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Abstract: Arranging products in stores according to planograms, optimized product arrangement
maps, is an important sales enabler and necessary for keeping up with the highly competitive modern
retail market. Key benefits of planograms include increased efficiency, maximized retail store space,
increased customer satisfaction, visual appeal, and increased revenue. The planograms are realized
into product arrangements by humans, a process that is prone to mistakes. Therefore, for optimal
merchandising performance, the planogram compliance of the arrangements needs to be evaluated
from time to time. We investigate utilizing a computer vision problem setting—retail product
detection—to automate planogram compliance evaluation. Retail product detection comprises
product detection and classification. The detected and classified products can be compared to
the planogram in order to evaluate compliance. In this paper, we propose a novel retail product
detection pipeline combining a Gaussian layer network product proposal generator and domain
invariant hierarchical embedding (DIHE) classifier. We utilize the detection pipeline with RANSAC
pose estimation for planogram compliance evaluation. As the existing metrics for evaluating the
planogram compliance evaluation performance assume unrealistically that the test image matches
the planogram, we propose a novel metric, called normalized planogram compliance error (EPC), for
benchmarking real-world setups. We evaluate the performance of our method with two datasets: the
only open-source dataset with planogram evaluation data, GP-180, and our own dataset collected
from a large Nordic retailer. Based on the evaluation, our method provides an improved planogram
compliance evaluation pipeline, with accurate product location estimation when using real-life
images that include entire shelves, unlike previous research that has only used images with few
products. Our analysis also demonstrates that our method requires less processing time than the
state-of-the-art compliance evaluation methods.

Keywords: computer vision; object detection; planograms

1. Introduction

In the modern, highly competitive retail environment, work efficiency is essential and
requires algorithmic optimization of operations. This includes optimization of the display
and arrangement of products in stores: planograms, charts that show where each product
should reside on a shelf, are often generated by specialized software, and the products are
then arranged accordingly. Studies have shown that complying with optimized planograms
can increase sales up to 7–8%, and that the total cost of suboptimal merchandising sales
performance in the US is approximately 1% of gross product sales [1]. Over 60 percent
of purchase decisions are made at the point of sale for which visibility and presentation,
and thereby decisions made through a planogram, are vital for motivating sales.

As the planograms are “realized” into product arrangements by people, the possibility
of human error is always present. Therefore, the arrangements need to be checked for
planogram compliance—whether the arrangement of products in-store truly matches the
desired arrangement given by the planogram—from time to time. This, too, is still a
manual task, requiring costly human resources. Computers, on the other hand, have better
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memories, do not make mathematical errors, and are better at multitasking than humans,
and therefore a computer-based compliance method is appealing. We encourage the reader
who is less familiar with the latest deep learning-based methods of computer vision to look
for background information from the field’s foundational sources [2,3].

Object detection is a computer vision task that could provide automation for planogram
compliance evaluation. Most object detection literature deals with generic object detec-
tion—recognizing everyday objects in everyday environments. This includes approaches
such as feature pyramid networks (FPNs) [4], region-based convolutional neural networks
(R-CNNs) [5], and you only look once (YOLO) [6], as well as challenges such as Ima-
geNet [7] and MS COCO [8]. However, recognizing retail products in the environment
of racks is a mix of generic object detection and object instance detection. Object instance
detection means detecting a specific object instead of a general class, as is carried out in
general object detection. In the retail product detection problem setting, the aim is to
localize and classify products from images of shelves, cabinets, racks, or bays taken in retail
store aisles. The recognition process is called the retail product detection problem [9], and
it exhibits a number of difficulties in comparison to this more general problem that has
made using computer vision for planogram compliance verification infeasible for quite
some time.

The two most fundamental difficulties of retail product detection—the small amount
of available training data per class and the domain shift between training data and test
data—were identified already by [10], who kick-started research into retail product detec-
tion in 2007. Other difficulties of retail product detection when compared to generic object
detection and object instance detection include the very high number of object classes (in
the order of several thousand for small shops and tens of thousands for hypermarkets);
the closeness of the appearance of the object classes (for example, for different flavors
of the same product from the same brand), requiring fine-grained classification; and the
frequently changing assortment-making models that require slow retraining infeasible [11].
Due to these peculiarities, the results achieved by [10]—and, indeed, results achieved with
any pure generic object detection or instance detection methods—were quite poor.

Retail product detection approaches that perform well enough to be utilized in practice
have emerged only recently. Local invariant feature-based approaches have been utilized
to solve the problem well beyond the breakthrough of CNNs for generic object detection.
Notable approaches that utilize invariant features, in addition to the seminal [10], include
combining corner detection, color information, and Bag of Words [12]; utilizing BRISK
features and Hough transform estimation [13]; and detecting products one shelf level at a
time with SURF features and dimensionality information-based refinement [14].

The first papers discussing the use of deep learning for retail product detection were
published only in 2017. Initially, deep learning was utilized in hybrid approaches, that
is, in combination with local invariant features. In notable hybrid models, deep learning
was used for product classification [12] showing the power of deep learning over more
traditional methods in the case of complex (that is, realistic) scenarios and [15] presenting
a non-parametric probabilistic model for initial detection with CNN-based refinement
trying to overcome the lack of training data. An attention mechanism was added by
Geng et al. [16], improving the detection accuracy and adaptability to new product classes
without retraining.

Starting in 2018, fully deep-learning-based product detection pipelines have started to
emerge. These include combining a class-agnostic object detector with an encoder network
utilized for classification into a model that, after being trained once, was able to fit new
stores, products, and packages of existing products [11] and combining RCNN [5] object
detection and ResNet-101 [17] classification with a specialized non-maximal suppression
approach for rejecting region proposals for unlikely objects arising from overlapping
products in images [18].

