Institute for Information & communications Technology
Planning & Evaluation).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Peter, O.; Pradhan, A.; Mbohwa, C. Industrial internet of things (IIoT): Opportunities, challenges, and requirements in manufac-

turing businesses in emerging economies. Procedia Comput. Sci. 2023, 217, 856–865. [CrossRef]
2. Sobb, T.; Turnbull, B.; Moustafa, N.; Sobb, T.; Turnbull, B.; Moustafa, N. Supply chain 4.0: A survey of cyber security challenges,

solutions and future directions. Electronics 2020, 9, 1864. [CrossRef]
3. Vaza, R.N.; Prajapati, R.; Rathod, D.; Vaghela, D. Developing a novel methodology for virtual machine introspection to classify

unknown malware functions. Peer-to-Peer Netw. Appl. 2022, 15, 793–810. [CrossRef]
4. Vasan, D.; Alazab, M.; Wassan, S.; Safaei, B.; Zheng, Q. Image-Based malware classification using ensemble of CNN architectures

(IMCEC). Comput. Secur. 2020, 92, 101748. [CrossRef]
5. Shaukat, K.; Luo, S.; Varadharajan, V. A novel deep learning-based approach for malware detection. Eng. Appl. Artif. Intell. 2023,

122, 106030. [CrossRef]
6. Shorten, C.; Khoshgoftaar, T.M. A survey on image data augmentation for deep learning. J. Big Data 2019, 6, 60. [CrossRef]
7. Berg, S.; Kutra, D.; Kroeger, T.; Straehle, C.N.; Kausler, B.X.; Haubold, C.; Schiegg, M.; Ales, J.; Beier, T.; Rudy, M. Ilastik:

Interactive machine learning for (bio) image analysis. Nat. Methods 2019, 16, 1226–1232. [CrossRef]
8. Grieves, M. Digital Twin Certified: Employing Virtual Testing of Digital Twins in Manufacturing to Ensure Quality Products.

Machines 2023, 11, 808. [CrossRef]

https://doi.org/10.1016/j.procs.2022.12.282
https://doi.org/10.3390/electronics9111864
https://doi.org/10.1007/s12083-021-01281-5
https://doi.org/10.1016/j.cose.2020.101748
https://doi.org/10.1016/j.engappai.2023.106030
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1038/s41592-019-0582-9
https://doi.org/10.3390/machines11080808

Appl. Sci. 2023, 13, 10196 20 of 21

9. Wu, J.; Yang, Y.; Cheng, X.; Zuo, H.; Cheng, Z. The development of digital twin technology review. In Proceedings of the 2020
Chinese Automation Congress (CAC), Shanghai, China, 6–8 November 2020; pp. 4901–4906. [CrossRef]

10. Lo, C.; Chen, C.; Zhong, R.Y. A review of digital twin in product design and development. Adv. Eng. Inform. 2021, 48, 101297.
[CrossRef]

11. Rasheed, A.; San, O.; Kvamsdal, T. Digital twin: Values, challenges and enablers from a modeling perspective. IEEE Access 2020,
8, 21980–22012. [CrossRef]

12. Aboaoja, F.A.; Zainal, A.; Ghaleb, F.A.; Al-rimy, B.A.S.; Eisa, T.A.E.; Elnour, A.A.H. Malware detection issues, challenges, and
future directions: A survey. Appl. Sci. 2022, 12, 8482. [CrossRef]

13. Bayazit, E.C.; Sahingoz, O.K.; Dogan, B. Neural network based Android malware detection with different IP coding methods. In
Proceedings of the 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications
(HORA), Ankara, Turkey, 11–13 June 2021; pp. 1–6. [CrossRef]

14. Bansal, M.; Goyal, A.; Choudhary, A. A comparative analysis of K-nearest neighbor, genetic, support vector machine, decision
tree, and long short term memory algorithms in machine learning. Decis. Anal. J. 2022, 3, 100071. [CrossRef]

15. Zheng, H.; Fu, J.; Zha, Z.-J.; Luo, J. Learning deep bilinear transformation for fine-grained image representation. In Proceedings
of the 33rd International Conference on Neural Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

