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Abstract: The necessity for undertaking this research is driven by the prevailing challenges encoun-
tered in logistic centers. This study addresses a logistic order-picking issue involving unidirectional
conveyors and buffers, which are assigned to racks and pickers with the objective of minimizing
the makespan. Subsequently, two variations of a two-step matheuristic approach are proposed as
solution methodologies. These matheuristics entail decomposing the primary order-picking problem
into two subproblems. In the initial step, the problem of minimizing the free time for pickers/buffers
is solved, followed by an investigation into minimizing order picking makespan. An experimentation
phase is carried out across three versions of a distribution center layout, wherein one or more pickers
are allocated to one or more buffers, spanning 120 test instances. The research findings indicate
that employing a mathematical programming-based technique holds promise for yielding solutions
within reasonable computational timeframes, particularly when distributing products to consumers
with limited product variety within the order. Furthermore, the proposed technique offers the advan-
tages of expediency and simplicity, rendering it suitable for adoption in the process of designing and
selecting order-picking systems.

Keywords: order picking; mathematical programming; heuristics; matheuristics; warehouse;
distribution center

1. Introduction

Throughout the years, considerable attention has been directed toward the manage-
ment of warehouse operations [1]. The process of locating items within a warehouse or
fulfillment center and preparing them for dispatch to customers is commonly referred to as
“warehouse picking”.

One of the main research priorities is order picking, which is generally defined as
the recovery of goods from storage sites to fulfill customer orders [2]. This is due to two
factors: first, the substantial amount of manual work that choosing orders entails [3], and
second, the fact that order picking is a very time-intensive task that has a direct influence
on customer service [1,4].

Today’s supply networks are under a lot of demand. There are too many elements
upsetting the delicate balance in supply systems, including a lack of raw materials, bad
weather, natural catastrophes, and the pandemic. This causes supply chains to break down,
which can delay or even cause deliveries to be canceled. This has a significant impact on
production and logistics.

Technology advancement has accelerated innovation in the supply chain to previously
unheard-of levels, e.g., blockchain technology, cloud computing, the Internet of Things
(IoT), and big data [5,6].

In the warehouse, sustainability has taken on more importance. When a warehouse
can run in a way that is beneficial to both society and the environment, it is sustainable. It
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has systems in place to reduce waste, emissions, energy use, and environmental effects as a
whole.

Overall, it can be said that the problem of warehouse logistics is difficult, and it is useful
to utilize computer simulations, optimization, and mathematical modeling techniques for
its efficient solution [7,8]. Mathematical modeling was utilized by Georgijevicet al. (2013) [7]
to examine the ideal number, size, and placement of public logistics warehouses.

Most of the research investigates the order-picking problem in terms of picker-to-parts,
in which the picker walks around the logistic center and picks products for the order.
However, many logistic centers are functioning with zone picking rules in which the picker
collects the products for selected orders only from his zone. Therefore, in this research, we
investigate the process by which the container is moved via the conveyor to the consequent
picking zones in which the pickers can collect the orders.

We present a practical logistic order-picking model with a one-directional conveyor
and buffers to which the racks and pickers are assigned. In the investigated distribution
center, three versions of the layout are modeled: (1) each picker is allocated to a single
buffer; (2) one picker is allocated to more than one buffer; and (3) more than one picker is
allocated to one buffer. The criteria is to minimize the total time needed to complete all
orders. Therefore, by using a proposed mathematical model, it is possible to instruct the
pickers in what sequence to pick products for the containers during the order-completing
phase, which results in a reduction of time on later steps such as packing and shipping.

The goal of this study is to find new optimization tactics and develop two versions of
the two-step matheuristic for the required order-picking problem. The proposed approach
includes the decomposition of the main order picking problem into two consequent sub-
problems at the first step, of which the pickers/buffers free time minimization problem is
solved, and at the following stage, order picking makespan minimization is solved. The
acquired knowledge demonstrates the application possibilities of the proposed matheuris-
tics in terms of increased scalability, lower operational expenses, and improved employee
productivity.

The remainder of the paper is organized as follows: The next section, Section 2,
presents a brief literature review. After that, a description of the investigated order-picking
problem and its mathematical model are given in Section 3. Section 4 presents the new
matheuristics. Section 5 reports the computational results. In Section 6, some concluding
remarks and future work directions are presented.

2. Related Literature
2.1. The Importance of Sustainability in Logistics

A collection of practices known as sustainable logistics aims to lessen the negative
effects of environmental degradation brought on by the operations of the logistics sector.
The primary goal is to alter certain supply chain behaviors in order to strike a balance
between environmental preservation and business growth.

Sustainability in business and manufacturing entails a focus on meeting the needs of an
organization’s direct and indirect stakeholders, which may include a person, a corporation,
a community, a city, or a government, while taking into account the interests of future
stakeholders [9]. Since this is an issue that affects us all, it is crucial that businesses or
organizations adopt sustainable practices.

Today’s enterprises have far easier access to cost-effective, sustainable solutions than
they did in the past. However, commercial and business parameters are more prioritized in
industrial paradigms than environmental considerations [10].

The industrial sector is becoming more conscious of the detrimental effects of its opera-
tions, and many businesses have already implemented efforts to reduce their environmental
impact. Platform service supply chains have taken center stage in economic and social
growth as platforms become more common in business operations [5]. Customers want
to lower their running expenses; therefore, they search for buildings that have a strong
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possibility of being operationally efficient. Customers may also seek sustainable structures
that are comfortable and functional.

The crucial results of supply chain innovation are online platform services [6]. A
growing number of businesses from all sectors are joining online platforms or creating their
own platforms to provide clients with more value-added services and boost revenues. All
different types of markets, including retail, tourism, lodging, transportation, and so on,
have been invaded by platform modes [11].

Investors and clients prefer buildings with sustainable elements. Companies, including
those in the logistics, storage, or handling industries, have made protecting the environment
and continuously seeking ways to lessen pollution and its effects one of their top concerns.

Logistics services that incorporate green components have the largest influence on
how supply chains are shaped toward sustainability. Business strategies need to encourage
ecologically conscious reasoning through ongoing integration of green and performance
monitoring of resulting environmental and business sustainability [12].

Rapid industrialization has accelerated the atmospheric concentration of greenhouse
gases, resulting in severe global climate change and ecological destruction. Chiang et al.
(2023) [13] concentrated on warehouse operations and proposed K-means clustering and
Prim’s minimum-spanning tree-based optimal picking-list consolidation and assignment
methodology to create a sustainable supply chain for consumer electronic devices. Their
model significantly decreased the electric order-picking trucks’ inside-the-warehouse trip
distance and enhanced picking productivity in order to cut carbon emissions and create a
sustainable supply chain [13]. Ries et al. (2016) [14] made a similar argument, arguing that
environmental sustainability is attainable in the setting of a warehouse in order to reduce
operational costs and carbon footprint [15].

Customers may be more loyal to businesses that practice sustainability in their opera-
tions by paying attention to natural and human resources. Green logistics integration into
storage as a component of the supply chain may potentially increase company efficiency
and boost financial performance.

