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Abstract: Recent approaches for fast semantic video segmentation have reduced redundancy by
warping feature maps across adjacent frames, greatly speeding up the inference phase. However,
the accuracy drops seriously owing to the errors incurred by warping. In this paper, we propose a
novel framework and design a simple and effective correction stage after warping. Specifically, we
build a non-key-frame CNN, fusing warped context features with current spatial details. Based on
the feature fusion, our context feature rectification (CFR) module learns the model’s difference from a
per-frame model to correct the warped features. Furthermore, our residual-guided attention (RGA)
module utilizes the residual maps in the compressed domain to help CRF focus on error-prone
regions. Results on Cityscapes show that the accuracy significantly increases from 67.3% to 71.6%,
and the speed edges down from 65.5 FPS to 61.8 FPS at a resolution of 1024× 2048. For non-rigid
categories, e.g., “human” and “object”, the improvements are even higher than 18 percentage points.

Keywords: semantic video segmentation; warping

1. Introduction

Semantic video segmentation, an important task in the field of computer vision, aims
to predict pixel-wise class labels for each frame in a video. It has been widely used for
a variety of applications, e.g., autonomous driving [1], robot navigation [2], and video
surveillance [3]. Since the seminal work of fully convolutional networks (FCNs) [4] was
proposed, the accuracy of semantic segmentation has been significantly improved [5–7].
However, the computational cost and memory footprint of these high-quality methods
are usually impractical to deploy in the aforementioned real-world applications, where
only limited computational resources are available. Therefore, a fast solution to this dense
prediction task is challenging and attracting more and more interest.

Prevailing fast methods for semantic video segmentation can be grouped into two
major categories: per-frame and warping-based. Per-frame methods treat the video task as
a stream of mutually independent image tasks and performs it frame by frame. This line of
work takes several approaches to trade off accuracy for speed.

(1) Reducing the resolution of the network input is a simple and widely used approach
to boost the speed directly [8–16].

(2) Adopting a lightweight network is standard practice on the systems with limited
resources [9,10,17–25].

(3) Designing an efficient network operator, e.g., dilated convolution, depth-wise separa-
ble convolution, and asymmetric convolution, is also explored in [26–29].

In general, per-frame methods adapt image models to video models with ease but do
not utilize the inherent coherence of video frames.

In light of the visual continuity between adjacent video frames, warping-based meth-
ods [30–34] employ inter-frame motion estimation [31,33,34] to reduce temporal redun-
dancy. Technically, this line of work treats a video clip as sequential groups of frames. Each
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group of frames consists of a key frame followed by multiple non-key frames. When the
coming frame is a key frame, the warping-based model performs image segmentation as
usual; otherwise, the model keeps the results of the preceding frame, warps the preceding
results with the help of motion estimation, and uses the warped results as the results of the
current frame. Since the warping operation is much faster than the inference of a CNN, the
inference speed can be boosted significantly.

In spite of achieving fast speed, warping-based methods suffer a sharp drop in ac-
curacy due to warping itself. As shown in Figure 1a, non-rigid moving objects such as
walking people can change their shapes dramatically during walking. It is so difficult to
estimate their motions that these objects become severely deformed after several non-key
frames. Figure 1b shows a car occupying the central space at the beginning key frame
(t = 0), but as the car moves to the right, another car, which was occluded at the key frame,
appears at the later non-key frames. In this case, it is impossible to obtain the originally
occluded car at later non-key frames by warping. Based on the above observations, the
motion estimation that warping uses inevitably introduces errors, and errors accumulate
along succeeding non-key frames, making the results almost unusable. Warping turns
out to behave like a runaway fierce creature; the key to the issue is to tame it—to take
advantage of its acceleration and to keep it under control.

Warp-Correct 
(16.1ms/frame)

Image

Warp 
(15.3ms/frame)

(a) Walking people.

t = 0 t = 1 t = T

(b) A moving car.

Figure 1. Comparison between warping only and warping with correction. (a) The walking people’s
limbs can be occluded by their own bodies a few frames prior but appear later, thus becoming
severely deformed in later warped frames. (b) A moving car occludes distant objects that cannot be
warped from previous frames. By adding a correction stage, errors can be significantly alleviated.