In addition to end-to-end retail product detection, research has been carried out to-
wards product proposal generation—detecting the objects without classifying them. The main



Appl. Sci. 2023, 13, 10145 3 of 24

obstacle with this research was, until 2019, the lack of quality training data, with attempts
to circumvent this via, e.g., 3-D renderings [19]. In 2019, however, Ref. [20] introduced
the SKU-110K dataset, including images collected from thousands of supermarket stores
and being of various scales, viewing angles, lighting conditions, and noise levels and thus
enabled the training of deep product proposal generators. The baseline product proposal
generation approach of [20] consisted of combining RetinaNet with a Gaussian-based
non-maximal suppression. Later utilizations of SKU-110K include baking the Gaussian
non-maximal suppression into the product proposal generator network itself, thus resulting
in a multi-task learning problem [21], and addressing object rotations and outlier training
samples with engineered-for-purpose neural network models [22].

The other end of end-to-end retail product detection—that is, retail product classifica-
tion—has also seen some research separate from the full problem. One notable approach is
that of [23], which combines training an encoder for k-nearest neighbor (KNN) product
classification with utilizing generative adversarial networks (GANs) for data augmentation
and a distance measure that takes into account the product hierarchy.

The planogram compliance evaluation problem is not solved by just detecting the
products. Additionally, the detected arrangement needs to be compared to the planogram,
and any deviations noted. This is not trivial, either: the exact positions where the products
given in the planogram should be in the image are rarely known.

Planogram compliance evaluation is not as well researched as retail product detec-
tion. The seminal articles [1,24] came out in 2015, with approaches consisting of the
utilization of detecting subsections of shelves [1] and distance metrics of the current shelf
image with an image of the shelf taken in its ideal, planogram-compliant state [24]. Other
notable approaches to the problem include viewing it as a recurring pattern detection
problem [25], evaluating compliance one shelf at a time with the help of directed acyclic
graphs (DAGs) [14], and viewing the product arrangements as graphs and solving for a
maximum common subgraph between them [13]. The evaluation methods used in existing
research on planogram compliance evaluation seem to assume that the test images match
the planograms and to then just calculate standard object detection performance metrics
based on how many of the facings were indeed detected. We argue that for a real-world
use case, having test images that do not fully match the planogram is more interesting
than having only a hundred percent compliant images. To enable evaluating planogram
compliance evaluation methods with datasets that correct this deficiency, we propose a
novel metric called normalized planogram compliance error EPC.

Some of the recent developments bordering retail product detection have not been to
our knowledge yet utilized in a full retail product detection pipeline. On the one hand,
the SKU-110K dataset [20] has enabled the training of product proposal generators, deep
neural networks that locate the products without classifying them, on an unprecedented
scale. The dataset has already been successfully utilized in networks such as the Gaussian
layer network (GLN) [21] and the dynamic refinement network [22]. On the other hand, the
domain invariant hierarchical embedding (DIHE) [23] introduced the idea of utilizing GANs
to train an encoder for KNN classification to be used for product classification purposes.

To enable planogram compliance evaluation on large, real-world shelves and to take
planogram compliance evaluation to the neural network era, we propose a novel retail
product detection pipeline using GLN for product detection, DIHE for product classification,
and RANSAC for pose estimation [26]. Our proposed pipeline is suitable for use in all brick-
and-mortar stores regardless of the retail vertical. As the conventional metrics used for
evaluating the performance of object detection are not suitable for planogram compliance
detection, we propose a novel metric. We summarize our main contributions as follows:

• We propose a novel retail product detection pipeline by combining a product proposal
generator [21] with a product classification approach [23], and compare the product
proposal generation, product classification, and retail product detection performance
of the resulting framework to existing approaches.
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• We utilize the product detection pipeline and RANSAC pose estimation [26] to evalu-
ate planogram compliance on real retail data consisting of full planograms and images
that are not fully planogram compliant, while previous research has focused on small
fully compliant subsections of planograms

• We propose a novel metric, the mean-squared planogram compliance error, for bench-
marking planogram compliance detection performance.

2. Materials And Methods

Our proposed approach consists of a two-stage product detector and a RANSAC
comparison between the planogram and the detections. We choose a two-stage detector
over a one-stage one due to a number of reasons related to the retail product detection
problem: one-stage approaches need retraining whenever the assortment changes; one-
stage detectors have been shown to fare poorly against two-stage approaches when dealing
with a multitude of small objects, which is a common scenario in retail product detec-
tion [27]; and a two-stage detector allows us to choose and improve upon both of the
components separately.

The proposed two-stage detector utilizes a deep product proposal generator [21] as its
first stage, and classifies these proposals with an encoder-based approach [23] in the second
stage. The first stage is selected due to its impressive performance with the SKU-110K
dataset, which leads us to expect top-level performance in real-world use. The second
stage is selected for its novel way of dealing with the domain shift, its ability to handle an
arbitrary amount of classes, and its ability to classify products that were not present in the
training data.

The detector outputs an empirical planogram, which is then compared to the ex-
pected planogram utilizing RANSAC-based pose estimation. The approach is visualized in
Figure 1.

P C

RANSAC

Input image

Reference planogram

Result

11 11 11

12 12

34 34

26 25 25 25

11 11 11 34 34

12 12 26 26 26 26

Figure 1. A visualization of the proposed approach. The inputs consist of the input image and the
reference planogram. The purple box marked with P represents the product proposal generator,
and the brown box marked with C represents the product classifier. The result shows which of the
products expected in the reference planogram were included in the input image (green numbers) and
which were not found (red numbers). The input image and the images that the reference planogram
consists of are from the Grocery Products dataset of George and Floerkemeier [28].

2.1. Product Proposal Generation

We follow the example of [21] in choosing ResNet-50, a fully convolutional object
classification network, pre-trained with the ImageNet dataset [7], as the backbone for our
product proposal generator. The backbone architecture is visualized in Figures 2 and 3.

We build a feature pyramid network (FPN, Ref. [4]) on top of this backbone, and aug-
ment the architecture further by making our network training a multi-task learning problem
via the introduction of a Gaussian layer and subnet [21]. The architecture of the resulting
network is visualized in Figures 4–7. We further explore substituting the ReLU activation
of the final layer of the Gaussian subnet with Tanh. Our intuition here is that as the predic-
tion target of the Gaussian subnet is limited to the range [0, 1], it makes sense to bar the
neural network from producing values outside of this range. This alternative is visualized
in Figure 6b.
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(a) Basic bottleneck.

