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Abstract: The inversion of the Rayleigh wave dispersion curve is a crucial step in obtaining the
shear wave velocity (VS) of near-surface structures. Due to the characteristics of being ill-posed
and nonlinear, the existing inversion methods presented low efficiency and ambiguity. To address
these challenges, we describe a six-layer deep neural network algorithm for the inversion of 1D VS

from dispersion curves of the fundamental mode Rayleigh surface waves. Our method encompasses
several key advancements: (1) we use a finer layer to construct the 1-D VS model of the subsurface,
which can describe a more complex near-surface geology structure; (2) considering the ergodicity
and orderliness of strata evolution, the constrained Markov Chain was employed to reconstruct the
complex velocity model; (3) we build a practical and complete dispersion curve inversion process.
Our model tested the performance using a random synthetic dataset and the influence of different
factors, including the number of training samples, learning rate, and the selection of optimal artificial
neural network architecture. Finally, the field test dispersion data were used to further verify the
method’s effectiveness. Our synthetic dataset proved the diversity and rationality of the random VS

model. The results of training and predicting showed higher accuracy and could speed the inversion
process (only ~15 s), and we proved the important effect of different factors. The outcomes derived
from the application of this technique to the measured dispersion data in the Yellow River Delta
exhibit a strong correlation with the outcomes obtained from the integration of the very fast simulated
annealing method and the downhill simplex method, as well as the statistically derived shear wave
velocity data of the sedimentary layers in the Yellow River Delta. From a long-term perspective, our
method can provide an alternative for deriving VS models for complex near-surface structures.

Keywords: Rayleigh wave; dispersion curve; inversion; deep learning; deep neural networks

1. Introduction

Rayleigh wave exploration based on ambient noise is an important method for investi-
gating near-surface shear wave velocity (VS) structures. It is widely used in fundamental
geological surveys [1,2], geotechnical engineering [3], geological hazard early warning [4,5],
hydrogeological surveys [6], and other fields. In particular, it has incomparable advantages
for urban subsurface surveying and measuring the VS of weakly consolidated soils in
offshore areas because other geophysical methods are easily susceptible to noise [7] or do
not allow for borehole testing to be carried out.

Achieving the subsurface S-wave velocity profile by inverting the Rayleigh wave
dispersion curve is a key step in surface wave analysis [8]. However, similar to most
geophysical inversion problems, dispersion curve inversion has the characteristics of
high nonlinearity, multiparameter, and multi-extremum [9], and the accuracy of inversion
results is affected by the two main aspects. One is the choice of the initial model; in
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general, the inversion problem exists relative to the forward problem and may generate
different inversion results for the same physical process. Another is the dimension of the
inverted parameters. The phase velocity of Rayleigh waves depends on the compression
wave velocity (Vp), S-wave velocity (VS), density (ρ), and layer thickness (h) of strata.
However, the S-wave velocity has a deterministic effect on the surface wave dispersion,
so dispersion curve inversion usually refers to inverting the S-wave velocity and layer
thickness (h). In recent research, the local optimization inversion method assumed that the
subsurface is subdivided into a reasonable and fixed number of layers, and the number and
thickness of each layer could be defined by the user [10]. In fact, this method transforms the
problem into a single parameter dispersion curve inversion (only for VS). In case of simple
stratigraphic structures, such a method can provide a reliable estimation of the S-wave
velocity. However, due to the influence of natural and human factors on the near surface,
the seismic wave velocities usually change abruptly with depth or local structural reversals,
such as the subsurface cavities, weak interlayers, etc. In such a case, it is difficult to give a
reasonable estimation of VS by simply increasing the number of layers. Moreover, accurate
depths of layers are critical for many applications. A promising approach is to invert VS
and h simultaneously. However, an increase in unknown parameters may cause problems.
Cox et al. [11] proposed a method to perform multiple inversions with a global search
approach, in which the layer thickness (h) is parameterized with a “stratified ratio”, and
its value can be determined via user experience. Subsequently, many global optimization
algorithms, such as the Monte Carlo method, the genetic algorithms, and the simulated
annealing, have appeared in many studies [12–14]. The global optimization algorithms
have been widely adopted because they do not rely on the initial model and do not require
calculating directional derivatives. However, due to the larger amount of computation,
low efficiency, and easy premature convergence, the application of the global optimization
method is limited.

