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Abstract: An intelligent, vision-guided welding robot is highly desired in machinery manufacturing,
the ship industry, and vehicle engineering. The performance of the system greatly depends on the
effective identification of weld seam features and the three-dimensional (3D) reconstruction of the
weld seam position in a complex industrial environment. In this paper, a 3D visual sensing system
with a structured laser projector and CCD camera is developed to obtain the geometry information of
fillet weld seams in robot welding. By accounting for the inclination characteristics of the laser stripe
in fillet welding, a Gaussian-weighted PCA-based laser center line extraction method is proposed.
Smoother laser centerlines can be obtained at large, inclined angles. Furthermore, an improved chord-
to-point distance accumulation (CPDA) method with polygon approximation is proposed to identify
the feature corner location in center line images. The proposed method is validated numerically
with simulated piece-wise linear laser stripes and experimentally with automated robot welding.
By comparing this method with the grayscale gravity method, Hessian-matrix-based method, and
conventional CPDA method, the proposed improved CPDA method with PCA center extraction is
shown to have high accuracy and robustness in noisy welding environments. The proposed method
meets the need for vision-aided automated welding robots by achieving greater than 95% accuracy in
corner feature point identification in fillet welding.

Keywords: fillet welding; feature point recognition; chord-to-point distance accumulation; laser light
stripe; central extraction

1. Introduction

As a key method to achieve a permanent connection between materials, welding is
becoming more and more important in manufacturing [1,2], bridge and/or ship construc-
tion [3,4], vehicle engineering [5], the aerospace industry [6], and so on. Moreover, with
the rapid development of the industrial robot [7], the application of welding processes will
continue to be broadened with automation and intelligence.

To meet the advancements of industrial modernization and the shortage of labor
resources, the use of robot-aided automated welding systems has become a surging need in
the welding fields [8]. Welding processes with robots are mainly achieved by three means:
the teach and playback mode, offline programming, and vision-based automation. Due
to the complexity of the working environment in welding processes with varied welding
joint types, welding robots using the teach and playback mode are limited in meeting the
requirements of flexible manufacturing [9]. Meanwhile, the offline programming mode
is time- and labor-inefficient, especially in small-batch, customized production [10]. With
the development of machine-vision sensing technology [11], automated welding robots
with visual perception are becoming a promising solution to meet the developing trend of
flexible and intelligent manufacturing.
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In the sensing system of an automated welding robot, the recognition and positioning
method of the weld seam is crucial. The accuracy of the methods for determining the
weld seam position will greatly affect the automation robustness and the quality of the
welding joints [12]. The visual sensors used in welding robots can be mainly divided into
two types: passive sensing and active sensing. Commonly, studies on passive sensing
methods for extracting the 3D position of a weld seam using stereo vision have focused on
image processing algorithms. An automatic weld seam recognition method was developed
using a stereo matching algorithm to obtain the 3D points of a square weld seam [13]. This
method was further extended to the recognition of fillet weld joints using a developed
adaptive line-growing algorithm based on the difference in gray-scale values in each pixel
near the weld seam region [14]. To improve the detection accuracy, not only the feature
points or lines but also the feature descriptor (e.g., binary robust independent elementary
features, BRIEF) were used in stereo matching to obtain the 3D information of the fillet
weld seam [15]. Both the 3D shape of the seam and the structure of the fillet weld can be
measured for controlling the trajectory and posture of a robot torch. However, the passive
visual sensing method is sensitive to the changing of light, while strong lightening occurs
in the welding process. The passive vision method has poor robustness in the complex
welding environment and is invalid during the welding process.

By utilizing the laser and/or structured light as the auxiliary light source, active visual
sensing methods are found to be more robust in a complex industrial environment [16].
Active vision with laser light has the advantages of non-contact, high precision, and
computational efficiency and has been widely used in welding guidance [17] and 3D
detection [18]. The key challenge in the automatic guided welding robot based on an
active laser sensing system is to identify the geometrical features of the welding seam
in the captured image of a laser strip. The performance of feature point identification
methods is directly related to the precision, accuracy, and speed of welding guidance.
At present, the commonly used laser stripe feature extraction methods in robotic welding
guidance include least-square and/or curve fitting [19], template matching and/or polygon
approximation [20], sliding vector and Hough transform analysis [21], and corner-detection-
based methods [22].