F W

H

F

H/2

F · 4 W
/2

φ

Conv 1x1
Conv 3x3
ReLU

(b) Downsampling bottleneck.

Figure 2. The bottlenecks in the PyTorch [29] implementation of ResNet-50. The input width is
W, height is H, and it consists of F, F · 2 or F · 4 feature maps, depending on the position in the
network. The output from the bottleneck consists of F · 4 feature maps of size H ×W in the case of
basic bottleneck or W/2× H/2 in the case of downsampling bottleneck. The identity connection
(the blue arrow from input to before the final ReLU activation) is implemented as simple summation
if the input is of the same shape as the output. Otherwise a 1 × 1 convolution, possibly with a
stride of 2, is applied before the summation. The downsampling in the downsampling bottleneck is
implemented via a stride of 2 in the middle, 3 × 3 convolution layer. The PyTorch implementation
differs from the original ResNet-50, introduced by He et al. [17], by downsampling with a stride of
2 in the 3 × 3 convolution layer instead of in the first, 1 × 1 convolution layer.

As suggested by [21], we use a weighted sum of three different loss functions, each
calculated from different outputs of our product proposal generator network. Our full loss
function is

L = αfocalLfocal + LL1 + αMSELMSE . (1)

In the above equation, Lfocal is focal loss [30]. We use it for foreground–background
classification loss. It is calculated as

Lfocal(pt) = −αt(1− pt)
γ log(pt) , (2)

where

αt =

{
α if the detection belongs to the foreground,
1− α otherwise

. (3)

α ∈ [0, 1], γ ≥ 0 are hyperparameters,

pt =

{
p if the detection belongs to the foreground,
1− p otherwise

, (4)

and p ∈ [0, 1] is the estimated probability that the detection belongs to the foreground [30].
LL1 is L1 loss, or, in other words, mean absolute error. We use it as our bounding box

regression loss. It is defined as

LL1(x, x̂) = |x− x̂| , (5)

where x is the ground truth, and x̂ is the prediction.



Appl. Sci. 2023, 13, 10145 6 of 24

64 W
/2

H/2

max
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Figure 3. The PyTorch implementation of the ResNet-50 backbone, as used in RetinaNet [17,29,30]. The input width is W, height is H, and the number of input
channels is 3. ResNet bottleneck layers are presented more in detail in Figure 2. The shape of the features after the last bottleneck is 2048× H/32×W/32. The layers
are grouped to C1, C2, · · · , C5; these groups are equivalent to conv1, conv2.x, · · · , conv5.x in He et al. [17].
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Top down input
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(a) Feature pyramid network block.

256 W

H

×2 +

128 64 W

H

×2
Top down input

Lateral input

Conv 1x1
Conv 3x3
ReLU
Interpolate x2
Combine via elementwise sum

(b) Gaussian layer.

Figure 4. Feature pyramid network block as given in the PyTorch implementation of RetinaNet [29,30]
and the Gaussian layer introduced by Kant [21]. In both figures, the top-down input is of shape
256× H/2×W/2, and the lateral input has shape F× H ×W, with varying F. The output shape
is 256× H ×W for the feature pyramid network block and 64× 2H × 2W for the Gaussian layer.
Interpolation is performed with the nearest neighbor method in all cases.

256 256 256 256

H

9 W

(a) Classification head.

256 256 256 256

H

36 W

Conv 3x3
ReLU

(b) Bounding box regression head.

Figure 5. The classification and regression heads of the PyTorch implementation of RetinaNet [29,30].
The input shape is 256× H ×W. The output shape is AK× H ×W for the classification head and
4A × H ×W for the regression head, where A is the number of anchors per location and K the
number of classes. In our single class, the object detection case, using the default values of the
PyTorch implementation, gives us an output of 9× H ×W for classification and 36× H ×W for
bounding box regression.
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32 32 16 16

H

1 W

(a) Gaussian subnet with final ReLU activation.

32 32 16 16

H

1 W
Conv 1x1
Conv 3x3
ReLU
Tanh

(b) Gaussian subnet with final Tanh activation.

Figure 6. The Gaussian subnet used in Kant [21] (a) and our proposed modification with hyperbolic
tangent activation (b). The input shape is 64×H×W. The output of the subnet consists of a Gaussian
map, with shape 1× H ×W and each pixel representing the density of the map at the given point.
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/2

H/2

C1

256 W
/4

H/4
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512 W
/8

H/8

C3
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W
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6

H/16
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W
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Conv 3x3
ReLU
FPN block
Link to classification- and bounding box subnets

Gaussian layer

Gaussian subnet

Figure 7. The Gaussian layer network, introduced by Kant [21], as implemented via extending the
PyTorch implementation of RetinaNet [29,30]. The major building blocks—the backbone, the feature
pyramid network (FPN), and the Gaussian layer and subnet—are annotated with braces, along with
the lateral connections. The backbone blocks, labeled C1–C5, are shown in more detail in Figure 3. The
FPN blocks are illustrated in Figure 4a. They are labeled P3–P7. P5 receives only lateral connections,
i.e., its top-down input consists of just zeroes. P6 and P7 receive only top-down connections; they
are therefore implemented as convolution layers with a stride of 2 instead of full-blown FPN blocks.
The links, drawn as balls marked with S, all lead to the same pair of classification and bounding box
regression subnets, shown in Figure 5. The Gaussian layer is illustrated in Figure 4b, and Figure 6
displays the structure of the Gaussian subnet.
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Finally, LMSE is the mean-squared error. It is used as the loss for our multi-task
learning part—the loss between our generated Gaussian maps and ground-truth Gaussian
maps. It is calculated as

LMSE(x, x̂) = (x− x̂)2 , (6)

where x is the ground-truth Gaussian map, and x̂ is the prediction. The Gaussian loss is
only calculated for coordinates where x is either 0 or larger than a hyperparameter, ω [21].

αfocal and αMSE are weighting parameters for focal loss and MSE, respectively. We use
them to tune the loss function in order to achieve more stable training and better results.