Accordingly, efficient order assignment and retrieval are essential for cutting logis-
tical costs [16–18]. Berg and Zijm (1999) [16] provided models that have the potential
to significantly enhance warehouse operations through the implementation of inventory
management and warehouse management systems. Staudt et al. (2015) [17] summarized
the research on operational warehouse performance, gave definitions for the performance
measures, and outlined a framework to show their limits.

Facilitating inventory levels, upgrading processes, redesigning more intelligent ship-
ping networks, fostering stronger partnerships between suppliers and third parties, etc. are
all examples of strategies for reducing logistical costs.

Prior to using an optimization tool or approach, it is important to take the storage
system definition into account [18]. It is a group of physical buildings created to organize
the items in the best way possible while maximizing the use of available space, accessibility,
and organization.

Numerous optimization techniques may be applied to warehouse logistics to enhance
its performance [8]. A methodology to predict the major performance indicators of overall
warehouse performance with a small forecasting error was put out by Islam et al. (2021) [19].
Measurement is the phase that connects all of the different processes and enables the
distributors to monitor performance movements, evaluate how effectively employees are
working, identify possible issues, manage uncertainties, and do a lot more.

A decision support system for the customization of a warehouse management system
was created by Baruffaldi et al. (2019) [20] by taking into account the cost of information
exchange, the validity of the data, and the uncertainty associated with the quantification of
ROI. This innovative tool aimed to address the three primary concerns that influence such
decisions: the price of information sharing, the limited visibility of the client’s data, and
the difficulty of estimating the return on investment for a WMS feature [20].
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The infrastructure of a growing organization depends on the warehouse operating
smoothly and effectively. Whether a business only engages in warehousing or has a more
intricate process, novel practical advice can be used right away.

Picking is another aspect of warehouse logistics that has a large impact on the effec-
tiveness of warehouse procedures [21]. In order to successfully run a fulfillment operation,
warehouse picking is a typical area that may be optimized.

Picking affects not just warehousing but also other manufacturing and logistics-related
operations. Numerous scientific studies have examined the selection process; a thorough
summary of these efforts is provided in De Koster et al. (2007) [4].

For all shipments leaving the warehouse, high order accuracy rates must be main-
tained, which calls for sophisticated machinery and labor-focused operations. Warehouse
picking is a crucial phase in the order fulfillment process.

2.2. Order Picking

The connection and interaction between traders and customers have altered signif-
icantly with the development of e-commerce, necessitating a new strategy in terms of
e-commerce retail logistics.

Electronic commerce and retail logistics are currently undergoing a wide range of
technology-driven changes. Order picking, which has been identified as one of the most
labor-intensive and expensive activities within warehouse logistics, is changing as a result
of new technologies such as automation and artificial intelligence [4,22–25]. When it comes
to purchases, locations, and the individuals involved, traditional retail supply chains are
different from e-commerce.

A substantial amount of research has been done on routing, storage, and batch as-
signment in warehouses with the goal of automating and improving the most expensive
activities [22].

For e-commerce companies, determining the effectiveness of human labor and ware-
housing procedures is crucial since human workers will be needed for many years to come.
At the same time, empirical studies using non-parametric approaches and quantitative
insights into the performance of human order pickers are uncommon [26].

As a result, creating tools to optimize storage and retrieval processes seems to be
a crucial challenge for raising supply chain competitiveness. Such tools are especially
pertinent in the case of drive-in pallet racking systems, where the human component
significantly affects how well they operate [18].

Order pickers travel around a warehouse to collect the items needed by consumers in
manual order-picking systems such as picker-to-parts. These customer orders are combined
into picking orders using order batching. Customer orders arrive throughout the scheduling
process when batching is conducted online [27].

Orders consistently arrive during the same fixed or variable-length time frame in
the time-window order batching method. For example, Le-Duc and de Koster (2007) [28]
explored variable time-window order batching with stochastic order arrivals for manual
picking systems. Orders within this time window are batched together [28].

The fundamental reason is that warehouse picking methods are typically more efficient
than those in traditional stores because warehouses are typically farther from customers
and delivery routes lengthen [29]. Retailers use parcel and postal services for modest
shipments and function as both distribution facilities and online retailers. Contrary to
traditional businesses, where customers visit the retailer’s facility to make buying decisions,
online sellers are in charge of shipment and distribution.

Moons et al. (2018) [30] investigated the integration of order picking and vehicle
routing problems. In their research, they made three contributions: (1) outlining the
similarities and distinctions between production scheduling problems and order picking
problems so that existing integrated studies in a production context can be translated to a
warehouse context; (2) formulating an integrated order picking-vehicle routing problem;



Appl. Sci. 2023, 13, 10099 5 of 23

and (3) solving the integrated order picking-vehicle routing problem and evaluating the
benefits of an integrated approach over an uncoordinated method [30].

Retail sales online have increased more quickly than in-store sales. There is a potential
impact of logistics service quality on consumer satisfaction and loyalty in an omnichannel
retail environment [29,31]. Platforms have a significant impact on how businesses operate
and how individuals live their lives. It is a comprehensive study theme that covers a wide
range of topics and pursuits [5].

According to the findings by Murfield et al. (2017) [32], omnichannel customers are
genuinely distinctive, and the condition, availability, and timeliness of logistical services all
have different effects on customer satisfaction and loyalty [32].

The procedure of order picking and delivery, which was formerly handled by the
consumer, must now be handled by grocery retailers using an omnichannel strategy. As
a result, both the quantity and complexity of processes that businesses manage have
grown [33]. The enormous quantity, diversity, and complexity of the items in e-grocery
stores make selection there slower than in other online shops.

At an online supermarket, almost every order must go through the grouping, segment-
ing, picking, sorting (collecting and inspecting), and packaging processes. Because of the
highly customized nature of the orders, managing and scheduling the entire line of pickups
will be challenging. There are currently busy and idle periods in various operations. In
actual operation, staff members can take longer to complete tasks as they wait for the
next round of orders, which reduces the efficiency of the entire order-picking and packing
process [34].

A combinatorial problem is an order-picking problem. It has been researched and
solved using several methods, including genetic algorithms. The study by Öncan (2013) [35]
falls under this category. Öncan (2013) [35] investigated the order batching problem,
considering traversal and return routing policies.

Haouassi et al. (2022) [36] provided a route-first-schedule-second heuristic to address
the issue. The collection of orders is divided into clusters during the routing phase, and
a modified version of the split algorithm is used to choose the tours needed to get the
order lines for each cluster. By resolving a constraint programming issue, Haouassi et al.
(2022) [36] constructed a workable scheduling of the picking tours over the order pickers
during the scheduling phase. In order to combine the chosen order lines into final client
orders that are prepared for shipping, their model assumed that the picking activities and
the packing processes were scheduled sequentially [36].