Artificial intelligence (AI) and cloud computing technology have entered many areas,
such as national defense and military [15], economic construction [16], and social devel-
opment [17], impacting our world on many levels. AI is a general field that encompasses
machine learning and deep learning (DL) but also includes many more approaches that
do not involve any learning. With machine learning, we input data as well as the answers
expected from the data, and the output comes from the rules. These rules could then be
applied to new data to produce original answers [18]. The core of deep learning is called
the neural network model, a process of distributed storage of information and parallel
collaborative processing of a nonlinear system, and it can implement complex nonlinear
mapping. From this perspective, it is analogous to the geophysical inversion problem.
Therefore, in recent years, geophysicists have gradually introduced it into the fields of
seismic data processing and interpretation [19], lithology identification of logging data [20],
and magnetotelluric inversion [21]. Caylak et al. [22] proposed a multilayer perceptron
neural network for the inversion of Rayleigh wave data, but they did not describe how to
select the training dataset. Cao et al. [23] obtained the Bayesian posterior distribution of the
S-wave velocity at each layer of the model with a mixture density network (MDN), but the
number of layers and velocity range of each layer must be known. They also did not explain
how to obtain the prior models to train the MDN. Hu et al. [24] utilized convolutional
neural networks (CNN) to derive 1D S-wave velocity from surface wave dispersion and
pointed out that CNN can solve more complex nonlinear inversion problems compared
with densely connected neural networks. However, the training process of CNN is slower,
and the training dataset is derived from the general geophysical inversion method. More-
over, the neural network structure must be recreated when processing new data, which
makes it difficult to promote in the application.

The successful applications mentioned above demonstrate that DL can invert Rayleigh
wave dispersion curves into shear wave velocity models. Current research aims to improve
the accuracy of inversion by exploring different neural network models and generating
more representative training data. However, most existing studies focus on deep geological
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structures, with inversion of layer thicknesses ranging from tens of kilometers to even more.
In contrast, this study focuses on the more complex near-surface geological structures. The
main difference between our research and previous neural network inversion methods lies
in the construction of a more refined, layered shear wave velocity model, incorporating
a Markov chain (MC) with ergodic properties in the random process. As a result, the
synthesized training data are more representative.

In this study, we first established the method to construct a VS model based on the con-
strained MC, and then the forward calculation of Rayleigh wave dispersion was employed
to obtain the corresponding phase velocities. All these data provide the training dataset
required by deep learning. Next, a multilayer deep neural network (DNN) architecture
was constructed to implement the training process. We discussed the DNN performance
in relation to loss function and accuracy, as well as the influence of the number of neural
network layers and parameter adjustment on the inversion accuracy using a synthetic
dataset. Further, we tested the DNN with field data collected in the Yellow River Delta
and compared the result with the very fast, simulated annealing method and the downhill
simplex method (VFSA-DHSM) approach and statistical data in the Yellow River Delta.
Our purpose was to realize an easy and applicable method for Rayleigh wave dispersion
curve inversion.

2. Materials and Methods
2.1. Generate Training Dataset

The S-wave velocity and its corresponding dispersion curve dataset constitute the
training sample data pair for DNN. The diversity and sufficiency of the sample dataset
determine the performance of deep learning. Sample data can be obtained via logging
experiments, laboratory tests after sampling, and field Rayleigh wave measurements.
However, these methods are time-consuming and expensive. An alternative approach is
forward modeling by providing geological models and then calculating the corresponding
dispersion data. In this method, establishing a large number of representative geological
models will be very important.

2.1.1. Generate Velocity Models

Academic Yang Wencai, a well-known geophysicist in China, pointed out that there is
no simple repetition in the history of the earth’s evolution in the past 4600 million years,
and it shows the ergodicity of all states [25]. Just as “There are no two identical leaves
in the world”, a variety of phenomena in the natural system confirms the validity of the
ergodic hypothesis. As with the surface of the earth, the velocity structure of the near
surface should also have ergodicity. In addition, the natural system has the inertia of
maintaining its characteristic shape in evolution, making the strata show orderliness with
the change in time and space. That is to say, the velocities will rise with the increase in
depth due to the self-weight (inertia) of the strata. The variation in velocities may be shown
in three cases. One is when the velocity increases approximately linearly with the depth;
the second is when the velocity drops sharply at a certain depth, such as when there exists
a cavity or weak interlayer in the subsurface; the third is when the velocity rises sharply at
a certain depth, such as the existence of boulders. The strata with an oscillating or linearly
decreasing velocity are rarely seen. According to the general rule of sediment deposit, the
first case is a high-probability event, while the other two are low-probability events.