2.2. Product Classification

We use an embedding approach, the domain invariant hierarchical embedding (DIHE,
Ref. [23]), as our product classification model. It consists of three networks: the encoder,
the generator, and the discriminator.

The encoder network learns an embedding, and a function from images into vectors,
with the distance between two output vectors signifying the similarity between the respec-
tive images. This embedding can be used to classify images via nearest neighbor search:
the query image is converted into a vector with the encoder, and it is assigned a class based
on the nearest embedding of a reference image. The encoder is the only network that is
used beyond the training stage.

The generator and discriminator are only used to augment the data when training the
encoder. The purpose of this is to overcome the lack of data inherent with retail product
image sets and to combat the problems caused by domain shift, that is, the training images
being clear and iconic while the test images are noisy crops from an image of a retail
store shelf.

We selected the VGG16 [31] as the encoder network pre-trained with ImageNet, follow-
ing the example of [23]. We use maximum activation of convolutions (MACs)—the maximum
value produced by select convolution layers—as the output of our encoder network, due
to [23] achieving their best results with this approach. The encoder architecture is visualized
in Figure 8.

For the generator and discriminator, we adopt the pix2pix GAN, Ref. [32] again,
following the example of [23]. The GAN architecture is visualized in Figures 9–11.

Keeping with the methodology of [23], we use domain invariant hierarchical embedding
loss (LDIHE) to train our encoder:

LDIHE(ip, in, hp, hn) = Ltriplet(G(ip), ip, in, αhierarchial(hp, hn)) , (7)

where ip is an image belonging to the class of interest, in an image belonging to a different
(randomly drawn) class, hp the product hierarchy of ip, hn the product hierarchy of in, G
the generator network of the GAN, and αhierarchial a function for calculating the triplet loss
marginal. αhierarchial is specified as

αhierarchial(hp, hn) = αmin + (1− |hp ∩ hn|
|hp|

) · (αmax − αmin) , (8)

where αmin and αmax are hyperparameters that define the minimum and maximum values
of αhierarchial.
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Figure 8. VGG16 encoder utilizing MAC descriptors, built from the PyTorch implementation of said network [29,31,33]. The input is an image with shape 3× H×W.
The model outputs a 1024-element MAC descriptor, with the first 512 elements determined by the maximum activations of the last layer of the second-to-last
convolutional block, and the remaining 512 elements determined by the maximum activations of the last convolution layer. Downsampling is implemented via
stride 2 when max pooling.
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F W
/2

H/2

φ

Skip connection

(a) Downsampling block.

& φ

F
W

· 2

H · 2

Skip connection

Conv 4x4
Transposed Conv 4x4

Leaky ReLU 0.2

ReLU
Concatenation

(b) Upsampling block.

Figure 9. Down- and upsampling blocks of the PyTorch implementation of UNet, given by
Isola et al. [32]. The input’s shape is in both cases A × H ×W, where the number of input fea-
tures, A, varies depending on the location of the block in the network. Most commonly, A is F/2 for
down- and F for upsampling blocks. Both down- and upsampling are implemented as a stride of
2 in the convolution and transposed convolution layers. The output shapes are F× H/2×W/2 and
F× H · 2×W · 2, respectively. Both of the outputs of the downsampling block and both of the inputs
of the upsampling block are always of the same shape.

The loss is based on the standard triplet ranking loss Ltriplet [34]. Given an encoder
network E, a desired marginal α, a distance function d(a, b), and three images—the anchor
image ia; the positive image ip, which belongs to the same class as the anchor image;
and the negative image in, which belongs to a different class from the anchor image—a
triplet ranking loss (Ltriplet) may be calculated as

Ltriplet(ia, ip, in, α) = max(0, α + d(E(ia), E(ip))− d(E(ia), E(in))) . (9)

The standard triplet ranking loss expects multiple training samples for each class. In the
product detection problem setting, however, we have only one image per class. Therefore,
to transform Ltriplet into LDIHE in order to overcome the domain gap between the training
and test samples, we sample only the positive and negative images from the training set.
The anchors are in turn generated by the generator network, G in our GAN, by passing the
positive images through it and thus producing images that resemble the test samples that
the network will encounter in real images.
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Figure 10. The PyTorch implementation of an UNet generator given by Isola et al. [32]. The input is an image with shape C× H ×W, where C is 4 if our proposed
product masks are used and 3 otherwise. The model outputs a modified image with shape 3× H ×W. The up- and downsampling blocks are shown in more
detail in Figure 9. The blue arrows show skip connections from the downsampling blocks to the upsampling blocks; the regular connections are shown in a
left-to-right manner.
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Leaky ReLU 0.2
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Figure 11. The PatchGAN discriminator given in the official PyTorch implementation of Isola et al. [32].
The input is an image, with shape 3× H ×W. Downsampling is implemented via a stride of 2 in all
but the two final convolution layers. The output is a scalar: the confidence that the input image is
real, that is, not generated by the generator. This scalar is calculated by averaging the elements of the
last, 1× H/8×W/8 feature map.

Again, following [23], we train the discriminator of the GAN with the standard cross-
entropy loss,

Ldiscriminator = log D(is) + log(1− D(G(ip))) . (10)

In this definition, D is the discriminator, G the generator, is an image sampled from the
target domain, and ip an image from the source domain. To train the generator, we use a
weighted sum of three loss functions:

Lgenerator = Ladversarial + Lregularization + λLembedding . (11)

In this loss function, Ladversarial is the standard adversarial loss,

Ladversarial = − log D(G(ip)) . (12)

Lregularization is a regularization term that ensures that the generators output does not
diverge too much from its input,

Lregularization = −NCC(ip, G(ip)) , (13)

where NCC is the zero-mean normalized cross correlation discussed by, among others,
Ref. [35]. Lembedding is a term that rewards the generator for creating hard-to-embed
products, thus ultimately strengthening the encoder performance,

Lembedding = −d(E(G(ip)), E(ip)) , (14)

where d is a distance function, E the encoder, G the generator, and ip a positive training
image. λ is a hyperparameter used to tune the training process.