In the research by Diefenbach et al. (2022) [1], the order picker routing issue in U-
shaped order-picking zones was discussed. The envisioned order-picking areas are made
up of stillages that are piled on top of one another and arranged in U shapes with a mobile
depot at its center. They demonstrated the NP-hardness of the issue and offered the first
exact solution method based on combinatorial bender decomposition. Additionally, by
expanding the idea of a heuristic sweep algorithm from the literature, they created a novel
heuristic solution method based on dynamic programming that is guaranteed to find
solutions that are at least as excellent as those of the sweep algorithm [1].

In order to facilitate the creation of an expert system and the management of an
order-picking system, Manzini et al. (2005, 2007) [37,38] provided an integrated strategy.
The method combined simulation, meta-heuristics, and statistical analysis to examine the
effects of warehouse design, product order profile, routing, and storage policies on the
performance of the picker-to-parts and parts-to-picker order-picking systems, with an
emphasis on the overall travel distance over a predetermined amount of time.

Huang et al. (2018) [34] examined the picking problem, which involved three
processes—item picking, sorting, and packaging—that are completely distinct from item
picking. They addressed two major concerns: making sure that each picking zone’s work-
load and the total number of items in each batch are balanced while handling a large
number of daily orders within constrained time frames, and making sure that all pick-
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ing zones only deliver the appropriate goods to the packaging station at the appropriate
times [34].

The layout of the warehouse, the storage strategy, the routing policy, the zoning
method, and the batching policy are some of the key variables influencing the efficiency of
the order-picking system. Zoning and batching are the two main aspects determining the
order-picking system’s performance in a warehouse with a specific layout, a set storage
tactic, and a routing strategy [39].

3. Problem Definition and Formulation

We examine the order-picking problem (OPP) that comes after. Workers (pickers) at
the logistic center (warehouse or distribution center) have a set amount of orders to fill,
which they do by selecting items from racks, preparing them, and placing them in the
container designated for the order. Every container that leaves the depot is clearly labeled
with a list of the goods inside and the amounts the customer requested.

The products are kept on the racks in the designated places. Each product in the
logistics center is typically kept on a single rack, but it is possible to keep some products
in many locations. Because it is often forbidden to bring new product deliveries to the
previous location, they are instead placed in another area. For instance, the distributors
would rather not offer customers such questionable products from distinct deliveries of
products like paints, knitting, or serving threads because their suppliers cannot guarantee
the same color tone in consecutive deliveries. They are willing to store such goods in
various locations as a result. Of course, the majority of identical products are only kept in
one location.

The logistics center’s one-directional conveyor, which is extended over all of the
storage spaces, transports containers from the depot to the buffers. The same buffer is
assigned to the racks close to it. Therefore, one buffer might be used by one or more racks.
Products are selected by a single picker from one or more buffers that are assigned to him.
This implies that one picker could choose products from many racks and spots on the rack
in the same buffer. The pickers are not given access to racks as components of the buffer or
to locations as components of the racks individually. The picker is given full control over
the buffer, including all of its racks and all of its positions.

The picker’s time for traveling between racks or buffers is not taken into account
if they are all close together and the picker is assigned to more than one rack or buffer.
Because containers move via a one-way belt conveyor, only the movement time between
buffers is taken into account.

When a container is delivered to the buffer, the picker locates the product on the rack,
chooses the necessary quantity of it, measures it, and cuts the client-ordered product as
necessary before temporarily packing it and putting it in the container. Afterward, the
conveyor moves the container to the next buffer or, if the order is finished, to the depot.

The containers are prepared in advance with everything that needs to be inside. Once
the container departs on its journey, no further items may be added to the order. The
sequence in which the goods are added to the container is not required. We presume that
the distribution center has enough of the client’s requested goods. No stock is ever out of
stock. The container must go round-trip without using the final depot due to the conveyor’s
one-way design in order to get to the preceding buffer.

The task’s makespan measures how long it takes for the container to transition between
buffers. The researched OPP aims to discover how to allocate the containers that must
be transported between buffers and served by the pickers in order to execute orders as
rapidly as feasible while taking picker availability and transit time between buffers into
consideration.

An example of the distribution center with six buffers (B1–B6) is shown in Figures 1–3.
The start and exit depots are buffers B0 and B7. There are 20 spots assigned to each buffer,
totaling 120 places. On each rack, the key areas are highlighted in the dark. Each rack has
eight spots with the same colored light. The positions of the shelves depicted on the figures
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are not assigned. The locations that are present in each rack and the racks that each buffer
is allocated to are displayed. Containers are moved from buffer B0–B1 to buffer B6–B7 on a
one-way conveyor. Beyond depots B7 and B0, the container must do a round-trip in order
to reach any of the preceding buffers.
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Figure 2. The layout of a distribution center where one picker is allocated to more than one
buffer: B0—start buffer; B7—out buffer; B1–B6—order picking buffers; Dark colors in buffers
B1–B6—principal buffer products; light colors in buffers B1–B6—products also allocated in other
buffers.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 24 
 

rack has eight spots with the same colored light. The positions of the shelves depicted on 

the figures are not assigned. The locations that are present in each rack and the racks that 

each buffer is allocated to are displayed. Containers are moved from buffer B0–B1 to buffer 

B6-B7 on a one-way conveyor. Beyond depots B7 and B0, the container must do a round-

trip in order to reach any of the preceding buffers. 

Figure 1 shows one picker allocated to each buffer and one picker assigned to each 

buffer. In Figure 2, one picker is allocated to both buffers B4 and B5, making Picker 4 one 

of the multi-buffer pickers. In Figure 3, more than one picker is allocated to a single buffer; 

for example, pickers 1, 2, and 5, 6 are assigned to buffers B1 and B6, respectively. 

 

Figure 1. The layout of a distribution center where each picker is allocated to a single buffer: B0—

start buffer; B7—out buffer; B1–B6—order picking buffers; Dark colors in buffers B1–B6—principal 

buffer products; light colors in buffers B1–B6—products also allocated in other buffers. 

 

Figure 2. The layout of a distribution center where one picker is allocated to more than one buffer: 

B0—start buffer; B7—out buffer; B1–B6—order picking buffers; Dark colors in buffers B1–B6—prin-

cipal buffer products; light colors in buffers B1–B6—products also allocated in other buffers. 

 

Figure 3. The layout of a distribution center where more than one picker is allocated to one buffer: 

B0—start buffer; B7—out buffer; B1–B6—order picking buffers; Dark colors in buffers B1–B6—prin-

cipal buffer products; light colors in buffers B1–B6—products also allocated in other buffers. 

In this research, we define the following main mathematical model. 