Compared with the giant earth system, the velocity structure of the near surface has
a higher complexity. In the evolution process, any type of velocity structure may appear
in different areas or at different times. So, the near-surface velocities possess ergodicity
and completely satisfy the random process theory. According to the probability and mathe-
matical statistics theory, the Markov Chain (MC) is a method used to describe stochastic
processes for discrete-time index datasets and state spaces with Markov properties [26].
MC has ergodicity, which makes a good combination between MC and strata evolution. If
we regard the variation in velocities as a time series, the depth of each layer is regarded
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as equivalent to time, so the S-wave velocity is the state space of the corresponding time.
Therefore, the MC of the random variation process of the velocity structure can be expressed
as {v(t), t ∈ T}, and its Markov property can be expressed as

P{v(tn) = j|v(tn−1) = in, v(tn−1) = in−1, · · · , v(t1) = i1}
= P{v(tn) = j|v(tn−1) = in−1 } = Pij

(1)

In Equation (1), tn is the time series, and t1 < t2 < · · · < tn ∈ T, vn ∈ V is the
corresponding state space variable; Pij(> 0) is the one-step transition probability for all
states i, j and n. Equation (1) indicates that the probability of state j at time tn is determined
by state i at time tn−1. Therefore, the velocity of the current layer only depends on the
velocity of the previous layer and has no relation to the velocity of other layers. The
orderliness of the velocity structure shows that the velocity increasing linearly with depth
is a high-probability event, while other cases are low-probability events. Thus, we can
define the MC transition probability of the velocity variation.

In our study, the basic steps of constructing a near-surface velocity model according to
the MC theory are listed as follows:

Step 1: Generate a model with a random thickness. The total thickness of the model is
limited to 0.05 km because we focus on solving shallow engineering geological problems.
Here, we set the model layer number to 20. Then, we use a random function to generate
20 random numbers between 0 and 1, and finally, they are normalized and multiplied by
the total thickness to obtain the thickness of each layer.

Step 2: Generate random S-wave velocity for the first layer. Because the surface layer is
usually quaternary sedimentary, the velocity is generally low; the S-wave velocity may not
be appropriate. So, we constrain the velocity range according to the geological conditions.
The range in this study is Vmin = 0.15 Km/s, Vmax = 0.3 Km/s, which is more consistent
with the velocity characteristics of the near surface.

Step 3: Generate random S-wave velocity for the remaining layers. We define the
probability α = 0.8 for the velocity increasing linearly with depth and the probability
α = 0.1 for other two cases. Then, we randomly generate a random number x between 0
and 1. Next, if x ≤ 0.8, the following formula is used to calculate Vs,m+1:

Vs,m+1 = Vs,m + λm+1,m ·Vs,m (2)

In Equation (2), λm+1,m is the random floating number between (λmin, λmax), which
determines the increasing or decreasing rate. In this study, we defined λmin = 0.01 and
λmax = 0.35.

If 0.8 < x ≤ 0.9, Vs,m+1 is taken as the random number between
(Vs,m + λmax ·Vs,m, min(Vs,m + 0.3, 1.0)).

If 0.9 < x ≤ 1.0, Vs,m+1 is taken as the random number between
(max(Vs,m − 0.3, 0.1), λmin ·Vs,m).

Step 4: Calculate the compressional wave velocity (Vp) and density (ρ). Although their
influence on the Rayleigh wave velocity is much smaller than that of Vs, accurate values
are also important for calculating dispersion data. Much previous research provided the
empirical relationships among Vp, Vs and ρ [27,28], which apply to different lithology and
depth ranges. In our study, we use the approximate relationship given by Tang et al. to
calculate the Vp.

Vp = Vs/
[
0.5684× (Z/0.2)0.163

]
(3)

Here, Z is the depth (Km) and Z = ∑m
i=1 hi;hi(i = 1, 2, · · · , m) is the thickness of each

layer.
Equation (3) is suitable for sedimentary strata when the depth is less than 0.2 Km.
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For the density ρ, we use the empirical relationship given by Ludwig et al. [29].