Active visual sensing methods with laser light have been studied and implemented in
robotic welding applications by researchers [23–25]. The geometry of a welding seam can be
effectively extracted by the developed image processing and feature extraction algorithms,
even when the captured image quality is low [23]. With a developed line-shaped structured-
light active sensing system, the weld seam can be recognized and located accurately and
robustly [24]. By implementing an adaptive median filtering and feature point extraction
algorithm based on automatic threshold processing for butt joints, a narrow weld seam of
0.1~0.5 mm can be accurately identified [25]. However, there are relatively few methods
developed for feature point identification in fillet joint welding, which is more complex
due to an indirect visual angle. The Hessian-matrix-based method [26] was found to
have high center line extraction accuracy in fillet joint welding with an inclined laser
stripe. However, it was computationally demanding. With an extracted center line, feature
detectors were needed to detect the corner points of the fillet welding seams. Grayscale-
intensity-based [27,28] and contour-based [29,30] methods have been proposed in the
literature. However, the intensity-based methods were found to have low robustness
in welding laser line images with insufficient grayscale variance, while the computation
efficiency of the contour-based method needed to be further improved.

In this paper, a weld seam recognition and positioning method based on primary
component analysis (PCA) and chord-to-point distance accumulation (CPDA) technologies
is proposed for robotic fillet joint welding. Firstly, the obtained image with a structured
laser stripe of a fillet weld joint is pre-processed. Then, the center line of the laser stripe is
extracted using a proposed Gaussian-weighted, PCA-based method, after which the feature
points of the fillet weld are extracted using the improved CPDA method with polygon
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approximation. Finally, for the robot welding application, the feature corner points that
indicate the 3D position of the fillet weld seam can be identified and reconstructed.

2. Feature Point Recognition Model of Structured Laser Light in Fillet Welding

The developed three-dimension vision sensing system with structured laser light is
shown in Figure 1a. The system consists of a CCD (charge-coupled-device) camera, a laser
line projector, and an image processing unit. Figure 1b shows the developed 3D sensing
system integrated on the robotic arm and Figure 1c is one of the obtained images of the
structure-light laser stripe in the fillet welding. In this situation, the line-shaped structured
laser is projected onto the surface of the fillet weld seam, which deformed the straight
laser light into a twisted fringe pattern. The deformed fringe pattern is then captured with
the CCD camera. As shown in Figure 1d, the interest here is to find the corner feature
point P(x, y) in the image coordinate system {I} as it indicates the location of the weld
seam. According to the pin-hole model, the corresponding 3D position (xw, yw, zw) of
the weld seam can be obtained in each time constant by combining the camera model {C}
with the ray-plane equation of the structured laser line using the triangulation model in
Equation (1). As the 3D sensing system is mounted on the end-effector {Z}, the 3D spatial
coordinate (xb, yb, zb) in base coordinate system {B} for a welding robot can be reconstructed
with the given relation between the robot arms. Therefore, the key issues are the accurate
extraction of the contour feature, which the projected laser deformed as a curve; and the
robust identification of feature point P, which is the corner point on the projected laser line
using image processing algorithm. Effective identification of these features is the key and
the first step in enabling automatic robot welding for fillet weld seams.
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Figure 1. Laser structured-light 3D sensing system. (a) Schematic diagram of structure-light and 
CCD camera in fillet welding; (b) developed system on robot arm; (c) the obtained laser stripe image 

Figure 1. Laser structured-light 3D sensing system. (a) Schematic diagram of structure-light and
CCD camera in fillet welding; (b) developed system on robot arm; (c) the obtained laser stripe image
from the CCD camera; (d) the 3D reconstruction relation; (e) diagram of triangulation reconstruction.
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xw
yw
zw

 =
L

f cos θ − x

x
y
f

 (1)

where, in Equation (1), (x, y) are coordinates of the identified feature corner points of fillet
welding in the image plane. (xw, yw, zw) represent the 3D position of fillet weld seam. f is the
focal length for the CCD camera. L is the distance between the CCD camera and the laser
projector. The value of f and L can be determined in the laser ray-plane calibration [31].