Indices and sets: 

N —number of orders; 
H —number of products; 

B0 B7

start out

1 2 3 4 5 6 7 8 9 10 115 50 46 83 93 55 4 30 61 62 63 64 65 66 67 68 69 70

B1 B6

11 12 13 14 15 16 17 18 19 20 105 52 82 93 46 99 22 24 71 72 73 74 75 76 77 78 79 80

21 22 23 24 25 26 27 28 29 30 110 88 45 94 2 118 1 38 81 82 83 84 85 86 87 88 89 90

B2 B5

31 32 33 34 35 36 37 38 39 40 97 1 48 70 70 3 35 16 91 92 93 94 95 96 97 98 99 100

41 42 43 44 45 46 47 48 49 50 80 22 3 75 28 75 8 30 101 102 103 104 105 106 107 108 109 110

B3 B4

51 52 53 54 55 56 57 58 59 60 82 18 16 8 50 45 17 11 111 112 113 114 115 116 117 118 119 120

Picker 6 Picker 6Picker 3 Picker 4 Picker 4  Picker 5 Picker 5Picker 1 Picker 1 Picker 2 Picker 2 Picker 3

B0 B7

start out

1 2 3 4 5 6 7 8 9 10 115 50 46 83 93 55 4 30 61 62 63 64 65 66 67 68 69 70

B1 B6

11 12 13 14 15 16 17 18 19 20 105 52 82 93 46 99 22 24 71 72 73 74 75 76 77 78 79 80

21 22 23 24 25 26 27 28 29 30 110 88 45 94 2 118 1 38 81 82 83 84 85 86 87 88 89 90

B2 B5

31 32 33 34 35 36 37 38 39 40 97 1 48 70 70 3 35 16 91 92 93 94 95 96 97 98 99 100

41 42 43 44 45 46 47 48 49 50 80 22 3 75 28 75 8 30 101 102 103 104 105 106 107 108 109 110

B3 B4

51 52 53 54 55 56 57 58 59 60 82 18 16 8 50 45 17 11 111 112 113 114 115 116 117 118 119 120

Picker 3  Picker 4 Picker 4Picker 1 Picker 1 Picker 2 Picker 2 Picker 3

B0 B7

start out

1 2 3 4 5 6 7 8 9 10 115 50 46 83 93 55 4 30 61 62 63 64 65 66 67 68 69 70

B1 B6

11 12 13 14 15 16 17 18 19 20 105 52 82 93 46 99 22 24 71 72 73 74 75 76 77 78 79 80

21 22 23 24 25 26 27 28 29 30 110 88 45 94 2 118 1 38 81 82 83 84 85 86 87 88 89 90

B2 B5

31 32 33 34 35 36 37 38 39 40 97 1 48 70 70 3 35 16 91 92 93 94 95 96 97 98 99 100

41 42 43 44 45 46 47 48 49 50 80 22 3 75 28 75 8 30 101 102 103 104 105 106 107 108 109 110

B3 B4

51 52 53 54 55 56 57 58 59 60 82 18 16 8 50 45 17 11 111 112 113 114 115 116 117 118 119 120

Picker 1, 2 Picker 1, 2 Picker 3 Picker 3 Picker 5, 6

Picker 8 Picker 8Picker 4 Picker 4

Picker 5, 6 Picker 7 Picker 7

Figure 3. The layout of a distribution center where more than one picker is allocated to one
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B1–B6—principal buffer products; light colors in buffers B1–B6—products also allocated in other
buffers.
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Figure 1 shows one picker allocated to each buffer and one picker assigned to each
buffer. In Figure 2, one picker is allocated to both buffers B4 and B5, making Picker 4 one of
the multi-buffer pickers. In Figure 3, more than one picker is allocated to a single buffer;
for example, pickers 1, 2, and 5, 6 are assigned to buffers B1 and B6, respectively.

In this research, we define the following main mathematical model.
Indices and sets:
N—number of orders;
H—number of products;
R—number of buffers;
W—number of pickers;
i, m—index for orders, i, m = 1, . . . , N;
j, k—index for products, j, k = 1, . . . , H;
b, g—index for buffers, b, g = 1, . . . , R;
p, l—index for pickers, p = 1, . . . , W.
Parameters:
tij—picking time of the product j in the order i;
sb—travel time from the depot to the buffer b;
cij—quantity of product j in the order i that must be picked by pickers;
qbj—available quantity of the product j in the buffer b;
fbg—travel time from the buffer b to the buffer g (because the conveyor is one-

directional, fbg 6= fgb);
zbj—binary parameter of location products in buffers;

zbj =


1, if the product j is located

in the buffer b
0, otherwise

;

vpb—binary parameter of assignment pickers to buffers;

vpb =


1, if the picker p is assigned

to the buffer b
0, otherwise

;

Decision variables in the main model:
xijpb—start time for the product j in the order i picked by the picker p in the buffer b;
yijpb—quantity of the product j in the order i picked by the picker p in the buffer b.
Decision variable in the step 1 matheuristics:
yijpb—quantity of the product j in the order i picked by the picker p in the buffer b.
Decision expressions in the step 1 matheuristics:
tpkr

p —processing time of the picker p;

tb f r
b —occupied time of the buffer b.

Decision variable the step 2 matheuristics:
xijpb—start time for the product j in the order i picked by the picker p in the buffer b;
Minimize the makespan:

min max
i=1,...,N

max
j=1,...,H

max
p=1,...,W

max
b=1,...,R

(xijpb + tij), (1)

Subject to:
Pickers to buffers assignment, i.e., the picker does not pick products in buffers to

which the picker is not assigned.

∀(p)∀(i)∀(j)∀(b : vpb = 0)[yijpb = 0], (2)

Products to buffers assignment, i.e., picker does not pick products in buffers in which
the product is not located.

∀(p)∀(i)∀(j)∀(b : zbj = 0)[yijpb = 0], (3)
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Picking operations have precedence in each order, executed by all pickers in all buffers;
i.e., the previous picking operation must finish before the start of any next picking operation
for this order.

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0)[ max
p=1,...,W

max
b=1,...,R

(xijpb + tij) ≤ min
p=1,...,W

min
b=1,...,R

xikpb∨

∨ max
p=1,...,W

max
b=1,...,R

(xikpb + tik) ≤ min
p=1,...,W

min
b=1,...,R

xijpb]
, (4)

Each picker processes just one product for one order in all of his buffers at a time.

∀(p)∀(i, m : i 6= m)∀(b : vpb = 1)∀(j)[xijpb + tij ≤ xmjpb ∨ xmjpb + tmj ≤ xijpb], (5)

Each picker in each order in all his buffers processes just one product at a time.

∀(p)∀(i)∀(b : vpb = 1)∀(j, k : j 6= k)[xijpb + tij ≤ xikpb ∨ xikpb + tik ≤ xijpb], (6)

Each picker in each order for all products processes products just at one of his buffers
at a time.

∀(p)∀(i)∀(j)∀(b, g : b 6= g, vpb = 1, vpg = 1)[xijpb + tij ≤ xijpg ∨ xijpg + tij ≤ xijpb], (7)

Each picker at each of his buffers processes just one of the different orders and just
one of the different products at a time.

∀(p)∀(b : vpb = 1)∀(i, m : i 6= m)∀(j, k : j 6= k)[xijpb + tij ≤ xmkpb ∨ xmkpb + tmk ≤ xijpb], (8)

Each picker processes just one of the different orders, just one of the different products,
and just one of his buffers at a time.