2.3. Planogram Compliance Evaluation

Initially, we tested a maximum common subgraph-based approach [13] for the plano-
gram compliance evaluation. However, while this approach works well for images that
contain only a few products, such as in the GP-180 dataset, it is computationally infeasible
for the more realistic scenario where images span whole shelves. This is due to the
computational complexity of the algorithm proposed by Tonioni and di Stefano [13]. If we
have a reference planogram with at most r instances of a single product and an observed
planogram with at most o instances of a single product, and if the intersection of the
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products in these two planograms includes N products, the proposed CreateHypotheses
routine creates O(P2N) hypotheses where P = max(r, o). With a hypothesis set this big,
assuming that finding the best hypothesis always requires only constant time (which is
quite optimistic) and that each product is resolved completely before moving on to the
next product, FindSolution requires N ∑P

1 P2 = O(P3N) iterations to clear the hypotheses
related to the first product. As the first product is now cleared, the next product requires
O(P3(N − 1)) iterations and the product after that O(P3(N − 2)) iterations all the way to
O(P3) iterations for the final product; therefore, the full computational complexity of the
first FindSolution run is O(P3 ∑N

1 N) = O(P3N2). This is then repeated for each hypothesis
(of which there are O(P2N)) with a slowly shrinking input set. It is therefore obvious
that the proposed algorithm of Tonioni and di Stefano [13] is fine for a dataset such as the
planograms in GP-180 introduced by them, where the largest values for P and N are 6 and
9, respectively, but that it is not suitable for full shelf planograms with tens of different
products and tens of facings for each product.

To overcome this prohibitive complexity, we started by calculating an arbitrary com-
mon subgraph instead of a maximal one and then utilizing RANSAC pose estimation [26]
for determining the presence of the majority of products. We further evolved this ap-
proach with the realization that, in fact, the whole subgraph comparison is unnecessary
—RANSAC is computationally performant and very resistant to outliers, so we can instead
just match all detected products of some class to all expected products of the matching class.

Ultimately, our planogram compliance evaluation approach is as follows: We take
as input the bounding boxes and classes of products in the reference planogram and the
bounding boxes and classes of products detected in the image under evaluation. Then,
we calculate a Cartesian product of planogram bounding boxes and detect bounding
boxes for which the classification matches. Out of each pairing generated by the Cartesian
product, we create nine pointwise matches: one match between each matching corner of the
planogram and the detected bounding box, one match between each matching midpoint
of a side of the planogram and the detected bounding box, and one match between the
centers of the bounding boxes. We feed these pointwise matches to a RANSAC algorithm,
and get an estimated pose as an output.

We utilize the estimated pose to transform the reference planogram’s bounding
boxes to image coordinates. Then, we check whether each bounding box in the refer-
ence planogram has a good enough matching detection in the image by determining
whether there is a detected bounding box with a matching class and an IoU between the
boxes larger than 0.5. Finally, inspired by previous work [13], we try to reclassify the part
of the image under each projected planogram bounding box for which we could not find a
match. We determine that each product in the planogram for which a matching detection
could be found immediately or that could be determined as present by reclassification are
present in the image. Products in the planogram that were not determined as present after
these two steps are deemed as not present.

3. Experiments and Analysis of the Results
3.1. Datasets

We utilize the SKU-110K product proposal generation dataset [21] for training and
testing the product proposal generator, and the GP-180 product detection dataset [13] for
training and testing the classifier. We select these datasets due to the fact that they are the
most suitable openly available datasets for the product proposal generation and product
classification problems, respectively. The SKU-110K dataset provides 11,762 images with
more than 1.7 million annotated bounding boxes and GP-180 instance-level annotations of
74 rack images. For more details on these datasets, the reader is encouraged to refer to the
original papers.

The only public dataset for planogram compliance evaluation that we know of
is included in GP-180. However, this dataset is problematic in several ways. First,
the planograms in GP-180 consist only of information on the position of products rel-
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evant to each other instead of Cartesian coordinates in reference to the shelf—for example,
a planogram might say that Product A should be above Product B, and that Product C
should be on the right side of product B. This means that in order to use the proposed
RANSAC matching, we would first need to somehow infer the Cartesian coordinates of
the products based on these relative positions, which is prone to error. Second, in GP-180,
all images are fully planogram compliant—a predictor that consistently gives 1 as the
planogram compliance would achieve perfect accuracy with GP-180. Third, as already
outlined in Section 2.3, the planograms in GP-180 encompass only small fractions of whole
shelves. This makes the planograms both unrealistic and enables solving the problem with
methods that are unfeasible with a realistic amount of facings and different products per
image. The smallness of planograms in GP-180 also makes it unsuitable for our RANSAC-
based matching, which benefits from a larger number and diversity of products that can be
found in real whole-shelf images.

Due to these limitations, and in order to test the performance of our approach with
actual production data, we collected an internal dataset with the help of a large retailer. The
dataset consists of five test pictures encompassing whole racks in the vein of SKU-110K,
corresponding planograms and iconic images of 7290 products. The test pictures were not
annotated, but their planogram compliance was known.

For each of the products, there could be up to six images for the six facings (front,
back, top, bottom, left, and right) and additional images for different merchandising types
such as product trays. Due to this, there were a total of 27,204 product images, on average
3.7 images per product.

The product image data also included a four-level product group hierarchy in the vein
of GP-180. We extended this hierarchy with two additional levels: the facing of the product
and the merchandising type.

3.2. Metrics

For evaluating product proposal generation and product classification performance,
we use the industry standard metrics. Our product proposal generation metrics include
mean average precision (AP) calculated at intersection of union (IoU) of 0.50 and 0.75 [36],
the mean of APs calculated at IoUs of 0.50 to 0.95 in steps of 0.05 (APCOCO) [8], and average
recall (AR) with 300 top detections [8]. The product classification metric we use is the recall
at one and five top classifications.