3. Feature Points Extraction Method in Fillet Welding
3.1. Image Pre-Processing

The pre-processing of the acquired image primarily involves performing a threshold
segmentation, which aims to separate the light stripe information from the original image
and minimize the influence of background on image processing. In the image (Figure 1c)
that was captured with the developed sensing system, pixels can be mainly separated into
two classes: the background with dark lightness, and the laser line with bright lightness.
As shown in the histogram of a captured image with the resolution of 2592 × 1944 pixels
in Figure 2a, a total number of 4.7 × 106 pixels are in black (grayscale value from 0 to 10)
while 1.6 × 104 pixels are in white (grayscale value from 245 to 255). Other pixels with
different grayscale values (the average number of pixels is 865) are an order of magnitude
lower than these two classes. Therefore, the simple but effective Otsu’s method [32] is
implemented to calculate an optimal threshold T (marked by a red line in the histogram
in Figure 2a) by maximizing the variance between two classes of pixels to separate the
laser line from the background. Pixels (u, v) in the image with grayscale values below the
threshold T are set to 0, while pixels with grayscale values equal to or above the threshold
T remain as themselves. The process can be summarized as follows:

f (x, y) =

{
0, f (u, v) < T

f (u, v), f (u, v) ≥ T
(2)Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 17 
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Compared with the original image, the pre-processed image in Figure 2c,d shows
that the gray-scale features become more pronounced after the image pre-processing. The
interference image features caused by the metal reflection can be effectively filtered out.
The brightness information of the laser stripe area can be better retained, which provides
favorable conditions for the subsequent center extraction of laser fringe.

3.2. Laser Stripe Center Extraction Using a Gaussian-Weighted PCA Method

As shown in Figure 1c, because more than one pixel of the CCD camera received
the metal-reflected light, the laser stripe has a center width. It is of high importance to
identify the center laser stripe from the image, which will directly affect the accuracy
of three-dimension reconstruction. There are demanding requirements for accuracy and
stability for methods to extract the center line and identify feature points in robotic welding
applications. Laser stripe center line extraction methods can be mainly divided into three
types: grayscale-based peak-value and/or gravity method [33], model-based curve fitting
method, and Hessian-matrix-based Steger method [26].

When the laser fringe is mainly distributed in the vertical direction in the image, the
center pixel-coordinates of the laser stripe can be obtained as the grayscale gravity cen-
ter [33] by extracting the grayscale distribution along the horizontal and vertical directions,
respectively, using Equation (3):

xc =
N
∑

i=1
ui· f (ui, v)/

N
∑

i=1
f (ui, v)

yc =
M
∑

j=1
vj· f (u, vj)/

M
∑

j=1
f (u, vj)

(3)

where, (xc, yc) are the coordinates of the center line. (u, v) are the image coordinates for
column and row in the range of [1, N] and [1, M], respectively. f (u, v) is the grayscale value
for each pixel in (u, v). (i, j) are indexes used for calculating the gravity from left to right
and top to bottom within the image, respectively.

However, as depicted in Figure 1c for the fillet welding application, the laser stripe
is distributed at a significant angle with respect to the horizontal or vertical direction.
Consequently, the obtained laser line centers exhibit higher errors. The Hessian-matrix-
based method [26] has robust noise resistance and can maintain high center line extraction
accuracy in complex environments. Nevertheless, it requires five large-scale Gaussian
convolutions and second-order Taylor expansions, as formulated in Equation (4). These
operations are in high computational complexity and cannot be implemented in real time.

H(x, y) =

[
∂2G(x, y)/∂x2 ∂2G(x, y)/∂x∂y

∂2G(x, y)/∂y∂x ∂2G(x, y)/∂y2

]
⊗ f (x, y) (4)

where H(x, y) in Equation (4) is the Hessian matrix that related to the Gaussian kernel G(x,
y) and grayscale image f (x, y). ⊗ is the convolution operator.

