
Citation: Zhang, B.; Bai, J.; Yin, Z.;

Zhou, A.; Li, J. Study on the Driver

Visual Workload of Bridge-Tunnel

Groups on Mountainous

Expressways. Appl. Sci. 2023, 13,

10186. https://doi.org/10.3390/

app131810186

Academic Editors: Xinguo Jiang,

Chuan Xu and Chuanyun Fu

Received: 19 July 2023

Revised: 2 September 2023

Accepted: 7 September 2023

Published: 11 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Study on the Driver Visual Workload of Bridge-Tunnel Groups
on Mountainous Expressways
Bo Zhang 1, Jingrong Bai 1, Zhiwen Yin 1, Ao Zhou 2 and Jue Li 2,*

1 School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China;
zhangbocq@cqjtu.edu.cn (B.Z.); jr.bai2020@mails.cqjtu.edu.cn (J.B.); zw.yin2021@mails.cqjtu.edu.cn (Z.Y.)

2 School of Traffic and Transportation, Chongqing Jiaotong University, Chongqing 400074, China;
a.zhou2022@mails.cqjtu.edu.cn

* Correspondence: lijue1207@cqjtu.edu.cn

Abstract: Mountainous expressways with bridge-tunnel groups are characterized by complex envi-
ronments and high driving risks, making them crucial sections for highway safety. This study applied
eye-tracking techniques to evaluate driving safety and comfort in bridge-tunnel groups. Drivers’
pupil diameter and fixation point distribution were measured in real vehicle tests. The influence
of tunnel length, adjacent tunnel spacing, and natural lighting on drivers’ pupil diameters were
compared and analyzed. The maximum transient velocity of pupil area was introduced to describe
the drivers’ visual load and driving comfort. The results indicate that the driving workload reaches
its maximum in the first tunnel in bridge-tunnel groups and is positively correlated with the tunnel
length in other sections. Excessive or insufficient distance between adjacent tunnels is detrimental to
driving comfort. The driving workload is higher at night compared to during the day. Moreover, the
greater tunnel length in bridge-tunnel groups and the larger number of tunnels, suggest a higher
driving workload for drivers. Above all, strengthening the design and management of bridge-tunnel
groups in mountainous expressways is necessary.

Keywords: bridge-tunnel groups; driver’s behavior; eye tracking; visual load

1. Introduction

With the continuous improvement of the expressway network in China, the moun-
tainous expressways in the central and western regions have been extensively constructed,
with a rapid increase in the mileage of bridges and tunnels. The accessibility of bridges and
tunnels in mountainous areas allows for short-distance crossing of complex terrains, traffic
efficiency improvement, and fragile ecological environmental protection of the mountains.
In China, the “Technical Standards for Highway Engineering” (JTG B01-2014 [1]) defines an
extra-large bridge as a bridge with a total span length greater than 1000 m or a single-span
length greater than 150 m. Bridges with total span lengths ranging from 100 m to 1000 m
or with a single-span length range of 40–150 m are classified as large bridges. Similarly,
tunnels can also be categorized by length according to the standard as follows: extra-long
tunnels with a length larger than 3000 m, long tunnels with a length range of 1000–3000 m,
medium tunnels with lengths between 500 and 1000 m, and short tunnels with a length
range within 500 m.

By 2020, China had 912,800 highway bridges with a length of 66,285,500 m, an increase
of 34,500 bridges and 5,651,000 m over the previous year. Among them, 6444 extra-large
bridges with a total length of 11,629,700 m and 119,935 large bridges with a total length
of 32,777,700 m were built. The country also had 21,316 highway tunnels with a length of
21,999,300 m, an increase of 2249 tunnels and 3,032,700 m over the previous year. A total
of 1394 extra-long tunnels with a total length of 6,235,500 m and 5541 long tunnels with a
total length of 9,633,200 m were built [2]. The adjacent tunnels and bridges form tunnel or
bridge-tunnel groups. With the expansion of long tunnels, extra-long tunnels, extra-large
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bridges, and bridge-tunnel groups, the proportion of tunnel and bridge sections in the
total highway mileage continues to increase, and their proportion may even exceed that
of ordinary road sections. For example, the Chengkai Expressway in Chongqing, China,
measures a total length of 128 km, and bridges and tunnels occupy 78% of the total length.
In the case of the Yakang Expressway, in Sichuan Province, China, the study road, bridges,
and tunnels account for 82% of the total length (135 km).