ρ = 1.6612Vp − 0.4721V2
p

+0.0671V3
p − 0.0043V4

p + 0.000106V5
p

(4)

Here, the unit of ρ is g/cm3.
The above method can generate a complex geological model with any layer number,

but in our study, we randomly generated a 20-layer model and then interpolated it into a
100-layer smooth velocity model with a spacing of 0.5 m. The method of using the smooth
velocity model is conducive to describing complex geological structures and is closer to the
velocity variation characteristics of the near surface.

2.1.2. Calculate Dispersion Data

Next, we generated the fundamental mode Rayleigh wave phase velocity with a
period range of 0.08 to 0.48 s with the Computer Programs in Seismology (CPS) software
package [30]. The corresponding frequency range was 2.0 Hz–2.5 Hz. The reason for
choosing this range was to keep consistent with measured data obtained in our previous
research using ambient noise technology.

In our study, we calculated 22,527 sample data pairs via MC and forward calculation.
Ten groups of sample pairs were randomly selected to test the rationality (Figure 1). From
Figure 1, we can see three typical velocity structures. Hence, this method could provide
sufficient and diverse training data for the following research.
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Figure 1. Theoretical layered shear wave velocity models and corresponding dispersion curves
generated for training the algorithm. (a) Ten distinct velocity models were considered, where the
inflection points of each curve correspond to the interfaces between layers. Within each layer, the
velocities exhibit a linear variation with depth. (b) The dispersion curves corresponding to the ten
velocity models.

2.2. DNN Architecture

We chose a DNN model with multiple hidden layers. It is also known as a multilayer
perceptron and is an artificial neural network with a relatively simple connection. Its
advantage is that it is easy to construct, suitable for complex discrete data series, and
performs better than CNN, temporal recurrent neural networks (RNN), and other network
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structures that are a subset of DNN. The DNNs usually have multiple hidden layers; adding
hidden layers can better separate the characteristics of data and can thus better describe
the nonlinear characteristics.

The DNN model introduced in this paper contains one input layer, four hidden
layers, and one output layer (Figure 2). To invert the 1D S-wave velocity models from the
dispersion curve, we took the frequency-dependent phase velocities as the input, composed
of 101 uniformly sampled data with periods ranging from 0.08 to 0.48 s. Before training, we
first scaled the original data via normalization so that all values were within the range [0, 1].
The outputs were the corresponding S-wave velocity model. According to our experience,
the output dimensions of the first to fifth layers were set to 1600, 1200, 800, 200, and 101,
respectively. The sixth layer was the output layer with dimension 101 due to the total
thickness (50 m) being discretized into 101 layers with a spacing of 0.5 m. The Rectified
Linear Unit (ReLu) activation function was chosen at each layer (except for the output layer)
to avoid the problem of vanishing gradients. To reduce the complexity and instability of
the model during the learning process, enhance the anti-disturbance ability, and thus avoid
the danger of overfitting, the L2 regularization function was employed for the weights of
each layer, and the L1 regularization function was used for the outputs of each layer.
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Using deep learning to invert the 1D VS model is a regression problem. A large
number of neural network loss functions can be used to account for the difference between
predicted and true values. The most common nonlinear functions are the mean absolute
error (MAE), mean squared error (MSE), and mean squared logarithmic error (MSLE). We
chose the MSE loss function because it is more sensitive to outliers than MAE and is a
commonly used loss function for regression problems. Corresponding to the loss function,
the Adam optimizer is used to update the weights of the network. The evaluation metrics
used in regression problems are different from those used in the classification problem, so
the concept of accuracy does not apply to regression problems. To control the accuracy of
the network, we defined the relative error as

e =
1
n

n

∑
i=1

∆v
v

(5)

Here, n is the number of layer depth nodes (101), ∆v is the difference between true
S-wave and predicted velocities, and v is the true S-wave velocities. From Equation (5), we
define accuracy as

A = 1− e (6)
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2.3. Training and Predicting

In our study, we wrote the Python (version 3.9) code to implement the calculation.
Using the constructed sample data pairs, we randomly split 70% of the whole dataset as the
training dataset and 30% as the validation dataset. The validation dataset is independent of
the training dataset and is only used to guide parameter adjustment and avoid overfitting.
At the same time, we separately calculated the 2000 synthetic dispersion curves as the test
dataset. The corresponding S-wave velocity models are known and can be used to compare
the results before and after inversion. In training, we used a personal computer with an
Intel (R) i7-10700TCPU core, 64 GB memory, and no GPU acceleration. The learning rate
was set to 0.01, the maximum number of epochs was set to 200 to ensure the convergence
of the training process, and other parameters were set to the system’s default value.