To improve accuracy and optimize the extraction speed for fillet welding with an
inclined laser stripe, a Gaussian-weighted PCA (principal component analysis)-based
algorithm is proposed in this paper. For a given laser stripe coordinate set (gx, gy) in x and
y directions, respectively, a covariance matrix [C] can be computed using Equations (5)–(7):

[C] =

[
cov(gx, gx) cov(gx, gy)

cov(gy, gx) cov(gy, gy)

]
(5)

cov(gi, gj) =
1

N − 1

N

∑
n=1

(gin − gi)(gjn − gj) (6)
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g =
1
N

N

∑
n=1

gn (7)

From Equation (5), the eigenvalue (λ1, λ2) can be determined in descending order,
along with the corresponding eigenvectors (v1, v2) that represent the direction of the
laser stripe. This determination is accomplished using the singular-value-decomposition
method [34]. The inclined laser stripe can then be transformed into the PCA coordinate
system using transformation matrix [A] as defined in Equation (8). This transformation
allows for the retrieval of the center line of the laser stripe through a zero-mean Gaussian-
weighted convolution in Equation (9).[

Px

Py

]
= [A]

[
gx − gx

gy − gy

]
where [A] =

[
vT

1

vT
2

]
(8)

G(x, y) =
1

2πσxσy
exp

[
−
(

x2

2σ2
x
+

y2

2σ2
y

)]
where

[
σx
σy

]
= 3

[
λ1
λ2

]
(9)

where, in Equation (9), (σx, σy) are related with the eigenvalue (λ1, λ2) in Equation (3).
Three sigma is used here to include 99.7% of laser stripe information in the Gaussian-
weighted convolution.

Compared with the grayscale gravity method, the proposed PCA-based method first
obtains the laser line distribution direction before calculating the laser line centers, leading
to substantial enhancement in accuracy. When contrasted with the Hessian-matrix-based
algorithm, the proposed PCA-based method obtains the normal direction of the optical laser
line with just one Gaussian convolution, significantly reducing the computational time.

To illustrate the extraction results obtained through different methods, the grayscale
values of the laser stripe image along the horizontal distribution are shown in Figure 2b.
When directly calculating the laser line centers using the grayscale gravity method as
defined in Equation (2), noticeable errors are observed, as indicated by the black point in
Figure 2b. On the other hand, employing the Hessian-matrix-based Steger method [26] after
pre-processing in Equation (2) yields more accurate results. However, it is worth noting
that the Hessian-matrix-based method is computationally expensive. With the developed
PCA-based method in Equations (5)–(8), the results of laser line center extraction from
images during welding are shown in Figure 2e. It can be found that even in fillet welding
with inclinations, the PCA-based method demonstrates relatively high extraction accuracy.
With the distribution of image light stripes, the grayscale value of each line in the target
area is calculated and the center of the line is extracted. Subsequently, the obtained center
pixel coordinates are stored for the following fillet weld feature points extraction in the
laser fringe.

3.3. Improved CPDA Corner Detection Method

After obtaining the contour-like laser center line, the subsequent crucial step involves
identifying the feature corner points while they are directly related to the 3D location of the
weld seam. In the literature, various methods for detecting corners and/or interest-points
have been proposed, primarily falling into two categories: image intensity-based and
contour-based methods. In intensity-based corner detection methods, it is necessary to
evaluate the grayscale gradient at each pixel within its local neighborhood. A point is
deemed a candidate corner point when the grayscale exhibits significant variations in all
directions within the local region. Examples of such methods include BRISK (binary ro-
bust invariant scalable keypoints) [27] and SIFT (scale-invariant feature transform) [28]
detectors. However, in fillet welding applications, the grayscale variance within the laser
line is typically small (as illustrated in Figure 2b), while the edge contour is quite obvious.
Consequently, the contour-based algorithm is better suited for identifying corner feature
points in the weld seam.
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The contour-based CPDA (chord-to-point distance accumulation) algorithm [29] was
originally introduced in 2008 for discrete curvature estimation. As an enhancement of
the CSS (curvature scale-space) [30] algorithm, which identifies corners as the points
with maximum curvature along the contour, the CPDA method calculates the Euclidean
distance accumulation instead. This approach avoids the need for calculating first and
second derivatives, thereby improving the robustness and computational efficiency of
the corner feature point. The principles underlying the CPDA technique are illustrated
in Figure 3.
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In Figure 3, P1, P2, P3,..., Pn are points on a curve P. Point P1 signifies the starting point
of curve P, while Pn marks its end point. In the CPDA algorithm, a chord is moved along
the curve P and the perpendicular distances between each point Pi on the curve to the
chord di,j is summed up to represent the curvature at that specific point. The computation
diagram for the corresponding value of corner point Pi is detailed as follows:

- First, a reference chord-of-length L was defined. In Figure 3, for instance, the value of
L value has been set to 10.

- For each detected point Pi on the curve P, the point Pi−L+1 was taken as (L− 1) distance
backward while Pi+1 was taken as 1 distance forward. So, a chord CL between these
two points can be obtained.

- We calculated the distance from Pi to chord CL, denoted as di,i−L+1.
- We moved the chord CL on each side of Pi one pixel in the same direction along the

curve P while maintaining the length of the CL value as L. Then, similarly, calculate
the distance from each point to the chord.

- We repeated the former operation until one of the points on the chord was Pi. Then,
the calculation was stopped. The chord-to-point distances were accumulated as:

hL(i) =
i−1

∑
j=i−L+1

di,j (10)

where di,j is chord-to-point distance as each point Pi. hL is the chord-to-point accumu-
lation value with the chord-of-length of L.

The algorithm described above includes the calculation of the distance between two
points and the computation of the chord-to-point distance. These distances are calculated
using the following formulas, respectively.

CL =

√
(x2 − x1)

2 + (y2 − y1)
2 (11)

di =
|Axi + Byi + C|√

A2 + B2
(12)
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where (x1, y1) and (x2, y2) are coordinates of two points, respectively. di is the distance from
point (xi, yi) to line Ax + By + C = 0.

Directly applying the CPDA algorithm with the above formulas may yield incorrect
feature points. To filter out these incorrect feature points, it is essential to perform a linear
normalization process to detect and eliminate false corners:

NL(i) =
hL(i)−min(hL)

max(hL)−min(hL)
(13)

where NL is a normalized vector representing the corresponding value of each point on the
curve P. max() and min() represent the maximum and minimum cumulative values of the
chord-to-point distance on the curve, respectively. The normalization process prevents a
situation where points in some flat planes exhibit large chord-to-point accumulation values.
However, it was found in the experiments with noisy arc light interference that there are
pseudo-corners and/or missing corners after the linear normalization filtering.

To improve computational efficiency while achieving robust feature corners detection
in noisy environments, an improved CPDA method with linear polygon approximation
and feature point angle monitoring strategy is proposed. The original CPDA detector
remains computationally expensive as it calculates the discrete hL value in Equation (10)
for every point on the curve. In the improved CPDA method, we select a set of potential
candidate points during the center line extraction through PCA in Equation (8). The
eigenvectors (v1, v2) representing the laser stripe direction at each point on the curve are
stored. By monitoring the angle direction between each feature point, the points with large
direction variance are chosen as the candidate points. Moreover, the proposed improved
CPDA method calculates the angle between each line vector instead of computing the
distance, resulting in further computational reduction. The diagram (Figure 4a,b) and steps
of the improved CPDA are summarized as follows. With the input images of fillet welding,
the feature corner points representing the 3D location of the weld seam on the laser line
can be detected as outlined in the flow-chart presented in Figure 5.
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Figure 4. Schematic of (a) linear polygon approximation and (b) angle calculation between feature
corner points.