To the best of our knowledge, there do not seem to be any established evaluation
metrics for planogram compliance evaluation performance despite prior work on the
subject. The existing research seems to assume that the test image perfectly matches the
planogram and to then just calculate standard object detection performance metrics based
on how many of the facings were detected.

We argue that for a real-world use case, having test images that do not fully match the
planogram is more interesting than having only one-hundred-percent compliant images.
Therefore, using the planogram as ground truth and evaluating product detection perfor-
mance based on it—as has been often carried out by prior work—is not sufficient. Due to
this, we propose a new metric, the normalized planogram compliance error EPC.

Given the set of facings expected by the planogram E, and the set of facings that
are actually present in their expected positions in the test image F ⊆ E, we can calculate
planogram compliance PC simply as

PC(F, E) =
|F|
|E| . (15)

Let D ⊆ E be the set of facings that were detected by the planogram compliance
evaluation model to be in their expected positions, and G ⊆ E the set of facings that are
truly in their correct positions in the image, where G is determined via manual annotation.
Utilising these, we can calculate the detected planogram compliance PC(D, E) and the
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ground-truth planogram compliance PC(G, E). Further, we can set the planogram compliance
error PE as

PE(D, G, E) = PC(D, E)− PC(G, E) . (16)

The planogram compliance error is a value between −1 and 1, where the negative values
signify underestimation by the model and vice versa. To further make the metric one-sided,
we can calculate the square of planogram compliance error.

By calculating the squared planogram compliance error for all of our test images and
then calculating the mean of all the squared planogram compliance errors, we arrive at the
mean-squared planogram compliance error, MSEPC,

MSEPC(R) =
1
|R| ∑

(D,G,E)∈R
PE(D, G, E)2 , (17)

where R is a set of tuples consisting of detected facings, ground truths, and planograms for
each of the test images.

The MSEPC would otherwise be a good metric as it is, but its scale is somewhat
awkward. Let us say we have two independent variables X and Y, both of which are
uniformly random between 0 and 1. The variable X could represent a randomly guessed
planogram compliance, while the variable Y represents the ground-truth planogram com-
pliance of some random image. The expected value of the squared error between these two
variables—in our example, that is, the squared planogram compliance error—is

E[(X−Y)2] = E[X2 − 2XY + Y2]

= E[X2]− 2E[X]E[Y] + E[Y2] .
(18)

The expected value of a random variable Z that is uniformly random between 0 and 1 is
E[Z] = 1

2 , and the expected value of its square E[Z2] = 1
3 . Plugging these into Equation (18),

we obtain

E[(X−Y)2] = E[X2]− 2E[X]E[Y] + E[Y2]

=
1
3
− 2 · 1

2
· 1

2
+

1
3

=
1
6

.

(19)

Therefore, assuming that the ground-truth planogram compliances in our dataset are
uniformly distributed between 0 and 1, the expected MSEPC is 1

6 if we just randomly guess
real numbers between 0 and 1 as our detected planogram compliances. The MSEPC is also
of similarly small magnitude with more realistic ground-truth compliance distributions: if
the ground-truth compliance of all the test images is 0.8, the MSEPC we expect to achieve
by randomly guessing is 0.173, and for 100% compliant test images—the worst case for
random guessing—the expected MSEPC is 1

3 .
An error metric with a value smaller than 1

3 sounds quite low, yet as shown, such a
low MSEPC can be achieved by just random guessing. Therefore, we arrive at our proposed
error metric, the normalized planogram compliance error EPC, by normalizing MSEPC
with a dataset specific factor Erandom[MSEPC]. The factor can be calculated with

Erandom[MSEPC] =
1
3
− 2 · 1

2
· E[PC(G, E)] + E[PC(G, E)2]

= E[PC(G, E)2]− E[PC(G, E)] +
1
3

,
(20)

where E[PC(G, E)] and E[PC(G, E)2] are the expected values of the ground-truth planogram
compliance and its square, respectively. These can be calculated via the mean of all ground-
truth planogram compliances in the dataset (E[PC(G, E)]) and the mean of squared ground-



Appl. Sci. 2023, 13, 10145 17 of 24

truth planogram compliances in the dataset (E[PC(G, E)2]). Using this factor, we arrive
at EPC:

EPC(R) =
MSEPC(R)

Erandom[MSEPC]
. (21)

The normalized planogram compliance error gets a value of 0 with perfect performance, a
value of 1 when randomly guessing and a value higher than 1 when performance is worse
than expected via random guessing.

The Erandom[MSEPC] of our internal dataset is 0.131.

3.3. Implementation Details

Our implementation was built in Python using the PyTorch library [29]. We extended
the library’s pre-built models with our own as follows. We built our Gaussian layer net-
work implementation by adding the Gaussian layer and subnet, and an additional term
for Gaussian loss, to the RetinaNet implementation included in PyTorch. The weights of
the additional layers are initialized with Kaiming normal in the case of rectified linear unit
activation, or Xavier normal in the case of our proposed hyperbolic tangent activation.
A backbone pre-trained with ImageNet is included by PyTorch, and the RetinaNet imple-
mentation includes initialization for the FPN and bounding box and classification subnets.

We set the hyperparameters of focal loss to α = 0.25, γ = 2 following the example
set by [30]. The product proposal generator was trained with the training subset of the
SKU-110K dataset. We left out a total of 19 training samples due to them being either
corrupted or poorly annotated. We determined the ω of Gaussian loss and a per-epoch
learning rate multiplier via hyperparameter optimization. The optimization arrived at
ω ≈ 0.6, and at 0.995 for the learning rate multiplier. Finally, we changed the last activation
of the Gaussian subnet to hyperbolic tangent activation, which required us to scale ω to 0.3.
Despite switching the value of ω to a less optimal one, the resulting setup provided best
performance.

We trained each product proposal generator model for 200 epochs on four NVidia
Tesla V100 GPUs with a batch size of 24 (6 per GPU). We used a stochastic gradient
descend optimizer with initial learning rate 0.0025, momentum 0.9, and decay 0.0001.
These hyperparameters were inherited from [30], except for the learning rate, which we
set to one-quarter to stabilize the training. The models were evaluated every three epochs
with the validation subset of SKU-110K, and the model that achieved the greatest AP at
IoU threshold 0.75 was kept as the result of the training.