To avoid overfitting, we also calculated the loss function of each epoch using the
accuracy expression defined in Equation (6) to calculate the accuracy of the validation
dataset and use this data to evaluate the performance of the DNN.

Figure 3 shows the training loss and validation loss curves after 200 epochs, and
Figure 4 shows the corresponding accuracy curve of the validation dataset. Figures 3 and 4
show that the loss function of each iteration is decreasing, and it tends to be stable after
110 epochs. The training loss and the validation loss keep changing in synchronization,
and the accuracy of the validation dataset also shows the same rule after 110 epochs. The
loss function and accuracy eventually stabilize without showing overfitting.
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Figure 3. The loss function value of the training set and validation set.

Then, we inverted the 2000 test datasets. Figure 5 reveals the inversion results of
the randomly selected dispersion curves. The figure shows that the inversion results
of S-wave velocities agree with the theoretical velocity models. To better illustrate the
effectiveness of the method, we also calculated the relative error distribution map of the
test dataset. Figure 6a shows the relative error distribution of all data points for all samples,
and Figure 6b shows the relative error distribution of all samples. Figure 6 indicates that
70% of data points have an error of less than 11.5% among all data points, and 70% of the
samples have an error of less than 11.2% for all test samples. That is, the accuracy of DL
inversion is close to 90%.



Appl. Sci. 2023, 13, 10194 8 of 15

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 16 
 

110 epochs. The training loss and the validation loss keep changing in synchronization, 

and the accuracy of the validation dataset also shows the same rule after 110 epochs. The 

loss function and accuracy eventually stabilize without showing overfitting. 

 

Figure 3. The loss function value of the training set and validation set. 

 

Figure 4. Accuracy of validation dataset. 

Then, we inverted the 2000 test datasets. Figure 5 reveals the inversion results of the 

randomly selected dispersion curves. The figure shows that the inversion results of S-

wave velocities agree with the theoretical velocity models. To better illustrate the effec-

tiveness of the method, we also calculated the relative error distribution map of the test 

dataset. Figure 6a shows the relative error distribution of all data points for all samples, 

and Figure 6b shows the relative error distribution of all samples. Figure 6 indicates that 

70% of data points have an error of less than 11.5% among all data points, and 70% of the 

samples have an error of less than 11.2% for all test samples. That is, the accuracy of DL 

inversion is close to 90%. 

Figure 4. Accuracy of validation dataset.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 16 
 

 

Figure 5. The inversion results of the randomly selected dispersion curves from the 2000 test sam-

ples. Among them, subfigures (a,e−g) exhibit shear wave velocities linearly increasing with depth in 

the subsurface layers, (d,h,j) denote a sharp decrease in shear wave velocity at a certain depth in the 

subsurface, and (b,c,i) stand for a sharp increase in shear wave velocity at a certain depth in the 

subsurface. 

 

Figure 6. Distribution of the relative errors for the test dataset. (a) Relative errors for all data points, 

and (b) relative errors for all samples. 

2.4. Parameters Test 

Few studies have provided detailed information about the influence of network 

structure and parameter tuning on network performance. These issues, however, are cru-

cial to the accuracy of dispersion curve inverting. So, we calculated the relative errors of 

the number of training samples, learning rates, and different network layers to discover 

their relationships. 

2.4.1. The Number of Training Samples 

As we know, insufficient training datasets will lead to poor approximation. Will the 

model’s performance continue to improve as the training data volume increases? Accord-

ing to Hestness et al. [31], the performance will improve when the size of the dataset is 

increased. Conversely, Joulin et al. [32] found that the model performance decreased with 

a higher dataset volume. In this section, we calculated the relative error of nine different 

training sample numbers for the validation dataset. Two parallel experiments were con-

ducted for each sample size in order to determine the average error, as shown in Figure 7. 

The figure shows that the error does not continuously decrease with an increase in the 

number of training samples. However, when the number of samples reaches 5600, the 

error reaches its lowest value (8.9%). 