The operational safety in mountainous bridge-tunnel groups is closely related to
factors such as terrain, climate, road alignment, the combination of special structures,
and driver behavior, making them potentially high-risk sections challenging safety and
efficiency [3,4]. Amundsen and Ranes studied traffic accidents in Norwegian road tunnels
and found that the accident rate at tunnel entrances was the largest, and the severity of
accidents inside tunnels was higher than on open roads [5]. Caliendo and Guglielmo’s
research indicated that the rates of severe accidents and costs inside tunnels were generally
higher than those on corresponding highways in Italy [6]. With the growing construction of
bridge-tunnel groups on the mountainous expressways in China, accidents under such road
conditions have received increasing attention. The traffic accidents in the bridge-tunnel
groups in the Chongqing section of the Yuxiang Expressway accounted for approximately
23.2% of the aggregate road accidents [7]. Some serious accidents have occurred in the
bridge-tunnel groups on expressways in western China. On 10 August 2017, a large bus
collided with the entrance of the Qinling No. 1 Tunnel when traveling on a bridge-tunnel
section, resulting in 36 deaths and 13 injuries [8].

Tunnels are considered bottleneck sections of expressways and exhibit characteristics
such as confinement, inaccessibility, and difficulties in communication and rescue. Given
that tunnel groups consist of adjacent tunnels, drivers experience rapid transitions between
“dark adaptation” and “light adaptation” when they continually enter and exit tunnels,
making tunnel groups sensitive areas on roads. Due to the complex terrain of mountainous
expressways, bridge-tunnel groups sections with long tunnels, and steep downhill sections
with large altitude differences are prone to severe accidents. In this sense, driving safety
and comfort in such sections have been a concern [9]. Tunnels are typical road sections
with poor visual environments, and driving in tunnels is relatively risky [10]. At present,
transportation standards and regulations in China lack specific provisions regarding the
design of tunnel group alignments [11–13]. Tunnel groups on mountainous expressways
feature long tunnel distances, numerical tunnels, short tunnel spacings, and significant
variations in lighting conditions inside and outside tunnels. Collisions are the main traffic
accidents in bridge-tunnel groups, and high accidents occur at the entrance and exit areas.
Rapid alternations in illuminance at entrances and exits and excessive vehicle speeds are
the main causes of accidents [14,15]. The traffic environment of tunnel groups is more
complex than individual tunnels. The interactions between tunnels increase the driving
risks. Research on tunnel group design and operational management is needed [16].

Due to unique locations and complex external environments, bridge sections, typically
have higher collision severity, mostly from single-vehicle collisions, than normal sections
of highways, tunnels, and service areas [17]. Traffic risks intensify under poor visibility
and adverse weather conditions [18]. The upstream and downstream of the river-crossing
bridge are considered high-risk corridors in freeway bridge sections [19].

Affected by unique and complex terrain, increasing sections on mountainous ex-
pressways constitute long tunnels, bridge-tunnel groups, and various interchanges. The
proximity between these structures or the difficulty in identifying traffic signs leads to
risky behaviors such as short-distance lane changes and rear-end collisions [20]. Roads of
mountainous highway bridge-tunnel groups are narrow, with high curvature and steep
slopes. Chen et al. have established traffic operational risk classification criteria for bridge-
tunnel groups based on the cumulative frequency curve of average risk indicators [21].
The bridge-tunnel-interchange group sections on mountainous expressways operate in
completely enclosed environments, making traffic accident rescue operations difficult, and
these segments have a widespread and long-lasting impact [22]. During vehicle operation,
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drivers need to control their vehicles to perform lane changes, following maneuvers, over-
taking maneuvers, etc. This process requires coordination among drivers, vehicles, roads,
and the environment in which drivers play a crucial role [23].

Researchers have increasingly explored the integration of physiological, psychological,
and driving behavior studies, with eye trackers and physiological monitors widely used
in investigating driver behavior characteristics. Driver behavior can be divided into three
stages: visual perception, judgment and decision-making, and driving operation. Specifi-
cally, road perception and visual cognition are important human factors for driving comfort
and safety [24]. Drivers mainly rely on their vision to obtain information during driving.
In this sense, driver vision is directly responsible for traffic safety [25,26]. Eye-tracking
research began in the 1970s and has gained further development [27]. Simulation modeling,
driving simulation, and on-road vehicle experiments are research methods for studying the
eye movement behavior of drivers traveling in highway tunnels.

Through these experiments, drivers’ eye movement data are collected to analyze
various indicators such as pupil diameter size, standardized pupil diameter, average speed
of pupil area change, maximum transient velocity of pupil area (MTPA), pupil constriction,
etc. [28,29]. Shang et al. found the eye-gaze behavior of drivers can be used to evaluate
driving safety and comfort in tunnel groups [16]. Xu et al. reported that drivers were
most significantly affected within the range between 250 m before the tunnel entrance and
50 m before the tunnel exit by collecting electrocardiogram (ECG) and eye movement data
from 25 drivers during simulated driving [30]. Du et al. evaluated drivers’ perception
of curvature through indoor simulation tests [31]. Qi et al. commented that the cubic
spline interpolation function model could better fit the dynamic changes in the mean pupil
diameter and heart rate [32]. He et al. concluded that the drivers’ visual load increased with
the increasing rates of pupil diameter [33]. Zhu et al. conducted a real-vehicle experiment
with participants in different tunnels. They used visual characteristic parameters to study
the variations in the drivers’ mental workload when exiting an extra-long tunnel on an
expressway [34].