- Establish a straight line connecting the starting point A and the ending point B;
- Find a point (e.g., denoted as C in Figure 4) on the original contour curve that is

farthest from this line. If the calculated distance exceeds a predetermined threshold,
this point is considered a feature corner point;

- Iterate through the above two steps for the segmented contour of the curve until the
shortest distance between all points and the polygon falls below the threshold;

- Apart from the calculation of distance, determine the angle between two polygon lines.
Select points Dk−1 and Dk+1 as the points preceding and succeeding and compute the
angle between line vectors Dk−1Dk and DkDk+1.
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- Compare the obtained angle with the angle represented by the eigenvectors (v1, v2)
calculated in the PCA process. Retain the angle if it surpasses a predefined threshold;
otherwise, remove it.
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4. Numerical Verification and Experimental Validation Results

To assess and validate the effectiveness of the proposed method incorporating PCA
and the improved CPDA algorithm for identifying the feature corner points in laser stripe
during fillet welding, numerical simulated and experimental captured images are used
for comparing the performance between several state-of-the-art methods. To provide a
“ground truth” for subsequent comparisons, a piece-wise linear line is defined with the
following analytical equation:

x =


(y− 150) cot

(
2π

5

)
+ 100, for y ∈ (150, 350]

(150− y) cot
(π

3

)
+ 100, for y ∈ [0, 150)

(14)

The formulated piece-wise linear line as described by Equation (14) is visually repre-
sented in Figure 6a. A dilation morphological operation is implemented to the linear line
to simulate the width of the laser stripe in the captured image with a 9 × 9 square kernel.
The dilated laser stripe is shown in Figure 6b. In an effort to make the simulated laser
stripe more closely resemble practical situations where a normal distribution is typically
observed along the laser line, A Gaussian kernel with a sigma value of 3 is implemented
through convolution and illustrated in Figure 6c. When extracting the grayscale distri-
bution along the x direction with a row index of 100, as demonstrated with a yellow line
arrow in Figure 6a,b,c, the simulated laser stripe exhibits a distribution similar to that of
the experimental captured laser line in Figure 2b. The center point (denoted as a red dot in
Figure 6d), which is the highest point on the piece-wise line, can serve as ground truth for
comparisons among different methods.

Consequently, the simulated laser stripe images depicted in Figure 6c are used as input
for extracting the laser center line via different methods: grayscale gravity method [33],
Hessian-matrix-based Steger method [26], and our proposed Gaussian-weighted PCA-
based method. The analytical expression of the piece-wise line in Figure 6a serves as the
ground truth for the center line. Additionally, zero-mean random noise with different
standard deviation is implemented to evaluate the performance of each method in a
noisy environment.
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(c) after Gaussian convolution; (d) grayscale distribution along x direction.

Several conclusions can be drawn from the results presented in Figure 7 and Table 1:

- When extracting the grayscale value along the x direction using the simulated laser
stripe images in Figure 7a, it becomes evident that the present of zero-mean Gaussian
noise with different sigma values exerts a noticeable impact, as illustrated in Figure 7b.
The location of the piece-wise line in this row (marked by the red dot) serves as the
ground truth for comparison;

- Figure 7c are the results of center line extraction achieved with different methods
using simulated images without noise. The center line obtained through the gravity-
based method [33] exhibits obvious discontinuities due to its sensitivity to rotation.
Conversely, the Steger method [26] and our developed PCA-based method provide
smoother extraction results by accounting for the rotation angle through Hessian
matrix and PCA;

- Figure 7d is the error comparison among different methods using image with noise
(σ = 1). The error is defined as the distance between the extracted center line coor-
dinates and Equation (14): error =

√
∆x2 + ∆y2. It is worth noting that the gravity-

based method has higher errors as the inclined angle increases, particularly in the
lower part of the simulated laser stripe. In contrast, both the Steger method and our
proposed method effectively reduce the effect of an inclined laser stripe in a fillet weld,
resulting in lower errors;

- Figure 7e and Table 2 show insights into the sensitivity of different methods to noise.
The gravity-based method proves to be highly sensitive to noise, while both the
Steger and our method demonstrate relatively high robustness. With respect to
the extraction time, the Hessian-matrix-based method is computationally expensive,
whereas the proposed PCA-based method achieves similar accuracy at a speed that is
10 times faster.