Figure 5. The inversion results of the randomly selected dispersion curves from the 2000 test samples.
Among them, subfigures (a,e−g) exhibit shear wave velocities linearly increasing with depth in the
subsurface layers, (d,h,j) denote a sharp decrease in shear wave velocity at a certain depth in the
subsurface, and (b,c,i) stand for a sharp increase in shear wave velocity at a certain depth in the
subsurface.
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2.4. Parameters Test

Few studies have provided detailed information about the influence of network
structure and parameter tuning on network performance. These issues, however, are
crucial to the accuracy of dispersion curve inverting. So, we calculated the relative errors of
the number of training samples, learning rates, and different network layers to discover
their relationships.

2.4.1. The Number of Training Samples

As we know, insufficient training datasets will lead to poor approximation. Will the
model’s performance continue to improve as the training data volume increases? According
to Hestness et al. [31], the performance will improve when the size of the dataset is increased.
Conversely, Joulin et al. [32] found that the model performance decreased with a higher
dataset volume. In this section, we calculated the relative error of nine different training
sample numbers for the validation dataset. Two parallel experiments were conducted for
each sample size in order to determine the average error, as shown in Figure 7. The figure
shows that the error does not continuously decrease with an increase in the number of
training samples. However, when the number of samples reaches 5600, the error reaches its
lowest value (8.9%).
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2.4.2. Learning Rate

In contrast to the parameters automatically updated through training (e.g., weights in
neurons), hyperparameters are defined as manually set parameters with fixed values prior
to the start of the learning process. The proper configuration of hyperparameters is crucial
for achieving optimal performance in DNN. One of the most important hyperparameters
for deep learning network models is the learning rate, typically between 0.0 and 1.0. The
learning rate governs the speed of convergence of the model. The smaller the learning
rate, the slower the gradient descent and the longer the convergence time. However, the
higher the learning rate, the larger the update step size of the weight, and it will be easier
to skip the optimal solution. We chose nine different learning rates, set up two parallel
sets of experiments, and calculated the corresponding errors to test the effect of learning
rates on DL performance. From Figure 8, we conclude that the learning rate impacts the
performance of the DL network. There is no simple linear relationship between the learning
rate and the relative error, but the model performs best when the learning rate is 0.01. The
relative error at this time is 8.89%.
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2.4.3. The Number of Network Layers

The series of layers between input and output is referred to as hidden layers. Having
more than one hidden layer allows a neural network to approximate the nonlinear rela-
tionship between input and output data. However, having too many hidden layers may
lead to overfitting, where the model performs poorly when faced with new data. Currently,
there are no general rules available for selecting the number of layers in research. In this
study, we employed seven network models with varying numbers of layers, ranging from
three to nine, and calculated their corresponding errors. As shown in Figure 9, the optimal
number of layers for training the theoretical synthetic dataset was six, with an average
relative error of 8.9%. This indicates that the problem of Rayleigh wave dispersion curve
inversion exhibits highly nonlinear characteristics, and shallow neural network models are
ineffective in learning the features effectively.
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3. Data Application Example in Yellow River Delta

Considering the good performance of synthetic data, we applied our approach to
real dispersion data to demonstrate how it works well in inversion. In October 2021, we
employed the centerless circular array (CCA) for observation (Figure 10) and collected the
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ambient noise data at an offshore beach in the Yellow River Delta [33]. The ambient noise
survey was a completely new method; its measurement was relatively straightforward,
and the process did not need an active source [34,35]. This method can overcome a
number of obstacles that make traditional geophysical technologies difficult or impossible
to implement in some special areas, such as weakly consolidated soils offshore where it is
difficult to maintain the quality of the borehole and hence impossible to conduct in-hole
S-wave velocity testing [5].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 16 
 

 

Figure 10. Map of the centerless circular array (CCA). (a) Schematic of CCA; (b) field photograph. 

In testing, we set up two stations, S1 and S2, located 1.2 km apart. Each station uti-

lized six identical vertical component velocity detectors (PS-2Hz) referred to as ST1, ST2, 

ST3, ST4, ST5, and ST6. These six detectors were evenly distributed on a circular array 

centered at each station, with a radius of one meter. We employed this CCA array to collect 

random noise data and subsequently processed the obtained raw data. Through 

resampling and calculating the coefficients of principal component analysis, we obtained 

the dispersion curves for stations S1 and S2 stations [33] (black line in Figure 11). 