To this end, we propose a novel “warp-and-correct” fast framework called the tamed
warping network (TWNet) for high-resolution semantic video segmentation, adding a
correction stage after warping. The “warp-and-correct” idea is the basic mechanism used
in the compressed domain, where video codecs warp frames by motion vectors and correct
small differences by residuals (details in Section 3). Inspired by this, we propose to learn the
residuals in the feature space. Technically, TWNet contains two core models: a key frame
CNN (KFC) and a non-key-frame CNN (NKFC). KFC processes key frames in the same way
as per-frame models do except that KFC also sends the features of the current key frame to
the next frame (a non-key frame). NKFC extracts spatial features of the current non-key
frame and warps context features from the preceding frame. Then, these features are fed
into our two correction modules, context feature rectification (CFR) and residual-guided
attention (RGA). CFR fuses warped context features with the spatial details of the current
frame to learn feature space residuals under the guidance of KFC. Furthermore, RGA
utilizes the compressed-domain residuals to correct features learned from CFR. At the
end, the corrected features are also sent to the next non-key frame. Experiments show that
TWNet is generic to backbone choices and significantly increases the mIoU of the baseline
from 67.3% to 71.6%. For non-rigid categories, such as human, the improvements are even
higher than 18 percentage points, which is important for the safety of autonomous driving.

The contributions are summarized as follows:
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• We propose a fast high-resolution semantic video segmentation framework utilizing
compressed-domain motion vectors to carry out warping and fusing warped context
features with current spatial details for the following feature correction.

• To alleviate the errors incurred by warping, we propose two correction modules to
learn the feature space residuals. CFR fuses warped context features with the current
spatial details to correct the warped features under the guidance of a per-frame model.
Furthermore, RGA utilizes compressed-domain residuals to correct features learned
from CFR.

• Experiments show that TWNet significantly increases the mIoU of the baselines. For
non-rigid categories, the improvements are even higher.

2. Related Work

The first end-to-end deep learning method for semantic segmentation, fully convolu-
tional networks (FCNs) [4], achieved remarkable improvement in terms of accuracy and
set off research boom in the field. Since then, the performance of deep learning semantic
segmentation has been refined using various techniques such as dilated convolution and
multi-level feature fusion [5–8,27,35]. More recently, the transformer-based methods have
achieved impressive performance [36–39]. However, these high-quality models are usu-
ally computationally expensive and cannot be applied to real-time applications. In this
work, we focus on real-time semantic segmentation and review the related works from two
aspects: per-frame video segmentation and warping-based video segmentation.

2.1. Per-Frame Semantic Video Segmentation

Section 1 has introduced the ways that per-frame methods reduce the computational
cost. In this section, we review the per-frame methods from the aspect of architecture design
to better compare them with our work. Technically, most per-frame methods adopt either
the encoder–decoder architecture or the two-pathway architecture. The encoder–decoder
architecture features repeated down-sampling in the encoder, which reduces the computa-
tional cost significantly [19,27,40–42]. Although our method is a warping-based method
instead of a per-frame method, we also adopt the encoder–decoder architecture. The
decoder of the encoder–decoder architecture is responsible for restoring the spatial informa-
tion but the down-sampling makes it difficult. To deal with the problem, the two-pathway
architecture has a deep pathway to extract high-level features and a shallow pathway to
extract low-level features. The combination of features from different levels improves the
accuracy [10,43–46]. Feature fusion in our proposed non-key-frame CNN (NKFC) is similar
to those in [35,47,48], where lateral connections are used to fuse the low-level (spatial) and
high-level (context) features. In comparison, our NKFC only retains a few layers of the
encoder to extract low-level features and obtains high-level features by feature warping.
Thus, NKFC saves the heavy computations of context feature extraction.

2.2. Warping-Based Semantic Video Segmentation

Researchers have proposed many warping-based approaches [30,31,33,34]. Some
works adopt warping as a temporal constraint to enhance features for the sake of accu-
racy [23,25,30]. For acceleration, Zhu et al. [34], Xu et al. [33], and Jain et al. [31] proposed
to use feature warping to speed up their models. They divided frames into two types: key
frames and non-key frames. Key frames are sent to the CNN for segmentation, while non-
key frame results are obtained by warping. Recently, Hu et al. [25] proposed to approximate
high-level features by composing features from several shallower layers. These approaches
speed up the inference phase since the computational cost of warping is much less than
that of CNN. However, both the accuracy and robustness of these methods deteriorate due
to the following reasons. First, neither optical flows nor motion vectors can estimate the
precise motion of all pixels. There always exist unavoidable biases (errors) between the
warped features and the expected ones. Second, in the case of consecutive non-key frames,
cumulative errors lead to unusable results. To address error accumulation, Li et al. [32]
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and Xu et al. [33] proposed to adaptively select key frames by predicting the confidence
score for each frame. Jain et al. [31] introduced bi-directional features warping to improve
accuracy. However, all these approaches lack the ability to correct warped features.