We used modified PyTorch implementations of Pix2Pix UNet generator and Patch-
GAN discriminator [32] for our DIHE classifier’s GAN, by adding an averaging operation
to the output of the PatchGAN. We built the encoder part of DIHE from the PyTorch imple-
mentation of VGG16 [31] by intercepting the results from relevant layers and calculating
MAC features from them. The base VGG16 was pre-trained with ImageNet.

The various loss-related hyperparameters of the classifier were set as αmin = 0.05,
αmax = 0.5 and λ = 0.1 [23].

We used hyperparameter optimization to determine whether to use batch normaliza-
tion in the classifier’s VGG16 model and to set a learning rate and a per-epoch learning
rate multiplier. The optimization arrived at no batch normalization, an initial learning rate
of approximately 10−6 (which matches the learning rate given by [23]), and a per-epoch
learning rate multiplier of approximately 0.7. As the optimization was performed on a
single GPU, we used a per-epoch multiplier of 4

√
0.7 ≈ 0.9 in the actual training to achieve

a similar per-iteration learning rate multiplier, due to four GPUs resulting in four times
fewer iterations per epoch. This adjustment was more important for DIHE than for GLN
due to the generally very small amount of iterations per epoch.

Before training the actual encoder, the GAN was pre-trained for 100 epochs on a single
NVidia Tesla V100 with a batch size of 64. GP-180 was used as the data for the generator,
while cropped product images from the training subset of SKU-110K were utilized in
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training the discriminator. Adam optimizers were used for both components of the GAN,
with learning rates set to 10−5.

The encoder models were trained jointly with the GAN for 50 epochs after GAN
pre-training on four Tesla V100 GPUs. We trained encoder models with both GP-180 and
our internal dataset for a total of two models. The optimizers of the GAN used the same
parameters as they did during the pre-training, and an Adam optimizer was used for the
encoder. The encoder was evaluated every epoch with a validation split from GP-180,
regardless of which dataset was used for training. This was due to our internal dataset not
containing test annotations. The model with the highest validation classification accuracy
was kept as the result of the training.

We utilized the homography estimation of OpenCV [37] for the planogram compliance-
related pose estimation. The RANSAC reprojection threshold was set to one percent of the
smaller dimension of the input image. We considered a projected planogram bounding box
to match a detection if the IoU of the boxes was over 0.5.

The implementation is available at https://github.com/laitalaj/cvpce, accessed on
25 July 2023.

3.4. Results

As evident from Table 1, hyperparameter optimization gives significant improvements
with the SKU-110K dataset to both the average precision and the average recall—1.8 and
4.4 percentage points, respectively—and our hyperbolic tangent activation in the Gaussian
subnet gives an additional average precision boost of 0.7 percentage points for a total
advantage of 2.5 percentage points over [21].

As shown in Tables 2 and 3, the performance of our models with the GP-180 dataset
does not get anywhere near the performance of [21]. The suspected reason for poor GP-180
performance is differences in implementation: notably, we did not include anything like
random crops or resizes of the training data in our training procedure. Nevertheless, we do
not consider the sub-par performance of the model with the GP-180 set too big of a problem,
as the test images in the set do not really correspond to real-life planogram compliance
evaluation cases.

Table 1. Product proposal generation performance with the SKU-110K dataset of Goldman et al. [20].
The IoU threshold used for AP is given as a subscript; APCOCO is average precision calculated with
and averaged over COCO IoU thresholds. The best results for each metric are highlighted in bold.

Method APCOCO AP0.50 AP0.75 AR300

[21] 0.521 0.891 0.562 0.569

Our GLN, optimized hyperparameters 0.539 0.874 0.571 0.613

+ Tanh activation 0.546 0.874 0.571 0.612

Table 2. Product proposal generation performance with classless annotations of the GP-180 dataset,
given by Varadarajan et al. [38]. The IoU threshold used for AP is given as a subscript; APCOCO is
average precision calculated with and averaged over COCO IoU thresholds. The best results for each
metric are highlighted in bold.

Method APCOCO AP0.50 AP0.75 AR300

[21] 0.506 0.862 0.548 0.634

Our GLN, optimized hyperparameters 0.303 0.594 0.263 0.476

+ Tanh activation 0.296 0.569 0.252 0.417

https://github.com/laitalaj/cvpce
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Table 3. Product proposal generation performance with the GP-180 dataset [13]. The IoU threshold
used for AP is given as a subscript; APCOCO is average precision calculated with and averaged over
COCO IoU thresholds. The best results for each metric are highlighted in bold.

Method APCOCO AP0.50 AP0.75 AR300

Our GLN, optimized hyperparameters 0.287 0.537 0.271 0.505

+ Tanh activation 0.233 0.469 0.202 0.415

As the two product proposal generator models are slightly better than each other in
different areas—the one with hyperbolic tangent activation with SKU-110K-like data, and
the one with rectified linear unit activation with Grocery Products data—we kept both
of the models in the loop when validating product detection and planogram compliance
evaluation performance.

During our DIHE implementation process, we noticed that achieving the classification
accuracy reported by [23] is quite challenging. The DIHE training starts to overfit quite
easily, and the best validation set performance is often achieved after just a few epochs
of training. In addition to this, the out-of-the-box, no fine-tuning performance of the
pre-trained VGG16 provided by PyTorch is five percentage points worse than that of the
Tensorflow weights used by [23], meaning that more fine-tuning is necessary to achieve the
same accuracy with PyTorch. Both of these facts are shown in Table 4.

Table 4. Product classification performance with the GP-180 dataset of [13]. “GP-180 all” refers to all
of the test annotations in GP-180, while “GP-180 test” refers to our test split. K refers to the number
of nearest neighbors used to determine classification correctness, K = 1 means a classification is
considered correct if the correct class is the nearest neighbor of the query, while K = 5 means that a
classification is considered correct if the set of five nearest neighbors of the query contains the correct
class. Both the results achieved by [23] and the best results achieved by us are highlighted in bold.