∀(p)∀(b, g : b 6= g, vpb = 1, vpg = 1)∀(i, m : i 6= m)∀(j, k : j 6= k)
[xijpb + tij ≤ xmkpg ∨ xmkpg + tmk ≤ xijpb]

, (9)

The start of the picking operation at each buffer must occur no earlier than the travel
time of the container to this buffer from the depot.

∀(b)∀(j : zbj = 1)∀(i : tij 6= 0)∀(p)[xijpb ≥ zbjsb], (10)

Travel time between buffers must be enough, i.e., we consider the travel time from
buffer to buffer in one direction on the conveyor or a round trip beyond the depot to come
to any of the previous buffers.

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0)∀(b, g : b 6= g, zbj = 1, zgk = 1)
[ max
p=1,...,W

(xijpb + tij) + rbg ≤ min
p=1,...,W

xikpg ∨ max
p=1,...,W

(xikpg + tik) + rgb ≤ min
p=1,...,W

xijpb]
, (11)

Enough products are available at each buffer to be picked by all pickers for each order.

∀(i)∀(j)∀(b)[
W

∑
p=1

yijpb ≤ qbj], (12)

Enough products have been picked.

∀(i)∀(j)[
W

∑
p=1

R

∑
b=1

yijpb = cij], (13)
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Each product is processed in one buffer by one picker.

∀(i)∀(j)∀(p)[
R

∑
b=1

min(yijpb, 1) ≤ 1], (14)

Decision variables:
Start time

xijpb =
{

0,Z+
}

, (15)

Quantity
yijpb =

{
0,Z+

}
, (16)

4. Matheuristics Development

Scheduling is a decision-making process in the real world of computing. Making a
timetable is quite tricky due to resource constraints.

Heuristics are some rules to guide the search for a solution. Although they cannot
promise to find the best solution, they can frequently find a workable one quickly. A
heuristic is a method designed to solve a problem more quickly when more conventional
methods are inefficient.

Matheuristics are optimization algorithms that are detached from the optimization
problems and employ mathematical programming methods to produce heuristic solutions.
Heuristic and matheuristic algorithms are typically simple to implement and quick to run,
but they have the potential to miss better solutions or become stuck in local optima.

Both of the following methods of hybridization are possible: mathematical program-
ming incorporated into heuristic and metaheuristic algorithms. The use of features derived
from the mathematical model of optimization problems is a crucial component of some
algorithms.

While commercial solvers work very well in some instances when solving scheduling
problems, for others, they cannot find the optimal solution or any solution at all.

In this research, a mathematical programming-based technique was chosen since it
would be challenging to develop a method that could produce high-quality solutions in a
reasonable amount of time while taking into account all order-picking constraints derived
from the distribution centers and warehouses. We propose to decompose the main order-
picking problem into two subproblems and try to solve each of them using mathematical
programming. The 1st step has two variants, such as the pickers’ free time minimization
problem and the buffer s free time minimization problem, depending on the matheuristics
number. Next, in the 2nd step, we solve the main order picking makespan minimization
problem using input from step 1.

We develop two matheuristics, each of which consists of two steps described below
(Figure 4).
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4.1. Step 1. Pickers (Buffers) Free Time Minimization Problem

In this research, we define the following additional decision expressions.
Decision expressions:

tpkr
p =

N

∑
i=1

H

∑
j=1

R

∑
b=1

min(yijpb, 1) · tijt
b f r
b =

N

∑
i=1

H

∑
j=1

W

∑
p=1

min(yijpb, 1) · tij

Depending on the active matheuristics (Matheuristics 1 or Matheuristics 2), we de-
fine the two different criteria functions. The set of constraints is the same for each of the
matheuristics. From the main model from Section 3, we take the constraints that steer the as-
signment of containers to pickers and buffers, excluding time sequencing constraints. There-
fore, constraints (19) and (20) correspond to constraints (2) and (3), constraints (21)–(23)
correspond to constraints (12)–(14). We define only the quantity decision variable (24)
which corresponds to the decision variable (16).

Minimize the pickers’ free time if there is Matheuristics 1:

min
W

∑
p=1

( max
l=1,...,W

tpkr
l − tpkr

p ), (17)
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Minimize the buffers’ free time if there is Matheuristics 2:

min
R

∑
b=1

( max
g=1,...,R

tb f r
g − tb f r

b ), (18)

Subject to:
Pickers to buffers assignment, i.e., the picker does not pick products in buffers to

which the picker is not assigned.

∀(p)∀(i)∀(j)∀(b : vpb = 0)[yijpb = 0], (19)

Products to buffers assignment, i.e., the picker does not pick products in buffers in
which the product is not located.

∀(p)∀(i)∀(j)∀(b : zbj = 0)[yijpb = 0], (20)

Enough products are available at each buffer to be picked by all pickers for each order.

∀(i)∀(j)∀(b)[
W

∑
p=1

yijpb ≤ qbj], (21)

Enough products have been picked.

∀(i)∀(j)[
W

∑
p=1

R

∑
b=1

yijpb = cij], (22)

Each product is processed in one buffer by one picker.

∀(i)∀(j)∀(p)[
R

∑
b=1

min(yijpb, 1) ≤ 1], (23)

Decision variable:
Quantity

yijpb =
{

0,Z+
}

, (24)

4.2. Step 2. Order Picking Makespan Minimization Problem (Using yijpb as Input from Step 1)

Using yijpb as input from step 1, we define the following mathematical model. From
the main model from Section 3, we take the time sequencing constraints. Therefore,
constraints (26)–(33) correspond to constraints (4)–(11) from the full model. The goal
function (25) corresponds to (1) from the full model. We define only the start time decision
variable (34) which corresponds to the decision variable (15).

Minimize the makespan:

min max
i=1,...,N

max
j=1,...,H

max
p=1,...,W

max
b=1,...,R

(xijpb + tij), (25)

Subject to:
Picking operations have precedence in each order, executed by all pickers in all buffers;

i.e., the previous picking operation must finish before the start of any next picking operation
for this order.

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0)[ max
p=1,...,W

max
b=1,...,R

(xijpb + tij) ≤ min
p=1,...,W

min
b=1,...,R

xikpb∨

∨ max
p=1,...,W

max
b=1,...,R

(xikpb + tik) ≤ min
p=1,...,W

min
b=1,...,R

xijpb]
, (26)
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Each picker processes just one product for one order in all of his buffers at a time.

∀(p)∀(i, m : i 6= m)∀(b : vpb = 1)∀(j)[xijpb + tij ≤ xmjpb ∨ xmjpb + tmj ≤ xijpb], (27)

Each picker in each order in all his buffers processes just one product at a time.

∀(p)∀(i)∀(b : vpb = 1)∀(j, k : j 6= k)[xijpb + tij ≤ xikpb ∨ xikpb + tik ≤ xijpb], (28)

Each picker in each order for all products processes products just at one of his buffers
at a time.

∀(p)∀(i)∀(j)∀(b, g : b 6= g, vpb = 1, vpg = 1)[xijpb + tij ≤ xijpg ∨ xijpg + tij ≤ xijpb], (29)

Each picker at each of his buffers processes just one of the different orders and just
one of the different products at a time.