3. Preliminaries: Warp-and-Correct in Video Codecs

Warping is an efficient operation for frame estimation. Given the preceding frame It−1
and the motion vectors of the current frame Mvt, the current frame Ît can be estimated by

Ît = warp(It−1, Mvt). (1)

However, biases always exist between the warped image and the real one. Modern video
codecs add a correction step after image warping. (Figure 2a). Specifically, the codec
performs pixel-wise addition between the warped image Ît and the residual map ResIt.
Each point in ResIt is a three-dimensional vector, (∆r, ∆g, ∆b), which describes the color
differences between the warped pixel and the expected one. The overall inter-frame
prediction process is described as

It = Ît + ResIt. (2)

Inspired by this, we propose to learn the residual term in feature space (Figure 2b) to
reduce errors incurred by warping.

Recent codecs such as HEVC (H.265) and VCC (H.266) share the same motion vector
and residual design as MPEG-4 part 2 (H.263) and MPEG-4 part 10 (H.264). More accurate
motion vectors alleviate the error incurred by warping, whereas they also require more
time on decoding, making the whole system run slower. No matter how sophisticated the
motion compensation is, they still need correction in the compressed domain. It is expected
that our method, which does correction in feature space, will still work for these codecs.

Warp Correct

(a) Warp-and-correct in image space.

to be learned

(b) Warp-and-correct in feature space.

Figure 2. Illustration of “warp-and-correct”. (a) Video codecs warp the preceding frame to the current
one and then add the compressed-domain residuals. (b) We propose to learn the residuals in feature
space to rectify the warped features.
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4. Tamed Warping Network

In this section, we introduce the tamed warping network (TWNet). We first outline the
overall framework in Section 4.1. Then, we describe the core networks, i.e., the key-frame
CNN (KFC) and the non-key-frame CNN (NKFC) in Section 4.2. Next, we introduce the
correction stage consisting of two modules, i.e., the context feature rectification (CFR) mod-
ule and the residual-guided attention (RGA) module in Section 4.3. After that, we present
how to train the above components in Section 4.4. Finally, we present the implementation
details in Section 4.5.

4.1. Overview

Tamed warping network (TWNet) is a warping-based semantic video segmentation
method. Warping-based methods sequentially divide a video clip into many groups of
frames. Each group consists of one key frame followed by multiple non-key frames. In this
way, the key frame is segmented in the same way as semantic image segmentation, and
each non-key frame is segmented with the help of the results from the preceding frame.

Accordingly, TWNet consists of a key-frame CNN (KFC), a non-key-frame CNN (NKFC),
and two modules for correction, as illustrated in Figure 3. In TWNet, each key frame is
performed by KFC, which is the same as the model used by per-frame methods discussed
in Section 1 except that the context features of a selected interior layer are sent to the next
frame. Each non-key frame is performed by NKFC, where the features from the preceding
frame are warped and corrected by the context feature rectification (CFR) and residual-
guided attention (RGA) modules. The corrected features are sent to the next CNN layer
and the succeeding frame. The components of TWNet are detailed below.

Figure 3. The framework of TWNet. A group of frames consists of one key frame followed by
many non-key frames. Key frames are sent to the key-frame CNN (KFC) and non-key frames to
the non-key-frame CNN (NKFC), where the warped context features from the preceding frame are
corrected by the CRF and RGA modules. Both CNNs output the result label maps and the interior
context feature maps. Dashed arrows and boxes in NKFC indicate the operations to be skipped.

4.2. Core Networks: The Key-Frame CNN (KFC) and the Non-Key-Frame CNN (NKFC)

TWNet contains two core networks: the key-frame CNN (KFC) and the non-key frame
CNN (NKFC). As the name suggests, while TWNet is processing a video clip, if the coming
frame is a key frame, it will be sent to KFC; otherwise, it will be sent to NKFC. Technical
details of key frame selection are discussed in Section 4.5.1.
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KFC is built on an encoder–decoder architecture, e.g., FPN [47] and U-Net [35]. It
behaves like a regular semantic segmentation model except that one layer of KFC is
chosen to send its features to the next frame, which is also the first non-key frame in the
current group of frames. Also, KFC is used to guide the learning of NKFC as described in
Section 4.4.

NKFC has the same network structure as KFC and also sends the features from a
chosen layer to the next frame, but it has two additional functions. First, NKFC receives the
layer features from the preceding frame (it can be either a key frame or a non-key frame)
and performs feature warping at the same layer. Formally, let t be the subscript of the
current frame and let t− 1 be that of the preceding frame. Given features Ft−1, we can
first resize the motion vectors Mvt to M̂vt to match the size of Ft−1 and then predict the
features of the current frame F̂t by

F̂t = warp(Ft−1, M̂vt). (3)

The motion vectors we use for warping are readily available from the compressed domain,
sparing one from time-consuming motion estimation such as optical flows. In this way,
NKFC boosts the speed of segmentation because it skips several layers of CNN operations.
The trade-off of speed and accuracy are discussed in Section 4.5.2.