 

Figure 11. Comparison of observed and predicted dispersion curves. (a) S1 station; (b) S2 station. 

Since the output depth range needs to vary with the periodic range of the input Ray-

leigh wave dispersion velocities, to invert these dispersed data using DNN, the dispersion 

data must be preprocessed first. The frequency range of the measured dispersion curve 

was 2.08–12.5 Hz (0.08–0.48 s), but the spacing between each dispersion point was not 

uniform. For this reason, we used an interpolation algorithm to resample these data into 

101 points at equal intervals to ensure consistency with our network structure; these data 

would be used for S-wave velocity inversion. 

Figure 10. Map of the centerless circular array (CCA). (a) Schematic of CCA; (b) field photograph.

In testing, we set up two stations, S1 and S2, located 1.2 km apart. Each station utilized
six identical vertical component velocity detectors (PS-2 Hz) referred to as ST1, ST2, ST3,
ST4, ST5, and ST6. These six detectors were evenly distributed on a circular array centered
at each station, with a radius of one meter. We employed this CCA array to collect random
noise data and subsequently processed the obtained raw data. Through resampling and
calculating the coefficients of principal component analysis, we obtained the dispersion
curves for stations S1 and S2 stations [33] (black line in Figure 11).
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Since the output depth range needs to vary with the periodic range of the input
Rayleigh wave dispersion velocities, to invert these dispersed data using DNN, the dis-
persion data must be preprocessed first. The frequency range of the measured dispersion
curve was 2.08–12.5 Hz (0.08–0.48 s), but the spacing between each dispersion point was
not uniform. For this reason, we used an interpolation algorithm to resample these data
into 101 points at equal intervals to ensure consistency with our network structure; these
data would be used for S-wave velocity inversion.

In part 1.1, we generated lots of random velocity models. However, the S-wave
velocity range of these velocity models was between 300 and 1200 m/s, while the velocity
range of the testing area in the Yellow River Delta was 80–350 m/s above a 100 m depth.
The weights trained with the synthetic dispersion data could not accurately predict S-wave
velocities because DL did not learn the features of the measured dispersion curve. To
this end, we recalculated the velocity models with a range of 80 m/s to 350 m/s and the
corresponding dispersion data over 8000 pairs. After training these datasets (~15 s), we
obtained the weights, and then the 1D VS models (blue dashed line in Figure 12) of the two
stations were inverted.
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Figure 12. Comparison of inverted VS model from DL and VFSA-DHSM method for observed
dispersion data. (a) S1 station; (b) S2 station.

In order to compare the inversion results, we also used the VFSA-DHSM method [36]
to invert the dispersion curve. The results are presented in Figure 12 (black solid line). As
seen from the figure, DL results are in good agreement with that of the VFSA-DHSM. In
addition, Liu et al. [37] gave statistics on the S-wave velocity in the Yellow River Delta
area. They listed the S-wave velocity at every 10 m interval within a depth of 100 m;
unfortunately, no more detailed logging information is available. Here, we tabulated the
data and our inversion results in Table 1. Again, we found consistency among them and
further confirmed the validity of our DNN method.
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Table 1. Comparison of VS between general statistics and DL inversion (Table 1).

Depth Range (m) DL Inversion (m/s)
Liu 2015 (m/s) [37]S1 S2

0–10 80–200 110–200 120–170
11–20 150–250 200–250 150–230
21–30 260–340 250–320 200–300

4. Conclusions and Discussions
4.1. Conclusions

This study investigated the DNN neural network to obtain 1D S-wave velocities of the
near surface using the frequency-dependent Rayleigh wave dispersion curves. Based on
the results, the following conclusions can be drawn:

1. Based on the ergodicity and orderliness of strata evolution and the constrained MC
theory, we can construct innumerable rational velocity models that can effectively
describe the more complex near-surface conditions. This approach could offer several
benefits in terms of generating a wide range of training datasets that are necessary for
effectively training DNN;

2. The effectiveness of the proposed DNN was first tested using a synthetic dataset. The
training and validation loss curves and the accuracy of the validation dataset show
that the performance of DNN tends to be stable after 110 epochs, and the accuracy of
inversion results reaches ~90%;

3. Calculation of the relative errors for different network layers shows that the errors do
not decrease all the way and will reach a minimum at a certain number of samples.
The relative errors of different learning rates also have no simple linear relationship;
the model performed best when the learning rate was 0.01 in our study, and the best
number of network layers was six in our DNN architecture. This may be attributed to
the highly nonlinear properties of the Rayleigh wave dispersion problem;

4. To apply DNN to real dispersion curves extracted from ambient noise in the Yellow
River Delta, we rebuilt the 8000 pairs training dataset, and the training process took
~15 s. The results showed good consistency with that of the VFSA-DHSM inver-
sion and previous statistics of the S-wave velocities, which may help to provide an
alternative for deriving S-wave velocity models for complex near-surface structures.