In summary, previous research focuses on tunnels or tunnel groups, with a predom-
inant use of simulation models and limited real-vehicle experiments. Researchers have
collected and analyzed data on the driving speed, visual perception, and ECG indica-
tors of drivers in tunnel or tunnel group environments, providing valuable references for
this paper.

Studies on driver behavior characteristics have been conducted in simulated envi-
ronments or in less realistic environments. Researchers have found that the perception of
mental workload differs between simulator-based driving experiments and real-world sce-
narios [35]. On this basis, this study performed real-vehicle experiments on mountainous
expressways. A total of 20 drivers participated in the driving tasks in the bridge-tunnel
groups. During the experiments, eye-tracking devices were used to collect indicators such
as fixation points, and pupil diameter of the drivers. In addition, information such as
vehicle speed, locations, and driving videos were collected simultaneously. This paper
aims to investigate the aspects further as follows: the distribution of drivers’ fixation points
in different sections of the bridge-tunnel group; the influence of factors such as tunnel
length, distance between adjacent tunnels, and natural lighting on drivers’ pupil diameter;
the driving workload in the tunnel entrance and exit sections of the bridge-tunnel group.
The results can provide a reference for the design and operation of bridge-tunnel groups
on expressways.

2. Materials and Methods
2.1. Experimental Scenario

The definitions of highway bridge groups and tunnel groups are illustrated in Table 1.
Briefly, the highway tunnel groups comprise two or more tunnels with a certain spacing,
including continuous and adjacent tunnels. The connecting zone of a tunnel group is
subjected to abrupt changes in the traffic environment and frequent accidents. Considering
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these changes in lighting conditions and road surface friction when entering and exiting
tunnels, drivers struggle to maintain a safe distance and speed between vehicles, resulting
in a high risk of rear-end collisions. Frequent changes in the visual environment greatly
impact the psychological and physiological qualities of drivers.

To ensure the visual needs of drivers in tunnels, the “Guidelines for Design of Lighting
of Highway Tunnels” (JTGT-D70/2-01-2014 [36]) divides tunnel lighting into threshold,
transition, interior, and exit zones. The illumination for tunnel threshold, transition, and
exit zones consists of basic and enhanced lighting, and the former is the same as that of the
interior zone. In mountainous highway bridge-tunnel sections in China, the speed limit is
typically 80 km/h. Accordingly, the recommended lengths for the threshold, transition,
and exit zones are 100, 300, and 60 m, respectively. Recommended luminance for threshold,
transition, interior, and existing zones are 39–78 cd/m2, 1.56–11.7 cd/m2, 1.5–3.5 cd/m2,
and 7.5–12.5 cd/m2, respectively.

Based on the definitions of bridge and tunnel group, this paper adopts the definition of
bridge-tunnel group in the “Guidelines for Design of Lighting of Highway Tunnels” (JTGT-
D70/2-01-2014 [36]) and “Operating Safety Technology of Freeway Special Section” [37]. In
Du’s research on the minimum fixation time of drivers in tunnel sections, the maximum
lighting adaptation time of tunnel exit was suggested at 12 s [38]. The types of bridge-tunnel
groups along mountainous freeways are defined as follows:

Table 1. Definition of highway bridge group and tunnel group.

Name Definition

Freeway tunnel group

A freeway tunnel group refers to a collection of tunnels where the distance between adjacent tunnel
portals is less than 100 m [39]. It is a collective term for adjacent or continuous tunnels [40]. The
vehicles entering the downstream tunnel will affect those traveling between downstream and
upstream tunnels [41].

Adjacent tunnels

Adjacent tunnels comprise two tunnels with a distance between their portals of less than 250 m [36].
When the design speed is 80 km/h, the maximum spacing should be controlled within 110 m [42]. If
the length of the connecting section between the tunnel groups is less than the stopping sight
distance, drivers exiting the upstream tunnel may fail to brake promptly when they observe obstacles
at the entrance of the downstream tunnel. The vehicles entering the downstream tunnel may affect
those traveling inside the upstream tunnel [41].

Continuous tunnels

Continuous tunnels are two tunnels with a distance between them, ranging from 250 to 1000 m [12,36].
At the design speed of 80 km/h, the distance between continuous tunnels should not exceed
377 m [42]. This distance ensures that drivers exiting the upstream tunnel can brake promptly when
seeing obstacles at the entrance of the downstream tunnel during light adaptation [41].

Freeway bridge group
A bridge group is a road section with two or more bridges spaced within 1 km, among which at least
one bridge has a length of 500 m or more. It describes a group of bridges spaced at a certain distance,
typically on expressways [37,43].