The second additional function NKFC has is that it performs feature correction. Al-
though the warping in Equation (3) speeds up the video segmentation, it also introduces
errors. To correct the warped features, we propose two modules: the context feature rectifi-
cation (CFR) module and the residual-guided attention (RGA) module. The details of these
two modules are presented in Section 4.3.

Unlike previous warping methods, NKFC fuses features from head layers to those
of tail layers to enhance spatial details. Compared to direct lateral connections such as
FPN [47] and U-Net [35], the spatial features from head layers are first fed into the correction
modules as described in Section 4.3.

4.3. The Correction Stage

Although NKFC speeds up video segmentation by carrying out feature warping, errors
are inevitably introduced by warping, and they will accumulate along succeeding non-key
frames as shown in Figure 1. Comparing the pipeline of video codecs with warping-based
methods in Figure 2, we found that the main problem of previous methods is the lack of a
correction stage. We propose a correction stage consisting of the following two modules.

4.3.1. Context Feature Rectification (CFR)

We introduce a lightweight module called CFR to explicitly correct the warped context
features F̂t by considering the following observations. First, the contextual information
of the warped features is generally correct, except for the edges of moving objects. Second,
the low-level features contain the spatial information, such as “edge” and “shape”, which
can help to correct the context features. Thus, we make CFR take as the input the warped
context features F̂t as well as the spatial features of the current frame ft and output the
corrected context features Ft, as shown in Figure 4a. Specifically, CFR adopts a single-layer
network, φr, which takes the concatenation [F̂t, ft] as the input and outputs ResFt, the
residuals in feature space, as follows:

Ft = F̂t + φr([F̂t, ft])

= F̂t + ResFt.
(4)
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corrected features 

 

concatspatial features

wapred features 

conv 

(a) CFR.

corrected features 

 

the RGA module

 

concatspatial features

wapred features 

conv 

(b) CFR+RGA.
Figure 4. Illustration of the CFR and RGA modules. (a) The CFR module first concatenates ft, the
spatial features of the current non-key frame, and F̂t, the warped features from the preceding frame.
Then, the concatenated features are fed into a convolution layer φr to learn the feature space residuals
ResFt. Finally, CFR adds the ResFt to F̂t to obtain the corrected features Ft. (b) The RGA module is
based on CFR. After obtaining ResFt, RGA uses compressed domain residuals ResIt, which are fed
into a convolution layer φa to learn the attention map At. Then, RGA multiplies At with F̂t to focus
on the error-prone regions and obtains R̂esFt. RGA adds R̂esFt to F̂t to obtain the corrected features
Ft. “�”: element-wise multiplication; “⊕”: element-wise addition.

4.3.2. Residual-Guided Attention (RGA)

To guide the learning of CFR, we propose the RGA module. In TWNet, the motion
vectors used for feature warping are the same as those used in image warping. Thus, the
residual maps in image space ResIt, which is readily available in the compressed domain,
can be used as prior knowledge to guide the learning of residuals in feature space ResFt. To
this end, we first resize the residual map ResIt to the shape of the warped context features.
Then, we calculate the spatial attention map At using a single-layer CNN φa as follows:

At = φa(ResIt). (5)

Finally, we apply spatial attention by performing element-wise multiplication between At

and ResFt to obtain R̂esFt as follows:

Ft = F̂t +At � ResFt

= F̂t + R̂esFt,
(6)

where� denotes the element-wise multiplication. Figure 4b illustrates the whole procedure
of the correction stage.

4.4. Training of TWNet

The training of TWNet contains two main steps: the training of KFC and the training
of NKFC. The training of KFC is similar to that of other image segmentation methods,
which can be defined by

Lp f = Lcls + λ0 · Lreg, (7)
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where Lcls is the softmax cross entropy loss and Lreg is the L2 regularization term. Then,
we fix all the parameters in KFC and start to train the NKFC network and its correction
modules. We employ an additional L2 consistency loss Lconsist to minimize the distance
between the corrected features and the context features extracted from KFC. The object
function of this step is

Lnk f = Lcls + λ0 · Lreg + λ1 · Lconsist. (8)

4.5. Implementation Details
4.5.1. Key Frame Selection

We simply regard I-frames as key frames and P-frames as non-key frames, where
I/P-frames are the concepts in video codecs. An I-frame (intra-coded picture) is stored
as a complete image, while a P-frame (predicted picture) is stored by the corresponding
motion vectors and residual. Following previous works of [49,50], we choose MPEG-
4 Part 2 (Simple Profile) [51] as the compression standard, where each group of frames
contains one I-frame followed by 11 P-frames.