∀(p)∀(b : vpb = 1)∀(i, m : i 6= m)∀(j, k : j 6= k)[xijpb + tij ≤ xmkpb ∨ xmkpb + tmk ≤ xijpb], (30)

Each picker processes just one of the different jobs, just one of the different products,
and just one of his buffers at a time.

∀(p)∀(b, g : b 6= g, vpb = 1, vpg = 1)∀(i, m : i 6= m)∀(j, k : j 6= k)
[xijpb + tij ≤ xmkpg ∨ xmkpg + tmk ≤ xijpb]

, (31)

The start of the picking operation at each buffer must occur no earlier than the travel
time of the container to this buffer from the depot.

∀(b)∀(j : zbj = 1)∀(i : tij 6= 0)∀(p)[xijpb ≥ zbjsb], (32)

Travel time between buffers must be enough, i.e., we consider the travel time from
buffer to buffer in one direction on the conveyor or a round trip beyond the depot to come
to any of the previous buffers.

∀(i)∀(j, k : j 6= k, tij 6= 0, tik 6= 0)∀(b, g : b 6= g, zbj = 1, zgk = 1)
[ max
p=1,...,W

(xijpb + tij) + rbg ≤ min
p=1,...,W

xikpg ∨ max
p=1,...,W

(xikpg + tik) + rgb ≤ min
p=1,...,W

xijpb]
, (33)

Decision variable:
Start time

xijpb =
{

0,Z+
}

, (34)

5. Experiment

The purpose of the computational experiment was to determine whether commercial
tools like the CPLEX solver could be used to resolve the specified order-picking problem
on instances of various sizes.

The experiments were performed using the solver version of IBM ILOG CPLEX
Optimization Studio Version: 12.10.0.0

The computer parameters were:

• Processor: AMD Ryzen 5 1600 Six-Core Processor, 3.20 GHz
• System type: 64-bit operation system, x64-based processor
• RAM: 16 GB
• Operation system: Windows 10

In order to show the performance of the proposed algorithms, a test dataset was
generated. Table 1 introduces the 120 test instances that were prepared for the experiment.
One can find 10 instances of each of the distribution center layouts for each number of
orders. There were 5, 10, 15, and 20 orders in each instance generated. The range of
1, . . . , five products were randomly generated to be picked into the container. There
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existed six, four, and eight pickers in the first, second, and third distribution center layouts
consequently.

Table 1. Test data.

Instance Orders
Distribution

Centre
Layout

Pickers Locations Repeated
Locations Buffers Products in

the Order

1–10 5

1 6

120 48 6 1, . . . , 5

11–20 10
21–30 15
31–40 20

41–50 5

2 4
51–60 10
61–70 15
71–80 20

81–90 5

3 8
91–100 10

101–110 15
111–120 20

Distribution center layouts are shown in Figures 1–3. We generated 120 main and 48
repeated locations in the six buffers. The product was stored in one, two, or three locations
in the distribution center. In total, 85 products were stored only in one location. A total
of 22 products were stored in two locations. A total of 13 products were stored in three
locations. The time limit for CPLEX execution was set at 5 min for each of the solving cases.

Table 2 reports the results of the matheuristics’ first step solution—pickers free time
minimization problem—for five orders. The search was completed, and all instances were
solved optimally. The number of solutions varied from one to three for the first layout
(instances 1–10), from one to four for the second layout (instances 41–50), and from one to
nine for the third layout (instances 81–90).

The average time spent solving was 3.73 s and varied from 2.45 s to 13.69 s for the first
layout (instances 1–10). The average time spent solving was 2.86 s and varied from 1.33 s to
6.71 s for the second layout (instances 41–50). The average time spent solving was 23.65 s
and varied from 4.50 s to 35.96 s for the third layout (instances 81–90).

Table 2 also reports the results of the matheuristics’ second step solution—order
picking makespan minimization problem after solving pickers free time minimization
problem—for five orders. The search was completed only for the seventh instance, so only
for this instance was an optimal solution found.

For 1–10 instances, the average gap to the lower bound was 39.25% and varied from
0.00% to 100.00%. In 41–50 instances, the average gap to the lower bound was 54.17% and
varied from 25.56% to 66.93%. In 81–90 instances, the average gap to the lower bound was
63.48% and varied from 39.51% to 100.00%. The number of solutions varied from one to
seven for the 1st layout (instances 1–10), from three to seven for the 2nd layout (instances
41–50), and from one to three for the third layout (instances 81–90).

The average time spent on solving was 284.79 s and varied from 133.52 s to 302.81 s
for the first layout (instances 1–10). The average time spent on solving was 301.65 s and
varied from 300.77 s to 303.28 s for the 2nd layout (instances 41–50). The average time
spent solving was 302.79 s and varied from 300.86 s to 304.85 s for the 3rd layout (instances
81–90).
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Table 2. Results for 2 steps matheuristics starting with solving pickers’ free time minimization
problem for 5 orders.

Step 1: Pickers’ Free Time Minimization
Problem

Step 2: Order Picking Makespan Minimization Problem after
Solving Pickers Free Time Minimization Problem

Instance
Number

of
Solutions

Time
Spent in
Solving

[s]

Engine
[s]

Extraction
[s]

Number
of

Solutions

Comparison
with the
Lower
Bound

Time
Spent in
Solving

[s]

Engine
[s]

Extraction
[s]

1 2 2.54 0.96 1.58 7 42.19% 301.13 257.25 43.88
2 1 2.55 0.93 1.62 7 55.39% 302.81 258.31 44.49
3 1 2.50 0.84 1.65 4 40.79% 301.95 258.15 43.79
4 3 2.89 1.28 1.61 7 38.69% 302.39 258.56 43.82
5 2 2.81 1.18 1.63 6 36.46% 302.42 258.31 44.10
6 2 2.62 0.92 1.69 6 100.00% 301.23 256.85 44.38
7 1 2.45 0.84 1.60 1 0.00% 133.52 89.42 44.09
8 1 13.69 12.04 1.65 5 37.54% 300.80 256.74 44.05
9 3 2.59 0.98 1.60 4 6.97% 300.97 257.03 43.94

10 3 2.65 1.06 1.59 5 34.43% 300.71 256.40 44.31

41 4 2.29 1.40 0.89 7 66.93% 302.20 233.81 68.39
42 3 3.33 2.45 0.88 5 59.14% 303.28 234.80 68.47
43 1 2.93 2.03 0.89 4 58.19% 300.78 233.41 67.37
44 2 1.83 0.92 0.91 7 51.67% 302.31 234.92 67.38
45 2 6.71 5.81 0.90 5 53.30% 301.32 233.15 68.17
46 1 1.33 0.42 0.90 3 58.11% 302.16 232.77 69.39
47 2 1.49 0.62 0.87 6 51.36% 300.77 232.27 68.50
48 1 1.42 0.51 0.91 6 56.89% 301.42 235.52 65.89
49 1 5.68 4.78 0.89 5 60.52% 301.43 232.89 68.53
50 3 1.57 0.67 0.90 5 25.56% 300.82 232.14 68.67