Table 1. Comparison between different methods.

Method
Error (Average, std.)

Computation
Time

per Frame (s)

σ = 0 σ = 1 σ = 3 σ = 5

Gravity method [33] (0.83, 1.22) (4.31, 4.55) (8.43, 8.25) (12.0, 13.2) 0.08

Steger method [26] (0.45, 0.41) (0.85, 0.7) (3.24, 3.51) (5.23, 4.23) 1.2

PCA-based method (0.41, 0.32) (0.52, 0.92) (3.62, 3.42) (6.17, 4.12) 0.11
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Figure 7. Numerical verification. (a) Simulated images with and without noise; (b) grayscale
value distribution along x direction; (c) center line extraction results using different methods using
image without noise; (d) error comparison using different methods (gravity method [33] and Steger
method [26]) using image with noise of σ = 1; (e) average, standard deviation of error and computation
time comparison.

Table 2. Welding parameters.

Parameter Value

Workpiece material Q235 steel
Workpiece thickness 5 mm

Welding current 70 A
Welding voltage 5 V
Welding speed 6 mm/s

Diameter of welding wire 1 mm
Shielding gas Ar + CO2
Gas flowrate 5 L/min
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The experimental setup with the main components of the welding robot and sensing
unit are shown in Figure 8. The captured images, utilized for feature points extraction, are
processed on a Windows X64 system computer with an Intel (R) Core (TM) i5-10400F CPU
processor. The hardware setup includes a CCD camera MV-EM500M and a linear laser
projector with 650 nm wavelength. The programming for image processing is performed
using Visual Studio 2015 (version 14.0.27544.0) software and the OpenCV image processing
tool. In accordance with the calculations outlined in Section 3 regarding the CPDA algo-
rithm, the value of L is set as 6 in the experiments. The details of the welding conditions
employed in the experiments are summarized in Table 2.
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Figure 8. Experimental setup. (a) Welding robot; (b) sensing unit.

In the context of automated welding for the automatic creation of a 90◦ fillet weld
structure, as shown in Figure 8b using an industrial robot, the primary challenge lies in
the precise identification of feature corner points along the projected laser line. With the
feature corner points in each image frame extracted with the proposed method, the 3D
coordinates of the fillet weld seam can be reconstructed with Equation (1). To validate the
effectiveness of the proposed method for extracting the feature corners in automated fillet
robot welding, the robot arm was configured to perform a scanning motion from right to
left in Figure 8b. During this single pass of scanning, the CCD camera in the sensing unit
was set to capture images at a framerate of 12 FPS (frame per second). A total of 120 frame
images were experimentally captured for the subsequent validation. An example of one
such captured frame image is shown in Figure 9a. As can be found in Figure 9a,b, the
discontinuities due to the laser stripe inclination in center line extraction in fillet welding
result in many pseudo-feature-corners () being identified using the original CPDA. With the
further normalization in Equation (13), some pseudo-corners are removed. However, the
closest feature corner is also removed in this process, resulting in inaccurate feature corner
identification. In contrast, by integrating PCA into center line extraction in our proposed
method in Figure 9b,c, smoother results can be obtained. Furthermore, with the improved
CPDA algorithm, more accurate feature corner points are detected. The integration of angle
monitoring criteria, as outlined in the flowchart in Figure 5, further enables effective corner
point identification in fillet welding. The accuracy and smoothness of laser center line
extraction can be further improved by implementing the sub-pixel interpolation technique.

In the experiment of robot welding, a total of 120 captured frame images are collected,
both before and after the corner identification. The corner identification result in each
frame image is then checked manually. The experimental identification accuracy is then
defined as the number of frame (n) with correct and unique identified corners divided by
the total number (N) of frames in Table 3. Several experimental findings can be drawn from
Figure 10 and Table 3:

- As shown in the typical captured frame from the CCD camera mounted on the robot
in Figure 10a, there is arc lighting interference during welding, resulting in a noisy
sensing environment for image processing;
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- With the binarization pre-processing, the laser center line can be easily detected in the
left column of Figure 10b. However, when calculating the feature corner points with
only the CPDA algorithm, a multitude of pseudo-corners are generated. Moreover,
the application of normalization to filter the corners obtained through CPDA results
in the omission of some corners;