4.5.2. Layer Selection in NKFC

If we choose a deeper layer, there will be fewer paired head and tail layers (Figure 5),
and thus we will obtain a faster but less accurate model. For example, if we choose tail2
to conduct warping, as shown in Figure 5b, only the head1, tail1, and tail2 layers will
be working. In practice, we can adjust this hyperparameter to strike a balance between
speed and accuracy. In Section 5, we will conduct experiments to show the influence of this
hyperparameter.

head1 head1 head1

head2 head2 head2
head3 head3 head3

tail1 tail1 tail1

tail2 tail2 tail2
tail3 tail3 tail3

Figure 5. Choices of different layers for feature warping. The chosen layer is indicated with red color.
The dotted arrows and boxes denote skipped operations.

5. Experiments
5.1. Experimental Setup

We report our major results on the Cityscapes dataset [1], which contains 5k images
finely annotated with 19 classes. The models are trained on the 2975 training images and
evaluated on the 500 validation images. We also obtain results on the 1525 test images,
reported by the test server. Each image is the 20th frame of a 1024× 2048 video clip. We
also conduct experiments on the CamVid dataset [52], which can be found in Section 5.4.

The training is divided into two steps, i.e., the training of per-frame CNN and the
training of NKFC. To train the per-frame model, we use the 2975 fine-annotated training
images (i.e., the 20th frames in the video clips). We use MobileNet [17] pre-trained on Ima-
geNet [53] as the encoder of the per-frame CNN and three cascaded lateral connections [47]
as the decoder. We adopt the Adam optimizer [54] to train for 90K iterations with the
initial learning rate of 1× 10−2 and a batch size of 8. We update the pre-trained parameters
with a 100 times smaller learning rate. Weight decay λ0 is set to 1× 10−7. Training data
augmentations include mean extraction, random scaling between 0.5 and 2.0, random
horizontal flipping, and random cropping to [800, 800]. We implement the model using
TensorFlow 1.12 [55] and train it on a GTX 1080 Ti GPU card.
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After training KFC, the parameters in it are fixed, and we start to train NKFC. In
each training step of NKFC, we first send a batch of the 19th frames into KFC to extract
their context features. Then, we perform warping and correction for the corresponding
20th frames and calculate the loss according to Equation (8). Note that the 20th frames
should also be sent to KFC to calculate the context features. Random cropping is not
adopted since the warping operation may exceed the cropped boundary. We keep the size
of [1024, 2048] with a batch size of 4.

At inference time, we conduct all the experiments on video clips at a resolution of
1024× 2048. During evaluation, the key frame is uniformly sampled from the 9th to the
20th frame in the video clip, and the prediction of the 20th frame is used for evaluation.
No testing augmentation is adopted. The accuracy is measured by mean intersection-over-
union (mIoU), and the speed is measured by frames per second (FPS). Our models run
on a server with an Intel Core i9-7920X CPU and a single NVIDIA GeForce GTX 1080 Ti
GPU card.

5.2. Ablation Study

We start building TWNet from the training of the per-frame model KFC. We adopt the
commonly used lightweight CNN, MobileNetV1, as the encoder. Our KFC achieves the
accuracy of 73.6% mIoU at 35.5 FPS.

5.2.1. NKFC

As described in Section 4.5.2, the layer in NKFC can be arbitrarily chosen to balance
the accuracy and speed. We choose three layers in the decoder as the context features,
respectively. The results are summarized in Table 1.

Table 1. Performance comparison of different layers used for feature warping. “Fine-tuned” indicates
whether the second training step is performed to fine-tune NKFC. If not fin-tuned, the parameters of
the head and tail layers keep the same as those in KFC. If Layer 3 is chosen, no trainable parameters
exist and hence there is no fine-tuning. ↑: higher is better. X indicates the fine-tuning is used. The
best results are shown in bold.

Warping Layer Fine-Tuned mIoU ↑ FPS ↑

Layer 1 67.3 65.5
X 69.6 65.5

Layer 2 65.4 89.8
X 67.8 89.8

Layer 3 - 63.2 119.7

According to the experimental results, fine-tuning (the second training step) can
significantly improve the performance. This demonstrates that low-level spatial features
are more discriminative in NKFC, possibly due to the fact that the warped context features
are less reliable in NKFC; thus, the model depends more on low-level spatial features.

5.2.2. CFR Module and Consistency Loss

We propose the CFR module to correct the warped context features. As shown in
Table 2, the CFR module is effective and efficient. Table 2 also demonstrates the effectiveness
of consistency loss, Lconsist, and the weight term, λ1, a crucial hyper-parameter for the
training of CFR. By default, we set λ1 to 10 in the following sections for better performance.