81 2 35.96 33.32 2.64 2 100.00% 300.96 239.66 61.29
82 1 9.85 7.23 2.62 1 100.00% 303.26 243.07 60.18
83 1 32.56 29.92 2.64 2 39.51% 301.84 241.25 60.58
84 9 33.86 31.18 2.67 2 53.56% 302.32 241.95 60.36
85 3 4.50 1.88 2.62 2 54.93% 303.22 242.95 60.26
86 3 20.41 17.83 2.57 2 58.93% 303.33 243.30 60.02
87 4 23.06 20.42 2.63 1 43.04% 304.80 245.11 59.69
88 3 33.93 31.38 2.54 2 59.18% 304.85 244.59 60.26
89 2 14.95 12.40 2.55 1 61.70% 300.86 242.20 58.66
90 3 27.44 24.89 2.55 3 63.99% 302.42 241.78 60.64

Table 3 reports the results of the matheuristics’ 1st step solution—the buffer free time
minimization problem—for five orders. The search was completed, and all instances were
solved optimally. The number of solutions varied from 1 to 3 for the first layout (instances
1–10), from 1 to 5 for the second layout (instances 41–50), and from 1 to 19 for the third
layout (instances 81–90).

The average time spent in solving was 3.56 s and varied from 2.49 s to 11.82 s for the
1st layout (instances 1–10). The average time spent solving was 2.60 s and varied from
1.75 s to 8.69 s for the second layout (instances 41–50). The average time spent solving was
15.93 s and varied from 3.41 s to 44.19 s for the third layout (instances 81–90).

Table 3 also reports the results of the matheuristics’ second step solution—order
picking makespan minimization problem after solving buffers free time minimization
problem—for five orders. The search was completed only for the seventh instance was so
only for this instance was an optimal solution found.
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Table 3. Results for 2 steps matheuristics starting with solving buffers’ free time minimization
problem for 5 orders.

Step 1: Buffers’ Free Time Minimization
Problem

Step 2: Order Picking Makespan Minimization Problem after
Solving Buffers Free Time Minimization Problem

Instance
Number

of
Solutions

Time
Spent in
Solving

[s]

Engine
[s]

Extraction
[s]

Number
of

Solutions

Comparison
with the
Lower
Bound

Time
Spent in
Solving

[s]

Engine
[s]

Extraction
[s]

1 2 2.62 0.99 1.63 7 42.19% 301.63 257.36 44.26
2 1 2.50 0.90 1.60 6 100.00% 300.36 254.73 45.63
3 1 2.49 0.84 1.65 3 43.28% 300.80 255.41 45.38
4 3 2.66 1.05 1.61 5 42.62% 301.70 255.23 46.46
5 2 2.89 1.21 1.68 5 36.99% 302.19 256.54 45.65
6 2 2.64 0.95 1.69 6 100.00% 302.61 257.98 44.62
7 2 2.57 0.87 1.70 1 0.00% 139.13 94.13 44.99
8 1 11.82 10.2 1.61 4 41.87% 301.41 256.50 44.91
9 3 2.63 1.02 1.61 6 6.97% 300.74 255.74 44.99

10 3 2.73 1.07 1.66 5 34.43% 301.66 256.98 44.68

41 5 2.40 1.27 1.13 7 66.93% 301.41 232.61 68.79
42 3 1.75 0.66 1.09 5 59.14% 301.99 234.89 67.09
43 2 1.89 0.75 1.13 4 58.19% 301.08 233.67 67.41
44 2 1.76 0.59 1.16 6 51.78% 302.36 234.86 67.49
45 5 2.01 0.86 1.14 5 53.30% 300.95 233.75 67.19
46 3 1.75 0.61 1.13 3 58.11% 300.95 232.82 68.13
47 2 1.92 0.77 1.15 7 51.26% 300.78 232.92 67.86
48 1 8.69 7.58 1.11 7 56.58% 301.11 234.20 66.90
49 2 1.84 0.69 1.14 5 60.52% 301.32 234.17 67.14
50 3 2.03 0.89 1.14 6 25.00% 301.16 232.14 69.02

81 2 27.85 25.73 2.12 2 100.00% 302.97 244.40 58.57
82 2 3.69 1.51 2.18 1 100.00% 301.63 242.83 58.79
83 5 4.65 2.44 2.20 2 39.51% 303.28 244.53 58.75
84 1 44.19 41.98 2.20 2 53.56% 302.57 244.50 58.06
85 2 3.97 1.78 2.18 2 54.93% 303.50 244.94 58.56
86 3 20.01 17.91 2.09 2 58.93% 304.08 242.37 61.70
87 4 3.98 1.82 2.15 1 43.04% 302.81 240.92 61.89
88 19 24.57 22.41 2.16 2 59.18% 304.38 243.28 61.10
89 2 3.41 1.32 2.08 1 61.70% 301.64 243.04 58.59
90 4 23.02 20.93 2.09 3 63.99% 301.17 242.12 59.05

For 1–10 instances, the average gap to the lower bound was 44.84% and varied from
0.00% to 100.00%. For 41–50 instances, the average gap to the lower bound was 54.08% and
varied from 25.00% to 66.93%. For 81–90 instances, the average gap to the lower bound
was 63.48% and varied from 39.51% to 100.00%. The number of solutions varied from one
to seven for the first layout (instances 1–10), from three to seven for the second layout
(instances 41–50), and from one to three for the third layout (instances 81–90).

The average time spent on solving was 285.22 s and varied from 139.13 s to 302.61 s for
the 1st layout (instances 1–10). The average time spent on solving was 301.31 s and varied
from 300.78 s to 302.36 s for the second layout (instances 41–50). The average time spent
solving was 302.80 s and varied from 301.17 s to 304.38 s for the third layout (instances
81–90).

The results of the second step solution—order picking makespan minimization prob-
lem after solving buffers free time minimization problem—for five orders (Table 3) are very
similar to the results of the 2nd step solution—order picking makespan minimization prob-
lem after solving pickers free time minimization problem—for 5 orders (Table 2) because a
lot of the solutions found were the same. The differences between the results achieved by
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these two matheuristics are shown in Figure 5. Only different instances are presented in
Figure 5.
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The results of the matheuristics comparison show that the 1st matheuristics (pickers)
was better than the 2nd matheuristics (puffers), having found six solutions that were better.
The other matheuristics (buffers) found only 3 solutions that were better compared to the
1st matheuristics (pickers). Moreover, for the 2nd instance, the 1st matheuristics (pickers)
found the solution, but the 2nd matheuristics (buffers) did not return any result (there is
no signature on the column because the result is greater than 100%). Generally, the 1st
matheuristics (pickers) found a better solution on average, not including the 2nd instance
of 3.95%, but the 2nd matheuristics (buffers) found a better solution on average of only
0.56%.