16. Khaledyan, D.; Amirany, A.; Jafari, K.; Moaiyeri, M.H.; Khuzani, A.Z.; Mashhadi, N. Low-cost implementation of bilinear
and bicubic image interpolation for real-time image super-resolution. In Proceedings of the 2020 IEEE Global Humanitarian
Technology Conference (GHTC), Seattle, WA, USA, 29 October–1 November 2020; pp. 1–5. [CrossRef]

17. Creswell, A.; White, T.; Dumoulin, V.; Arulkumaran, K.; Sengupta, B.; Bharath, A.A. Generative adversarial networks: An
overview. IEEE Signal Process. Mag. 2018, 35, 53–65. [CrossRef]

18. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
networks. Commun. ACM 2020, 63, 139–144. [CrossRef]

19. Goodfellow, I. Nips 2016 tutorial: Generative adversarial networks. arXiv 2016. [CrossRef]
20. Pokhrel, A.; Katta, V.; Colomo-Palacios, R. Digital twin for cybersecurity incident prediction: A multivocal literature review. In

Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops, Seoul, Republic of Korea, 27
June–19 July 2020; pp. 671–678. [CrossRef]

21. Eckhart, M.; Ekelhart, A. Digital twins for cyber-physical systems security: State of the art and outlook. In Security and Quality in
Cyber-Physical Systems Engineering: With Forewords by Robert M. Lee and Tom Gilb; Springer: Cham, Switzerland, 2019; pp. 383–412.
[CrossRef]

22. Nataraj, L.; Yegneswaran, V.; Porras, P.; Zhang, J. A comparative assessment of malware classification using binary texture
analysis and dynamic analysis. In Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, Chicago, IL,
USA, 21 October 2011; pp. 21–30. [CrossRef]

23. Seok, S.; Kim, H. Visualized Malware Classification Based-on Convolutional Neural Network. J. Korea Inst. Inf. Secur. Cryptol.
2016, 26, 197–208. [CrossRef]

24. Atitallah, S.B.; Driss, M.; Almomani, I. A novel detection and multi-classification approach for IoT-malware using random forest
voting of fine-tuning convolutional neural networks. Sensors 2022, 22, 4302. [CrossRef] [PubMed]

25. Gibert, D.; Mateu, C.; Planes, J.; Vicens, R. Using convolutional neural networks for classification of malware represented as
images. J. Comput. Virol. Hacking Tech. 2019, 15, 15–28. [CrossRef]

26. Shafiq, M.Z.; Tabish, S.M.; Mirza, F.; Farooq, M. Pe-miner: Mining structural information to detect malicious executables in
realtime. In Recent Advances in Intrusion Detection: 12th International Symposium, RAID 2009, Saint-Malo, France, September 23–25,
2009, Proceedings; Springer: Berlin/Heidelberg, Germany, 2009; pp. 121–141. [CrossRef]

27. Anderson, H.S.; Roth, P. Ember: An open dataset for training static pe malware machine learning models. arXiv 2018. [CrossRef]
28. Aghakhani, H.; Gritti, F.; Mecca, F.; Lindorfer, M.; Ortolani, S.; Balzarotti, D.; Vigna, G.; Kruegel, C. When malware is packin’heat;

limits of machine learning classifiers based on static analysis features. In Proceedings of the Network and Distributed Systems
Security (NDSS) Symposium 2020, San Diego, CA, USA, 23–26 February 2020. [CrossRef]

29. Saxe, J.; Berlin, K. Deep neural network based malware detection using two dimensional binary program features. In Proceedings
of the 2015 10th International Conference on Malicious and Unwanted Software (MALWARE), Fajardo, PR, USA, 20–22 October
2015; pp. 11–20. [CrossRef]

30. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; Nicholas, C. Malware detection by eating a whole exe. arXiv 2017.
[CrossRef]

31. Kalash, M.; Rochan, M.; Mohammed, N.; Bruce, N.D.; Wang, Y.; Iqbal, F. Malware classification with deep convolutional neural
networks. In Proceedings of the 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS),
Paris, France, 26–28 February 2018; pp. 1–5. [CrossRef]

32. Singh, J.; Thakur, D.; Gera, T.; Shah, B.; Abuhmed, T.; Ali, F. Classification and analysis of android malware images using feature
fusion technique. IEEE Access 2021, 9, 90102–90117. [CrossRef]

33. Github. Malimg Dataset. Available online: https://github.com/danielgibert/mlw_classification_cnn_img (accessed on 19
April 2022).