5.2.3. RGA Module

We introduce RGA to further exploit the correlation between residuals in image space
and feature space. The results are demonstrated in Table 3. As expected, the RGA module
further improves the performance of TWNet since it guides CFR to pay more attention to
error-prone regions. The qualitative results of TWNet on Cityscapes are shown in Figure 6.
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Table 2. Validation of Lconsist. λ1: the weight of Lconsist. We achieve the bests results when setting
λ1 to 10. ↑: higher is better. The best results are shown in bold.

Warping Layer λ1 mIoU ↑ FPS ↑

Layer 1

0 69.9 63.1
1 70.2 63.1

10 70.6 63.1
20 70.3 63.1

Layer 2

0 67.6 86.3
1 68.1 86.3

10 68.6 86.3
20 68.3 86.3

(a) Image (b) GT (d) NKFC (e) NKFC+CFR (f) NKFC+CFR+RGA(c) Warping

Figure 6. Qualitative results on Cityscapes. GT: ground truth; warping: normal warping; NKFC: the
non-key-frame CNN; CFR: context feature rectification; and RGA: residual-guided attention.

Table 3. Effect of each module of TWNet. FT: the fine-tuning of the non-key CNN (the second training
step); CFR: context feature rectification; and RGA: residual-guided attention. “X” means the model
utilizes the corresponding module. We also show the extra cost of adding our modules. ↑: higher is
better; ↓: lower is better. The best results are shown in bold.

Warping Layer FT CFR RGA mIoU ↑ FPS ↑ GFLOPs ↓

Layer 1.

67.3 65.5 113.28
X 69.6 65.5 +0
X X 70.6 63.1 +2.42
X X X 71.6 61.8 +0.0012

Layer 2.

65.4 89.8 73.00
X 67.8 89.8 +0
X X 68.6 86.3 +2.42
X X X 69.5 84.9 +0.0029

5.2.4. Category-Level Improvement

The IoU improvements for different categories are shown in Table 4. The IoUs of non-
rigid objects (human, object, and vehicle) are improved greatly. The moving of non-rigid
objects are hard to predict and thus warping is prone to fail. With our correction, wrong
predictions significantly decrease.
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Table 4. IoU improvements of different categories. We choose Layer 1 here. The accuracy of non-rigid
objects improves significantly. The improvements over five percentage points are shown in bold.

Method Object Human Vehicle Nature Construction Sky Flat

Warping 43.8 56.7 82.2 86.6 87.1 91.6 96.6
NKFC 51.2 (+7.4) 65.5 (+8.8) 84.6 (+2.4) 89.6 (+3.0) 89.1 (+2.0) 94.0 (+2.4) 97.3 (+0.7)
NKFC + CFR 62.2 (+18.4) 75.2 (+18.5) 89.7 (+7.5) 91.3 (+4.7) 90.8 (+3.7) 94.2 (+2.6) 97.9 (+1.3)
NKFC + CFR + RGA 62.2 (+18.4) 76.1 (+19.4) 90.1 (+7.9) 91.1 (4.5) 91.0 (+3.9) 94.2 (+2.6) 98.0 (+1.4)

5.2.5. Error Accumulation

We also conduct experiments to show that TWNet is able to alleviate the error accu-
mulation problem during consecutive warping. Suppose that T denotes the frame-level
interval between the initial key frame and the frame to be evaluated. We set T to different
values and evaluate the performance of TWNet and NKFC without correction modules.
The results in Figure 7 show that the correction modules significantly alleviate the accuracy
degradation and improve the robustness of the models. Meanwhile, the employment of
CFR and RGA takes little extra time.

(a) Layer1 (b) Layer2
Figure 7. Performance degradation of warp and warp-correct. (a): Layer 1 used for feature warping.
(b): Layer 2 used for warping. T: frame interval between the key frame and the frame to be evaluated.
The correction module effectively alleviates the long-term error accumulation problem.

5.2.6. Choices of Flow Models

We could use optical flow methods, e.g., FlowNet2 [56] and PWC-Net [57], as the
flow model of our framework. However, the running speeds of these methods are even
slower than our per-frame segmentation network (even slower than 20 fps), which means
the warping operation will not speed up the inference phase. Additionally, when we
apply these optical flow methods to warping, the segmentation accuracy is similar to our
motion-vector version. Thus, we decide to use motion vectors. Table 5 shows the accuracy
using different types of flows for warping.

Table 5. Effect of different flow models. ↑: higher is better. The best results are shown in bold.

Flow Model mIoU ↑ FPS ↑
Motion vectors 67.3 65.5
FlowNet2 67.5 13.2
FlowNet2-s 66.3 26.6
FlowNet2-c 66.6 22.7
PWC-Net 67.0 29.4
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5.2.7. Choices of Backbones

We study the genericity of TWNet to different backbones, e.g., MobileNetV1, Mo-
bileNetV2, and ResNet-18. As described in Section 4.5.2, we can choose different layers
of the decoder for feature warping to build different TWNets. Table 6 shows the required
head layers for each version. The head layers for different backbones are defined in Table 7.
We follow the notations of the TensorFlow Slim package.