4.2. Discussions

DNN provides a promising alternative method for inversion. It performs inversion by
learning and extracting features from a large training dataset, allowing for fast mapping
of dispersion data to shear wave models with good training. However, improving the
accuracy and generalization ability of DNN inversion requires more complex and suitable
neural network models, as well as more realistic and comprehensive sample datasets.

In this study, we investigated three parameters that significantly impact the conver-
gence of the training process: the number of training samples, learning rate, and number
of hidden layers. However, it should be noted that the complexity of the neural network
model may lead to differences in parameter settings for different models. The optimal
parameters obtained in this study are not fixed rules. In many cases, for other specific data
sequences, it is necessary to determine these optimal parameters through repeated testing.

Furthermore, the randomness in the selection of velocity models for DNN training
datasets can affect the learning process. In our research, we only use synthetic data to
validate the network performance. However, the adequacy and diversity of the samples
are still worth considering, which is a topic we must explore in the future.
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Inverse Modelling for Soils and Rocks; Lai, C.G., Wilmański, K., Eds.; Springer: Vienna, Austria, 2005; pp. 73–163. [CrossRef]

11. Cox, B.R.; Teague, D.P. Erratum: Layering Ratios: A Systematic Approach to the Inversion of Surface Wave Data in the Absence
of a-Priori Information. Geophys. J. Int. 2017, 211, 378. [CrossRef]

12. Dal Moro, G.; Pipan, M.; Gabrielli, P. Rayleigh Wave Dispersion Curve Inversion via Genetic Algorithms and Marginal Posterior
Probability Density Estimation. J. Appl. Geophys. 2007, 61, 39–55. [CrossRef]

13. Pei, D.H.; Louie, J.N.; Pullammanappallil, S.K. Application of Simulated Annealing Inversion on High-Frequency Fundamental-
Mode Rayleigh Wave Dispersion Curves. Geophysics 2007, 72, R77–R85. [CrossRef]

14. Socco, L.V.; Boiero, D. Improved Monte Carlo Inversion of Surface Wave Data. Geophys. Prospect. 2008, 56, 357–371. [CrossRef]
15. Hadlington, L.; Binder, J.; Gardner, S.; Karanika-Murray, M.; Knight, S. The Use of Artificial Intelligence in a Military Context:

Development of the Attitudes toward AI in Defense (AAID) Scale. Front. Psychol. 2023, 14, 1164810. [CrossRef]
16. Rahmani, A.M.; Rezazadeh, B.; Haghparast, M.; Chang, W.-C.; Ting, S.G. Applications of Artificial Intelligence in the Economy,

Including Applications in Stock Trading, Market Analysis, and Risk Management. IEEE Access 2023, 11, 80769–80793. [CrossRef]
17. Jiang, Y.; Han, L.; Gao, Y. Artificial Intelligence-Enabled Smart City Construction. J. Supercomput. 2022, 78, 19501–19521. [CrossRef]
18. Chollet, F. Deep Learning with Python; Manning Publications Co.: Shelter Island, NY, USA, 2018; ISBN 978-1-61729-443-3.
19. Dai, H.; MacBeth, C. Automatic Picking of Seismic Arrivals in Local Earthquake Data Using an Artificial Neural Network.

Geophys. J. Int. 1995, 120, 758–774. [CrossRef]
20. Zhang, G.; Wang, Z.; Chen, Y. Deep Learning for Seismic Lithology Prediction. Geophys. J. Int. 2018, 215, 1368–1387. [CrossRef]
21. Spichak, V.; Popova, I. Artificial Neural Network Inversion of Magnetotelluric Data in Terms of Three-Dimensional Earth

Macroparameters. Geophys. J. Int. 2000, 142, 15–26. [CrossRef]
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