Bridge-tunnel group A bridge-tunnel group is a section of road where the distance between the bridges and tunnels,
tunnels, or bridges is less than or equal to the travel distance in 5 s at the designed vehicle speed [43].

Direct type: The starting and ending points of the bridge are directly connected with
the entrance and exit of the tunnel.

Indirect type: A road section located between the bridge segment and the tunnel
entrance/exit, with a length less than the driving distance within the recommended adap-
tation time (12 s).

The experimental road was the Yakang Expressway in Sichuan, China, which extends
from Ya’an City to Kangding City. The Yakang Expressway is a bidirectional four-lane
highway with a roadbed width of 24.5 m. Each lane is 3.75 m wide and designed at 80 km/h.
The road is located in the transition zone between the Sichuan Basin and the Qinghai-Tibet
Plateau, with an elevation ranging from 600 to 2500 m, and a vertical difference of up to
1900 m. Opened to traffic in late 2018, it features 44 tunnels and 129 bridges, with the bridge
and tunnel mileage accounting for 82% of the total length. It serves as a typical example of
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mountainous expressways in the central and western regions of China. For this experiment,
two tunnel-bridge groups on the Yakang Expressway were selected: the Shawan tunnel-
bridge Group (Section A) and the Lahabahe tunnel-bridge Group (Section B). Section A has
a total length of 28.77 km, with 9 tunnels (five extra-long tunnels and four long tunnels),
and the average longitudinal gradient is 1.88%. The length of bridges and tunnels is 99.53%
of the total length. Section B has a total length of 10.9 km, with seven tunnels including an
extra-long tunnel, two long tunnels, three medium tunnels, and a short tunnel. Detailed
information on these tunnels in the experimental sections is listed in Table 2. Typical
experimental scenarios are shown in Figures 1–3.

Table 2. Tunnel information.

Directions Section A Length
(m)

Distance
(m)

Longitudinal
Slope

(%)

Curve
Radii(m) Section B Length

(m)
Distance

(m)

Longitudinal
Slope

(%)

Curve
Radii(m)

Left
A1

2567 109
2.4 800~∞ B1

3915 92
2.80 710~∞right 2550 135 3796 202

Left
A2

3769 280
2.4~2.94 710~∞ B2

898 35
0.74~2.80 2124~∞right 3740 265 820 44

Left
A3

4847 68
2.59~2.80 800~∞ B3

337 206
0.74 2500~∞right 4858 82 336 79

Left
A4

4730 590
2.30~2.59 834~∞ B4

566 206
0.68 2500~∞right 4712.6 587 562 194

Left
A5

1300 77
2.30~2.93 ∞ B5

1708 51
1.80~2.70 1400~∞right 1275 99 1661 74

Left
A6

1953 66
2.20~2.80 1130~∞ B6

1266 169
1.80~2.82 980~∞right 1886 110 1277 199

Left
A7

3123 99
2.30~2.80 1130~1250 B7

621 -
0.50~2.80 710~∞right 3126 125 614 -

Left
A8

1508 45
2.22~2.80 1400~∞right 1481 62

Left
A9

3685 -
2.22~2.75 1500~∞right 3676 -
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2.2. Participants

In this research, 20 drivers with an average age of 36 were recruited in Ya’an City,
Sichuan Province, China, including 12 males and 8 females. These subjects had an average
driving experience of 8 years and an average annual driving distance of 18,000 km. The
experiment was conducted in accordance with the principles outlined in the Declaration of
Helsinki of 1975, as revised in 2000. Participants were prohibited from consuming alcohol
the day before the experiment and were in good physical health.

2.3. Test Vehicle and Facilities

The temporal and spatial characteristics of eye movement are the physiological and
behavioral manifestations during visual information extraction, which is related to human
psychological activities. The Tobii Pro Glasses 2 wearable eye tracker enables wireless
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real-time observation. This lightweight device ensures comfort and freedom of movement
for the participants during experiments. It captures natural visual behavior data at a
sampling rate of 50 Hz. The human–machine synchronized cloud platform (ErgoLAB 3.0)
intelligently overlays data from eye-tracking videos onto specified targets, generating visual
results with quantified data or extracting eye-tracking metrics. The test vehicle is a 2019
Hyundai Elantra, with body dimensions of 4610/1800/1450 mm (length/width/height)
and a wheelbase of 2700 mm. The vehicle is equipped with a 1.5 L engine mated with a
6-speed continuously variable transmission, which meets the driving requirements of the
experimental roads.

2.4. Experimental Procedure

The experiment was conducted from November 15 to 7 December 2021. Considering
the reduced number of tourists and traffic control measures for large trucks during the
winter season on the Yakang Expressway, the traffic flow on the experimental sections
was relatively small. During the experimental period, the traffic volume for Section A
ranged from 2000 to 3500 vehicles per day, and that for Section B was between 4000 and
6000 vehicles per day. These vehicles were operated under free-flow conditions.