Table 6. The required head layers for different versions of TWNet. head n: the nth head layer of the
encoder. X indicates the specific layer is required.

Model Name Head1 Head2 Head3

Per-frame X X X
TWNet-Layer1 X X
TWNet-Layer2 X
TWNet-Layer3

Table 7. Head layers for different backbones. We quote the notations from the TensorFlow Slim package.

Backbone Head1 Head2 Head3

MobileNetV1 conv2d_3 conv2d_5 conv2d_11
MobileNetV2 layer_4 layer_7 layer_14
ResNet-18 conv2_2 conv3_2 conv4_2

The results in Table 8 demonstrate that TWNet is generic to backbone networks and
hence can be adapted to various scenarios for different requirements of speed and accuracy.

Table 8. Performance of TWNet based on different backbone networks. Warp: the layer where
feature warping is performed. “None” means no feature warping. ↑: higher is better. × indicates the
speed-up times. The best results are shown in bold.

Backbone Warp mIoU ↑ FPS ↑ Speed-Up (×)

MobileNetV1

None 73.6 35.5 -
Layer1 71.6 61.8 1.74
Layer2 69.5 84.9 2.39
Layer3 63.2 119.7 3.37

MobileNetV2

None 73.2 32.3 -
Layer1 71.3 59.6 1.85
Layer2 69.4 82.5 2.55
Layer3 62.4 115.8 3.59

ResNet-18

None 71.6 36.9 -
Layer1 69.4 63.6 1.72
Layer2 67.7 86.8 2.35
Layer3 61.9 120.4 3.26

5.3. Comparison with Other Methods

We compare TWNet with other SOTAs in Table 9. Since different models are evaluated
on different GPUs, it is informative to provide an estimate of how other models would
perform on our GPU. Following the work of [19], we include the “FPS norm” value based on
the GPU types of previous methods (GPU Benchmark: www.techpowerup.com/gpu-specs
(accessed on 5 September 2023)). The scaling factors are 1.0 for 1080 Ti, 0.61 for Titan X
Maxwell, 1.03 for TitanX Pascal, 1.12 for Titan XP, 0.44 for Tesla K40, 0.79 for Tesla K80, and
1.28 for 2080 Ti. All of our models run on the platform with CUDA 9.2, cuDNN 7.3, and
TensorFlow 1.12, and we use the timeline tool in TensorFlow to measure the speed.

The results demonstrate that TWNet achieves the highest inference speed with com-
parable accuracy at a resolution of 1024× 2048. The accuracy of TWNet decreases more
slightly than other video-based methods.

www.techpowerup.com/gpu-specs
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Table 9. Comparison of SOTA models on Cityscapes. Terms with “-pf”: mIoU/FPS for per-frame
model; “FPS norm” is calculated based on the ability of the GPU. All the results only use train as the
training set. All of the TWNet models run at a resolution of 1024× 2048. ↑: higher is better; ↓: lower
is better. The best results are shown in bold.

Model Eval Set Resolution mIoU-pf ↑ mIoU ↑ FPS-pf ↑ FPS ↑ FPS
Norm ↑

Params
(M) ↓ GPU

Per-frame Models

ICNet [22] val 1024× 2048 67.7 - 30.3 - 49.7 25.17 TITAN
X(M)

ERFNet [27] test 1024× 2048 69.7 - 11.2 - 18.4 2.08 TITAN
X(M)

SwiftNetRN-18 [19] val 1024× 2048 74.4 - 34.0 - 34.0 12.9 1080 Ti
CAS [21] val 1024× 2048 74.0 - 34.2 - 48.9 1070
Liu et al. [23] val 1024× 2048 73.9 - 20.8 - 20.8 3.2 1080 Ti

TD-PSP18 [25] val 1024× 2048 76.8 - 11.8 - 10.5 12.77 Titan
Xp

DABNet [29] test 512× 1024 70.1 - 104.0 - 104.0 0.76 1080 Ti
LRNNet [58] test 512× 1024 72.2 - 71.0 - 71.0 0.68 1080 Ti
LEANet [14] test 512× 1024 71.9 - 77.3 - 77.3 0.74 1080 Ti
LAANet [13] test 512× 1024 73.6 - 95.8 - 95.8 0.67 1080 Ti
DDRNet-23-slim [46] test 1024× 2048 77.4 - 101.6 - 79.37 5.7 2080 Ti