34. Kamundala, E.K.; Kim, C.H. CNN Model to Classify Malware Using Image Feature. IISE Trans. Comput. Pract. 2018, 24, 256–261.
[CrossRef]

https://doi.org/10.1109/CAC51589.2020.9327756
https://doi.org/10.1016/j.aei.2021.101297
https://doi.org/10.1109/ACCESS.2020.2970143
https://doi.org/10.3390/app12178482
https://doi.org/10.1109/HORA52670.2021.9461302
https://doi.org/10.1016/j.dajour.2022.100071
https://doi.org/10.1109/GHTC46280.2020.9342625
https://doi.org/10.1109/MSP.2017.2765202
https://doi.org/10.1145/3422622
https://doi.org/10.48550/arXiv.1701.00160
https://doi.org/10.1145/3387940.3392199
https://doi.org/10.1007/978-3-030-25312-7_14
https://doi.org/10.1145/2046684.2046689
https://doi.org/10.13089/JKIISC.2016.26.1.197
https://doi.org/10.3390/s22114302
https://www.ncbi.nlm.nih.gov/pubmed/35684922
https://doi.org/10.1007/s11416-018-0323-0
https://doi.org/10.1007/978-3-642-04342-0_7
https://doi.org/10.48550/arXiv.1804.04637
https://doi.org/10.14722/ndss.2020.24310
https://doi.org/10.1109/MALWARE.2015.7413680
https://doi.org/10.48550/arXiv.1710.09435
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1109/ACCESS.2021.3090998
https://github.com/danielgibert/mlw_classification_cnn_img
https://doi.org/10.5626/KTCP.2018.24.5.256

Appl. Sci. 2023, 13, 10196 21 of 21

35. AlGarni, M.D.; AlRoobaea, R.; Almotiri, J.; Ullah, S.S.; Hussain, S.; Umar, F. An efficient convolutional neural network with
transfer learning for malware classification. Wirel. Commun. Mob. Comput. 2022, 2022, 4841741. [CrossRef]

36. Go, J.H.; Jan, T.; Mohanty, M.; Patel, O.P.; Puthal, D.; Prasad, M. Visualization approach for malware classification with ResNeXt.
In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–7. [CrossRef]

37. Bhodia, N.; Prajapati, P.; Di Troia, F.; Stamp, M. Transfer learning for image-based malware classification. arXiv 2019. [CrossRef]
38. Github. Mal60 Dataset. Available online: https://github.com/pukekaka/mal60 (accessed on 30 April 2022).
39. Kang, M.C.; Kim, H.K. Rare Malware Classification Using Memory Augmented Neural Networks. J. Korea Inst. Inf. Secur. Cryptol.

2018, 28, 847–857. [CrossRef]
40. VX Heaven. Vx Heaven Virus Collection 2010-05-18. Available online: http://vxheaven.org/ (accessed on 18 May 2022).
41. VirusTotal. Virus Total. Available online: https://virustotal.com (accessed on 22 April 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2022/4841741
https://doi.org/10.1109/CEC48606.2020.9185490
https://doi.org/10.48550/arXiv.1903.11551
https://github.com/pukekaka/mal60
https://doi.org/10.13089/JKIISC.2018.28.4.847
http://vxheaven.org/
https://virustotal.com

	Introduction
	Background
	Digital Twin
	Malware
	Image Interpolation
	Generative Adversarial Network

	Literature Review
	Digital Twin Application Research
	Malware Detection through Imaging
	Malware Detection through Machine Learning
	Malware Detection through Deep Learning

	Materials and Methods
	Imaging of Malware
	Data Augmentation through Generative Adversarial Networks
	Deep Learning Model for Malware Detection

	Experiment
	Experimental Data
	Experiment Environment
	Experimental Setup of Imaging
	Experimental Setup of Data Augmentation through Generative Adversarial Networks

	Performance Evaluation
	Performance Evaluation of Imaging
	Performance Evaluation for Data Generation
	Detection Performance Evaluation of Generated Data

	Discussion
	Conclusions
	References