To analyze the impact of natural lighting on driving behavior, the experimental period
was divided into daytime and nighttime. Luding County is located between Sections A
and B, about 10 km from both sections. According to the weather forecast, the sunrise
time at Luding during the experimental period was from 07:36:02 to 07:52:14, the sunset
was from 18:15:17 to 18:11:10, and the duration of darkness was from 18:40:29 to 18:37:10.
Considering the weather forecast and the actual conditions, daytime and nighttime were set
from 10:00 a.m. to 3:00 p.m. and from 7:00 p.m. to 9:00 p.m., respectively. The temperature
in the test area ranged from 5 to 19 ◦C, and the weather was cloudy or sunny. The speed
limit on the experimental sections was 80 km/h, and drivers were instructed to drive freely
according to their driving habits, adhering to traffic laws and regulations. The experimental
procedure were shown in Figures 4–6.
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3. Results
3.1. Drivers’ Fixation Area

The fixation area reflects the characteristics of drivers’ gaze behavior as they gather
information about the road and target points while driving. The fixation heatmap created
in this study illustrates the concentration of fixation points generated by drivers in a given
time period. In the fixation heatmap, the pixel represented in red has the largest number of
fixation points, yellow represents that there are half of the maximum number of fixation
points, and green represents the lowest density of fixation points. Based on driving behavior
and relevant research, the fixation area was divided into the road area, steering wheel area,
mobile phone area, and other areas. The fixation heatmap at the exit of a short tunnel is
shown in Figure 7, and the fixation heatmap at the exit of an extra-long tunnel is shown in
Figure 8. It can be observed that longer tunnels correspond to a higher concentration of
fixation points; while driving through tunnel-bridge groups, the drivers mainly direct their
focus toward the lower right area of the road in front of them.
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3.2. Pupil Diameter of the Drivers

The pupil is a small circular aperture located at the center of the iris in the eyes of
animals and humans. It serves as the passage of light into the eyes. Pupil diameter was
measured directly with an eye-tracking device and the obtained data were exported using
ErgoLAB 3.0 software. Data smoothing techniques (smooth function) and digital FFT
filtering were applied to avoid amplitude distortion and ensure curve smoothness. The
average pupil diameter values of the left and right eyes were selected as the base data. A
comprehensive plot was generated to show the variation of pupil diameter with driving
distance and the geometric alignment of tunnel-bridge groups (Figures 9 and 10). The
results showed that while driving through the first tunnel of the tunnel-bridge groups A
and B, the drivers’ pupil diameter remained at its maximum value of 5.0 to 5.5 mm. The
pupil diameter within the other tunnels of the tunnel-bridge groups showed a rising trend
with increasing tunnel length.
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3.3. The Influence of Tunnel Length on Pupil Diameter

Three representative tunnels from the tunnel-bridge groups were selected for com-
parative analysis based on their lengths: extra-long tunnel A9 (3685 m), long tunnel A6
(1953 m), and medium tunnel B4 (566 m). The pupil diameter at the entrances of these
tunnels is shown in Figure 11. As the tunnel length increased, the driver’s pupil diameter
in the 0–50 m zone before the tunnel entrance also increased. After entering the tunnel, the
pupil diameter in the extra-long tunnel exhibited significant fluctuations, yet the overall
pattern remained consistent with the pre-tunnel entrance state.
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The pupil diameter at the exits of the tunnels is shown in Figure 12. A greater tunnel
length corresponds to a larger pupil diameter at the exit. As drivers gradually moved
out of the tunnels, the pupil diameter decreased rapidly, and the reduction while exiting
the extra-long tunnel was the most remarkable. Approximately 10 m after leaving the
extra-long tunnel, the pupil diameter became comparable to the values corresponding to
other tunnels with different lengths.
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3.4. The Impact of Adjacent Tunnel Spacing on Pupil Diameter

The data of drivers’ pupil diameter at the entrances and exits corresponding to adjacent
tunnel spacing of 35 m (B2), 77 m (A5), 169 m (B6), 206 m (B3), and 590 m (A4) are shown in
Figures 13 and 14. At the tunnel entrance, in terms of the pupil diameter, the ranking is P169
> P77 > P35 > P590 > P206. At the tunnel exit, the order is P35 > P590 > P169 > P77 > P206.
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3.5. The Effect of Natural Light Conditions on Pupil Diameter

The average pupil diameters at different tunnel entrances and exits during day and
night are shown in Figures 15 and 16. At both tunnel entrance and exit, the pupil diameter
values at night are larger than that at daytime. At daytime, the brightness outside the
tunnel is higher than that inside the tunnel. At tunnel entrances, the pupil diameter of
drivers tends to gradually increase until they adapt to the dark environment. In contrast,
at night, the tunnel is well-lit for safety reasons. As drivers enter the tunnel, the pupil
diameter gradually decreases and then stabilizes as they adapt to the brighter lighting
conditions inside. The pattern was reversed at tunnel exits. Specifically, during night
driving, after leaving the tunnel, the pupil diameter gradually increases to a stable value
with the adaption to the dark environment outside.
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3.6. Evaluation of Driver Visual Load