Video-based Models

DFF [34] val 512× 1024 71.1 69.2 1.52 5.6 12.8 N/A Tesla
K40

DVSNet1 [33] val 1024× 2048 73.5 63.2 5.6 30.4 30.4 42.73 1080 Ti
DVSNet2 [33] val 1024× 2048 73.5 70.4 5.6 19.8 19.8 62.9 1080 Ti

Prop-mv [31] val 1024× 2048 75.2 61.7 1.3 7.6 9.6 8.7 Tesla
K80

Interp-mv [31] val 1024× 2048 75.2 66.6 1.3 7.2 9.1 8.7 Tesla
K80

Low-Latency [32] val 1024× 2048 80.2 75.9 2.8 8.4 - 50.1 N/A
LMA [59] val 512× 1024 72.1 73.7 99.0 86.2 67.2 N/A 2080 Ti

Ours
TWNet-Layer1 val 1024× 2048 73.6 71.6 35.5 61.8 61.8 12.35

1080 TiTWNet-Layer1 test 1024× 2048 73.1 71.2 35.5 61.8 61.8 12.35
TWNet-Layer2 val 1024× 2048 73.6 69.5 35.5 84.9 84.9 12.14
TWNet-Layer2 test 1024× 2048 73.1 69.0 35.5 84.9 84.9 12.14

5.4. Results on the CamVid Dataset

We also conduct experiments on the CamVid dataset, which contains 367, 100, and
233 video clips for training, validation, and testing, respectively, at a resolution of 720× 960.
We apply the same configurations as those of Cityscapes except for the crop size. As shown
in Tables 10 and 11, TWNet achieves consistent results on CamVid.

Table 10. Effect of each module on the CamVid test set. ↑: higher is better. The best results are shown
in bold. X indicates the module is used.

Warping Layer FT CFR RGA mIoU ↑ FPS ↑

Layer 1

68.8 183.1
X 69.9 183.1
X X 71.0 179.8
X X X 71.5 175.2

Layer 2

66.7 252.6
X 68.1 252.6
X X 69.3 245.8
X X X 70.0 240.7
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Table 11. Comparison with others on the CamVid test set. ↑: higher is better; ↓: lower is better. The
best results are shown in bold.

Model Resolution mIoU-pf ↑ mIoU ↑ FPS-pf ↑ FPS ↑ FPS
Norm ↑ Params (M) ↓ GPU

Per-frame Models
DFANet A [9] 720× 960 64.7 - 120 - 196.8 7.8 TITAN X

ICNet [22] 720× 960 67.1 - 27.8 - 45.6 25.17 TITAN X
(M)

BiSeNet [10] 720× 960 68.7 - 116.2 - 103.4 13.43 Titan Xp
BiSeNet V2 [43] 720× 960 73.2 - 32.7 - 32.7 49 1080 Ti
Liu et al. [23] 720× 960 78.2 - 27.8 - 27.8 3.2 1080 Ti
TD-PSP18 [25] 720× 960 72.6 - 25 - 22.3 12.77 Ttian Xp
DABNet [29] 360× 480 66.7 - 124.4 - 124.4 0.76 1080 Ti
LRNNet [58] 360× 480 67.6 - 83.0 - 83.0 0.67 1080 Ti
LEANet [14] 360× 480 67.5 - 98.6 - 98.6 0.74 1080 Ti
LAANet [13] 360× 480 67.9 - 112.5 - 112.5 0.67 1080 Ti
DRRNet-23-slim [46] 720× 960 74.3 - 230 - 179.7 5.7 2080 Ti

Video-based Models
Prov-mv [31] 720× 960 68.6 63.4 3.6 21.4 27.0 8.7 Tesla K80
Interp-mv [31] 720× 960 68.6 67.3 3.6 19.1 24.1 8.7 Tesla K80

Ours
TWNet-Layer1 720× 960 73.5 71.5 103.5 175.2 175.2 12.35 1080 Ti
TWNet-Layer2 720× 960 73.5 70.0 103.5 240.7 240.7 12.14 1080 Ti

6. Conclusions

We present a novel fast framework TWNet for high-resolution semantic video segmen-
tation. TWNet is based on warping, but unlike previous warping-based methods, it adds
a correction stage after warping to alleviate the errors incurred by warping. Technically,
we build two core models: KFC and NKFC. KFC is a key-frame CNN, which is used to
perform segmentation for key frames and to send the features to the following non-key
frame. NKFC is a non-key-frame CNN, which is used to extract the spatial details of the
current non-key frame and perform warping based on the features of the preceding frame.
Both spatial features and warped features of the current non-key frame are sent to the next
correction stage. We propose two efficient modules for the correction stage, namely, CFR
and RGA, to correct the warped features by learning the feature-space residuals. The exper-
imental results demonstrate that our method is generic to the backbone choices and flow
model choices. Our model is much more robust than previous warping-based approaches,
and it maintains high speed.
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