- Through the utilization of the proposed method outlined in the flow-chart in Figure 5,
missing corners can be effectively restored. And, as shown in Figure 10c, the feature
corner points can be correctly extracted in fillet welding for automated robot welding
tracking;

- With acceptable increase in computation time, the proposed method yields signifi-
cantly higher accuracy compared to the implementation of the CPDA algorithm in
Table 3.
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Figure 9. Experimental result analysis (R1–R4 are four selected zoomed-in regions). (a) Center line
extraction using grayscale gravity; (b) corner feature point identification using the original CPDA,
the identified corners are denoted as cyan dots; (c) center extraction using the PCA-based method;
(d) feature corner identification result with the proposed improved CPDA method, the identified
corners are denoted as blue dots.

Table 3. Experimental results from identification of 120 frame images.

Method No. of Frames with
Correct Identification

Degree of
Accuracy

Computation Time
per Frame (s)

Gravity center [33] with
origin CPDA [29] 68 56.6% 0.18

Our proposed method 116 96.6% 0.25
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Figure 10. Experimental result: (a) typical captured frame during welding; (b) image processing
results of laser center detection, CPDA, normalization, and feature points merging; (c) final feature
points extraction result using the proposed method for automated robot welding tracking.

An effective method for identifying welding feature points should demonstrate the
capability to extract corner features in fillet welding applications with different thicknesses.
As shown in Figure 11 and Table 4, the proposed improved CPDA method was validated in
thick and thin fillet weld joints. It is worth mentioning that the selection of length-of-chord
value L has a great influence on the identification accuracy. Our proposed method has
higher than 95% identification accuracy in both these two fillet welding situations that
are shown in Figure 11b,c. When implementing the proposed method into a welding
robot, the overall welding result on the workpiece is shown in Figure 11d,e. For better
demonstration of the welding quality in the fillet joint, the workpiece is rotated by 90◦ in
Figure 11e. As can be seen in Figure 11a,d, the welding torch mounted on the robot arm
is accurately guided throughout the whole process, resulting in relatively good welding
quality. This validation proves the effectiveness of the proposed method for feature corners
identification in automated robotic fillet welding.

Table 4. Experimental results from identification of 120 frame images in different welding joints.

Welding Type L Value No. of Frames with
Correct Identification

Degree of
Accuracy

Computation Time
per Frame (s)

Thick fillet welding 18 115 95.8% 0.18
Thin fillet welding 5 114 95.0% 0.20
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Figure 11. Experimental results in robotic welding. (a) 90◦ thick fillet weld seam with laser line;
(b) identified feature corner points in thick fillet welding; (c) identified feature corner points in thin
fillet welding; (d) thin fillet weld seam with laser line; (e) the welded thin fillet joint.

5. Conclusions

A feature point identification method that incorporates Gaussian-weighted PCA trans-
formation and CPDA linear polygon approximation is proposed in this paper. Comparative
analysis with existing methods for laser center line extraction and feature corner point
identification reveals that our proposed method offers higher accuracy in fillet welding
scenarios with inclined laser stripes. Even in a noisy environment, the proposed method
achieves accuracy levels similar to those of the Hessian-matrix-based method while deliv-
ering computation speeds nearly 10 times faster. Consistently achieving an accuracy rate
exceeding 95%, the proposed method ensures efficient computation speed by utilizing the
PCA determined angle, thus eliminating the need for curvature calculation. The overall
calculation time for each frame falls within the range of 0.18 to 0.25 seconds. Furthermore,
the polygon approximation method is used to reduce the influence of the noisy welding
environment on the pseudo-corner points generation, which further enhances the robust-
ness of the proposed method. Experimental validations in various welding situations are
demonstrated, proving the proposed improved CPDA method in identifying feature corner
points for automated robot welding. In our future work, we will endeavor to extend the
proposed method to identify the 3D location of weld seams across diverse welding joints.
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