ISO 2631-1-1997 “Mechanical vibration and shock” [44] uses the “weighted root mean
square acceleration” as a basic indicator for evaluating whole-body vibration in humans.
The pupil size variation induced by the abrupt illumination changes at tunnel entrances
and exits is a transient process. In this respect, this phenomenon is similar to the differential
settlement-induced vehicle vibration at bridgeheads. The weighted root mean square of
the pupil dilation velocity can be used to evaluate the visual workload of drivers [45]. The
formula is as follows:

Vω(t0) =

[
1
τ

∫ t0

t0−τ
V2

τ (t)dt
] 1

2
(1)

where Vω(t0) represents the instantaneous pupil area changing frequency-weighted velocity
amplitude; τ denotes the integration time constant; t represents time (integration variable);
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t0 stands for the observation time (instantaneous). A small τ indicates transient vibration
or transient shock.

MTPA refers to the maximum value of Vω(t0). When measuring the MTPA at tunnel
entrances and exits, the recommended value for τ is 1 s. The expression for MTPA is
as follows:

MTPA = max{Vω(t0)} (2)

Relevant studies have shown that MTPA correlates with the duration of the visual
oscillation. The duration of visual oscillation is defined as the period between the starting
point when the pupil area increases by more than 50% compared to the previous moment,
and the ending point when the pupil area decreases by more than 50% compared to the
preceding moment. Due to the short duration of the visual oscillation, to achieve a quan-
titative assessment of the visual psychological and physiological load on the drivers, the
indicator is multiplied by a conversion coefficient to obtain the converted visual oscillation
duration, denoted as “tc”. Research suggested that visual stimuli shorter than 0.1 s do
not cause adverse effects on drivers’ visual perception, and 0.2 s is the typical minimum
duration of visual stimuli in psychological experiments. Du et al. found that at tunnel
entrances and exits, when tc < 0.2 s, the visual oscillation may cause slight discomfort to
drivers but does not affect their driving behavior. However, when tc > 1 s, which indi-
cates a severe visual oscillation, a significant psychological and physiological load will be
exerted on the driver [46]. This impairs drivers’ ability to perceive the road and relevant
traffic information, such as traffic signs and the presence of vehicles ahead and behind,
significantly increasing the risk of traffic accidents. With the two indicators, namely, MTPA
and the converted visual oscillation duration, a visual comfort evaluation index system for
tunnel-bridge groups is established (Table 3), and the evaluation results of drivers’ visual
load are divided into five levels: A to E.

Table 3. The Driver Visual Load Evaluation in Tunnel Entrance and Exit [28,45].

MTPA/(mm2/s)
tc/s

The Driver Visual Load Evaluation Results

Entrance Exit Evaluation Grade Description

<20 <30 <0.1 A comfort
[20, 30) [30, 40) [0.1, 0.2) B Slight discomfort
[30, 70) [40, 85) [0.2, 1) C discomfort

[70, 105) [85, 105) [1, 1.5) D Very uncomfortable
≥105 ≥105 ≥1.5 E terrible

Based on the lighting conditions in different sections of the tunnel, this study catego-
rizes the tunnel into seven segments: the entrance access zone, the entrance section, the
entrance change-over portion, the basic segment, the exit change-over portion, the exit
section and the exit access zone, as shown in Figure 17 [47]. The visual load was calculated,
and the results are shown in Table 4.
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Table 4. The driver visual load evaluation results.