GP-180 All GP-180 Test Highest Acc.

Method K = 1 K = 5 K = 1 K = 5 at Epoch

[23]
Untrained 0.787 – – – –

Best 0.842 0.942 – – –

Our DIHE, untrained 0.727 0.882 0.730 0.878 –

Our DIHE, trained with GP-180 0.809 0.936 0.811 0.930 9

Our DIHE, trained with internal data 0.812 0.936 0.813 0.931 3

Despite these hurdles, the DIHE trained with our internal dataset almost reached
the performance of [23], with nearest neighbor classification performance 3 percentage
points behind their results. When considering a classification correct when the correct
class is contained within the five nearest neighbors of the query image, our classification
performance got even closer to that of [23], the gap being only 0.6 percentage points. It
could be argued that these accuracies are a bit skewed in our favor, as we used a part of the
whole GP-180 test set as a validation set;however, as seen in Table 4, the performance using
only the part of the data unseen during the validation is approximately the same as—and
often even slightly better than—the full-set performance.
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We used a DIHE model from each of the respective datasets in our further planogram
compliance evaluation performance tests. We kept the model trained with Grocery Products
as a part of our tests despite the one trained with our internal dataset outperforming it
even with GP-180.

The quantitative planogram compliance evaluation performance of our approach
is somewhat underwhelming, as shown in Table 5. However, this is mostly due to the
classifier performance not being up to par. Figure 12 visualizes the planogram compliance
evaluation performance for both the worst- and the best-performing images of our internal
dataset using our best model (see Tables 5 and 6). It is evident that even with the worst
performing image (Image 1, the top image in the figure) the RANSAC reprojection of
the planogram matches the locations of most of the products, yet the classifier does not
recognize the products correctly.

Overall, the results show that our approach is a promising option for tackling the
difficult automated planogram compliance evaluation problem. However, some further re-
search into the classifier’s accuracy is needed in order to achieve an operationally acceptable
level of performance.

Table 5. Planogram compliance evaluation performance with the internal dataset. The “Generator”
column refers to the GLN model used—the “original” with rectified linear unit (ReLU) activation
or our proposed modification with hyperbolic tangent (Tanh) activation. The “Classifier” column
refers to the dataset that was used to train the classifier—either grocery products (GP) or our internal
dataset. The columns “I1” to “I5” refer to the test images in the internal dataset, and the values given
are planogram compliance errors. Each value is the mean of 100 runs, and the standard deviation is
given in parenthesis. Best values for each image and the best EPC are highlighted in bold.

Generator Classifier I1 I2 I3 I4 I5 EPC

ReLU GP −0.626 (0.013) −0.183 (0.041) −0.415 (0.018) −0.285 (0.019) −0.506 (0.019) 1.434 (0.057)

Internal −0.615 (0.014) −0.227 (0.051) −0.406 (0.015) −0.293 (0.014) −0.454 (0.018) 1.362 (0.060)

Tanh GP −0.622 (0.011) −0.169 (0.038) −0.407 (0.022) −0.293 (0.019) −0.516 (0.019) 1.430

Internal −0.616 (0.015) −0.201 (0.055) −0.405 (0.021) −0.292 (0.015) −0.454 (0.020) 1.346 (0.061)

Table 6. Planogram compliance evaluation statistics for each image in the internal dataset, using the
model with the lowest EPC (see Table 5). The “Ground truth” and “Detected” values are planogram
compliances.

Image Ground Truth Detected PE PE2 PE2 std

1 0.697 0.082 −0.616 0.379 0.018

2 0.812 0.612 −0.201 0.043 0.026

3 0.702 0.296 −0.405 0.165 0.017

4 0.569 0.277 −0.292 0.086 0.009

5 0.733 0.279 −0.454 0.207 0.018
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Figure 12. Visualized planogram compliance evaluation performance with internal dataset images 1
(top) and 2 (bottom). Green boxes signify products originally detected at correct locations, yellow
boxes products found after reprojection and red boxes reprojected boxes that were found not to
contain the expected product.
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Figure 12. Visualized planogram compliance evaluation performance with internal dataset images
1 (top) and 2 (bottom). Green boxes signify products originally detected at correct locations, yellow
boxes products found after reprojection, and red boxes reprojected boxes that were found not to
contain the expected product.

4. Conclusions

In this paper, we presented a novel retail product detection pipeline combining a
Gaussian layer network product proposal generator and domain invariant hierarchical
embedding (DIHE) for classification and utilized it with RANSAC pose estimation for
planogram compliance evaluation. We evaluated the performance of our method with
two datasets, with the only open-source dataset with planogram evaluation data, GP-180,
and our own dataset collected from a large Nordic retailer. We performed the evaluation
with a novel metric for evaluating planogram compliance evaluator performance in real-
world setups, EPC.

The only public dataset for planogram compliance evaluation that we know of is
GP-180. This dataset is problematic in several ways: the planograms in GP-180 consist only
of information on the position of products relevant to each other instead of in reference
to the shelf, all images are fully planogram compliant, and it encompasses only small
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fractions of whole shelves. This makes the planograms unrealistic. Therefore, we collected
our own dataset with the help of a large retailer. The dataset consists of five test pictures
encompassing whole racks, corresponding planograms, and iconic images of 7290 products
with up to 6 facings each, resulting in 27,204 images in total.

The results showed that our method provided an improved planogram compliance
evaluation pipeline, which resulted in accurate estimation solutions when using real-life
images that included entire shelves, unlike previous research that has only used images
with few products. However, the classification method requires further research to achieve
comparable performance using real data as the previous research. Our analysis also
demonstrated that our method requires less processing time than the state of the art.

Our approach paves the way for further research that can, eventually, enable utilizing
computer vision for the daily in-store planogram operations, thus increasing retail efficiency.
The limiting factor of our approach—the product classifier—could be further improved
via more sophisticated representation learning methods or by improving the domain
adaptation capabilities via substituting the GAN with a latent diffusion model [39], as the
latter approach has proven to be superior to GANs in tasks such as image generation and
style transfer.
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