Number
MTPA/(mm2/s)/Evaluation Grade of Visual Load

Entrance
Access Zone

Entrance
Section

Entrance
Change-Over Portion

Basic
Segment

Exit Change-Over
Portion

Exit
Section

Exit Access
Zone

A1 4.11/A 11.1/A 17.78/A 45.34/C 11.83/A 5.8/A 3.81/A
A2 5.2/A 6.51/A 25.89/B 24.36/B 7.39/A 2.93/A 6.02/A
A3 3.31/A 5.38/A 11.27/A 14.29/A 7/A 5.26/A 3.13/A
A4 - 23.83/B 16.04/A 24.59/B 11.06/A 21.07/A 4.49/A
A5 - 8.08/A 8.66/A 47.44/C 42/C 20.83/A 6.44/A
A6 57.77/C 6.01/A 37.88/C 13.02/A 8.57/A 4.9/A 8.48/A
A7 6.19/A 7.84/A 8.07/A 34.51/C 51.81/C 10.97/A 15.1/A
A8 8.48/A 21.42/B 51.35/C 40.51/C 36.23/B 31.7/B 3.94/A
A9 - 42.4/C 67.62/C 50.44/C 20.28/B 3.69/A 4.68/A
B1 35.1/C 16.75/A 19.91/A 48.28/C 23.17/A 30.83/B 10.95/A
B2 7.56/A 7.88/A 4.59/A 47.85/C 9.11/A 23/A 14.33/A
B3 3.97/A 9.74/A 11.31/A 21.8/B 5.39/A 4.78/A 10.07/A
B4 - 4.56/A 4.05/A 10.64/A 9.6/A 3.28/A 3.55/A
B5 2.8/A 14.59/A 3.09/A 5.79/A 16.13/A 3.33/A 5.61/A
B6 7.96/A 3.86/A 5.3/A 12.76/A 9.08/A 2.55/A 32.66/B
B7 6.66/A 5.23/A 3.91/A 16.89/A 8.9/A 30.96/B 8.22/A

4. Discussion

Previous studies on driver behavior and psychological characteristics in tunnels have
mostly focused on individual tunnels, with a particular emphasis on the effects of lighting,
landscapes, colors, and other factors on pupils. Research on bridge-tunnel groups primarily
centered around operational safety and accident-prone sections. There has been relatively
limited investigation of the mechanism of visual workload on drivers in bridge-tunnel
groups with high bridge-to-tunnel ratios. In this study, two bridge-tunnel groups were
selected for real vehicle tests, during which eye-tracking data from 20 drivers were collected
to analyze visual characteristics and driving workload.

The driver’s fixation area is the key to determining whether the driver can obtain
effective road information. As can be seen from Figures 7 and 8, when driving in bridge-
tunnel groups, the driver’s fixation area is mainly concentrated in the lower right of the
road area ahead, and in a longer tunnel, there are more gaze points. The reason may be
that the driving environment in bridge-tunnel groups is relatively simple, and the drivers
must observe the highway management regulations that prohibit lane changes, in addition
to contending with the restrictions imposed by lighting conditions, visual distance, and
other factors. In this condition, the drivers face a large visual load and are eager to drive
out of the tunnel; therefore, they prioritize the information in the area ahead of the road.
In addition, when drivers enter or leave the tunnel, they will experience sudden changes
in the light condition, which will reduce the field of vision and the visual distance. This
requires the drivers to pay more attention to the area closer to the road. Therefore, it is
suggested to streamline the setting of traffic signs on the connecting sections of tunnels
and bridges to reduce the disturbance of non-essential and non-urgent traffic information.
Solid lines should be drawn throughout the connecting section, and vehicles should be
prohibited from lane changes.

From Figures 13 and 14, it can be seen that the distance between adjacent tunnels has
an effect on pupil diameter. When the tunnel spacing is 206 m, the driver’s pupil diameter at
the tunnel entrance and exit is the smallest. Under the condition of adjacent tunnel spacing
of 35 m, as the driver approaches the entrance section, the pupil diameter changes slowly,
and after entering the section, the value rapidly increases and then gradually stabilizes
with the adaptation to the dark environment; the pupil diameter in the exit section is the
largest. When the distance between adjacent tunnels is 77 m or 169 m, the pupil diameter
of the driver in the tunnel entrance section falls in the largest range, and the pupil diameter
in the tunnel exit section is in the middle range. When the distance between adjacent
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tunnels is 590 m, as the drivers move close to the entrance section, the pupil diameter
remains stable, and after entering the tunnel, the value increases rapidly and peaks. The
pupil diameter of the driver in the exit section first decreases slowly and then fluctuates
greatly. The above findings show that when the distance between adjacent tunnels is too
small, the black hole effect and the white hole effect frequently alternate, exerting a great
psychological load on the driver at the tunnel entrance and exit. If the distance between
adjacent tunnels is excessively large, it is difficult for drivers to adjust to the environmental
changes in time, resulting in a rapid increase in pupil diameter and poor dark adaptation
upon entering the tunnel. Therefore, when the distance between adjacent tunnels is less
than 200 m, it is recommended to set a full-coverage shading shed between tunnels. When
the distance between the adjacent tunnels is greater than 200 m, the shading shed can be set
up in the exit section of the upstream tunnel, and the lighting can be strengthened in the
entrance section of the downstream tunnel to improve the visual adaptability and comfort
of the drivers.

MTPA was used to evaluate drivers’ visual load in bridge-tunnel groups A and B
(Table 4). It can be found that in the entrance access zone, the visual load evaluation grade
in the B1 and A6 tunnels is C. The main reason for the discomfort is as follows. Before
entering the tunnel, there are long-distance sections with low visual load. While driving
through these sections, the drivers have adapted to the light conditions. However, when
they enter the tunnel, the environmental conditions suddenly change, and the drivers need
to accommodate these variations. In the entrance section, the visual load evaluation grade
of the A9 tunnel is C, and that of the A4 and A8 tunnel is B. At the entrance change-over
portion, the visual load evaluation grade of the A6, A8, and A9 tunnels is C, and the grade
of the A2 tunnel is B. At the exit change-over portion, the A5 and A7 tunnels are rated C
in terms of visual load, and the A8 and A9 tunnels are rated B. In the exit section, the B1,
B7, and A8 tunnels are rated B for visual load assessment. In the exit access zone, only the
visual load evaluation grade of the B6 tunnel is B. Section A of the bridge-tunnel groups
is too long, which explains why the drivers are anxious to leave when driving in the A8
tunnel and the A9 tunnel. The A4 tunnel entrance is close to the A3 tunnel exit, and there is
a shelter. In this case, the driver has to stay in a dark environment and bear a high visual
load for a long time. To avoid this situation, when the tunnel is too long, it is recommended
to ease the driver’s driving pressure and improve visual comfort by setting retro-reflective
arch and LED matrix landscape lighting belts.

With the combination of the results in Figures 9 and 10 and Table 4, it can be seen
that the visual load of drivers in section B is acceptable, mainly manifested as a small
fluctuation of pupil diameter, and the visual load evaluation results (MTPA grade) are
consistently good across different segments. The reason is that compared with section A,
section B has fewer tunnels, shorter tunnel lengths, smaller average longitudinal slope,
and curve radii, and fewer bridge-tunnel connection sections, which contributes to more
comfortable driving.

5. Conclusions

The planning and construction of mountain expressway bridge-tunnel groups are
mainly affected by terrain and geological conditions. The light environment in the bridge-
tunnel groups is also closely related to the safe operation of the mountain expressway. The
inner space of the tunnel section of bridge-tunnel groups is enclosed, features a monotonous
environment, and exhibits noticeable differences from the external environment. Under the
condition of high-speed driving, the driver’s visual field refresh frequency is high, and the
visual distance is relatively narrow. The frequent abrupt change in lighting conditions in
bridge-tunnel groups causes a great visual load on the drivers. The drivers keep shuttling
between the outdoor environment and tunnels with huge differences in lighting, and their
eyes keep experiencing the “black and white hole effects”. When the distance between two
continuous tunnels is too short, the drivers have to adjust promptly to light changes, i.e.,
the “black and white hole effect”. If the drivers intend to pass through the bridge-tunnel
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groups composed of multiple bridges and tunnels, they have to deal with frequent and
repeated light-to-dark and dark-to-light transitions. These challenges will place a heavy
visual load on the drivers, seriously affect their visual function, and make the bridge-tunnel
group sections prone to accidents. Therefore, it is of great significance to study the visual
changes of drivers and to reveal the mechanism of load changes.

Through experiments, this study studies the visual load of drivers in mountain ex-
pressway bridge-tunnel groups based on fixation area, pupil diameter, MTPA, etc. The
experimental results show that when driving in bridge-tunnel groups, the pupil diameter
of the drivers in the first tunnel falls within the largest range [5.0 mm, 5.5 mm], and the
driving load is also the largest. In other tunnels of bridge-tunnel groups, the pupil diameter
and the number of fixation points of drivers rise with the increase of the length. For a single
tunnel in a bridge-tunnel group, the driver pupil diameter at 0–50 m before the tunnel
entrance and at the tunnel exit is proportional to the tunnel length. If the distance between
adjacent tunnels is too large or too small, the driver will maintain a large pupil diameter,
which will reduce driving comfort. The grade of the driver’s visual load was evaluated
based on MTPA. The results showed that a longer total length of bridge-tunnel groups,
a larger number of tunnels, and a worse geometric index will all lead to more significant
visual fluctuation and greater visual load.

This study provides a reference for the analysis of driving behavior in bridge-tunnel
groups and the design of tunnel lighting and shading facilities. The driving in bridge-tunnel
groups is affected by many factors, which cannot be all incorporated into the current study,
so there are some limitations to this study. Future improvement directions are listed below:

(1) In order to ensure driving safety in mountain highway bridge-tunnel groups, the
participants of the experiments are all experienced drivers. The sample size is small,
and the distribution is uneven. This study did not consider the influence of driver
type on visual characteristics, and subsequent studies can further analyze the visual
characteristics of drivers in terms of their gender, age, nationality, road familiarity,
and driving style.

(2) This study only uses two indicators, namely, fixation area and pupil diameter, to study
driving behaviors in bridge-tunnel groups. Relevant studies on gaze time, gaze area
division, and gaze transfer characteristics can be carried out in the future. Moreover,
EEG, ECG, and myoelectric data can be obtained by physiological instruments to
carry out a comprehensive analysis of the driver’s driving load.

(3) This study is mainly carried out from an overall perspective of bridge-tunnel groups
and does not fully consider the impact of bridge and tunnel geometric alignment on
drivers’ visual characteristics, which will be further investigated in the future.
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