Table 4 reports the results of the matheuristics’ 1st step solution—Pickers free time
minimization problem—for 10 orders. The search was completed, and all instances were
solved optimally. The number of solutions varied from 1 to 4 for the 1st layout (instances
11–20), from 1 to 6 for the 2nd layout (instances 51–60), and from 1 to 5 for the 3rd layout
(instances 91–100).

The average time spent on solving was 7.06 s and varied from 5.13 s to 10.88 s for the
1st layout (instances 11–20). The average time spent solving was 3.69 s and varied from
2.56 s to 9.39 s for the 2nd layout (instances 51–60). The average time spent solving was
28.18 s and varied from 8.47 s to 85.81 s for the 3rd layout (instances 91–100).

Table 4 also reports the results of the matheuristics’ 1st step solution—the buffer free
time minimization problem—for 10 orders. The search was completed, and all instances
were solved optimally. The number of solutions varied from 1 to 5 for the 1st layout
(instances 11–20), from 1 to 6 for the 2nd layout (instances 51–60), and from 1 to 4 for the
3rd layout (instances 91–100).

The average time spent on solving was 7.09 s and varied from 4.95 s to 11.06 s for the
1st layout (instances 11–20). The average time spent on solving was 5.44 s and varied from
3.30 s to 19.41 s for the 2nd layout (instances 51–60). The average time spent solving was
24.74 s and varied from 6.90 s to 59.55 s for the 3rd layout (instances 91–100).
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Table 4. Step 1: Pickers and Buffers free time minimization problem for 10 orders.

Step 1: Pickers’ Free Time Minimization Problem Step 1: Buffers’ Free Time Minimization Problem

Instance Number of
Solutions

Time
Spent in

Solving [s]
Engine [s] Extraction

[s]
Number of
Solutions

Time
Spent in

Solving [s]
Engine [s] Extraction

[s]

11 4 6.58 3.23 3.34 3 6.01 2.60 3.40
12 1 10.88 7.56 3.32 1 11.06 7.73 3.33
13 4 6.53 3.26 3.26 3 6.13 2.80 3.33
14 1 7.25 3.98 3.26 1 7.53 4.19 3.34
15 1 8.98 5.67 3.31 1 8.98 5.56 3.42
16 4 8.28 4.96 3.32 5 8.86 5.32 3.54
17 2 5.71 2.37 3.34 2 5.73 2.26 3.47
18 1 5.13 1.81 3.31 1 4.95 1.59 3.35
19 2 5.87 2.54 3.32 3 6.34 2.91 3.43
20 1 5.43 2.13 3.29 1 5.26 1.93 3.32

51 1 2.56 0.77 1.79 1 3.43 1.14 2.29
52 2 3.08 1.26 1.82 4 4.11 1.83 2.28
53 2 9.39 7.62 1.76 2 19.41 17.14 2.26
54 3 3.17 1.39 1.78 6 4.10 1.81 2.28
55 3 3.20 1.42 1.77 2 4.60 2.25 2.35
56 4 3.40 1.54 1.86 3 3.94 1.67 2.27
57 1 2.57 0.77 1.80 1 3.30 1.03 2.26
58 1 2.69 0.91 1.77 2 3.66 1.39 2.27
59 4 3.28 1.48 1.79 4 3.85 1.57 2.27
60 6 3.52 1.76 1.75 3 4.00 1.72 2.27

91 3 9.09 4.01 5.07 2 7.81 3.46 4.35
92 3 9.30 4.02 5.28 3 7.76 3.35 4.40
93 3 71.44 66.24 5.19 4 59.55 55.20 4.34
94 1 8.56 3.31 5.25 1 6.90 2.54 4.35
95 5 9.30 4.13 5.17 1 6.92 2.63 4.29
96 1 8.58 3.35 5.22 1 38.53 34.18 4.34
97 1 85.81 80.52 5.29 1 56.30 51.86 4.44
98 1 62.66 57.47 5.19 1 49.28 44.94 4.34
99 2 8.47 3.25 5.22 2 7.08 2.70 4.37

100 2 8.55 3.40 5.14 3 7.24 2.90 4.33

Table 5 reports the results of the matheuristics’ 1st step solution—pickers’ free time min-
imization problem—for 15 orders. The search was completed, and 21–30 and 61–70 instances
were solved optimally. For the remaining 101–110 instances, the percentage comparison
with the lower bound was calculated. For 101–110 instances, the average gap to the lower
bound was 106.27% and varied from 18.57% to 305.70%. The number of solutions varied
from 3 to 9 for the 1st layout (instances 21–30), from 2 to 15 for the 2nd layout (instances
61–70), and from 2 to 6 for the 3rd layout (instances 101–110).

The average time spent in solving was 52.53 s and varied from 9.53 s to 111.35 s for
the 1st layout (instances 21–30). The average time spent on solving was 38.43 s and varied
from 5.84 s to 109.96 s for the 2nd layout (instances 61–70). The average time spent solving
was 300.25 s and varied from 300.19 s to 300.34 s for the 3rd layout (instances 101–110).

Table 5 also reports the results of the matheuristics’ 1st step solution—the buffer free
time minimization problem—for 15 orders. The search was completed, and 21–30 and
61–70 instances were solved optimally. For the remaining 101–110 instances, the percentage
comparison with the lower bound was calculated. For 101–110 instances, the average gap to
the lower bound was 269.97% and varied from 34.19% to 716.50%. The number of solutions
varied from 3 to 13 for the 1st layout (instances 21–30), from 2 to 18 for the 2nd layout
(instances 61–70), and from 2 to 9 for the 3rd layout (instances 101–110).
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Table 5. Step 1: Pickers’ and Buffers’ free time minimization problem for 15 orders.

Step 1: Pickers’ Free Time Minimization Problem Step 1: Buffers’ Free Time Minimization Problem

Instance
Number

of
Solutions

Comparison
with the
Lower
Bound

Time
Spent in
Solving

[s]

Engine
[s]

Extraction
[s]

Number
of

Solutions

Comparison
with the
Lower
Bound

Time
Spent in
Solving

[s]

Engine
[s]

Extraction
[s]

21 3 0.00% 9.53 4.63 4.90 5 0.00% 10.05 5.01 5.04
22 8 0.00% 70.96 66.01 4.94 8 0.00% 70.28 65.26 5.01
23 3 0.00% 63.24 58.29 4.94 4 0.00% 61.04 56.03 5.01
24 9 0.00% 67.71 56.58 5.12 6 0.00% 67.32 62.12 5.20
25 4 0.00% 10.02 5.07 4.94 5 0.00% 9.50 4.54 4.95
26 7 0.00% 10.49 5.52 4.97 11 0.00% 11.54 6.45 5.09
27 4 0.00% 68.95 63.95 4.99 5 0.00% 62.80 57.66 5.13
28 3 0.00% 111.35 106.41 4.94 4 0.00% 115.25 110.21 5.04
29 4 0.00% 53.67 48.61 5.05 3 0.00% 60.30 55.26 5.04
30 8 0.00% 59.40 54.48 4.91 13 0.00% 59.72 54.69 5.02

61 15 0.00% 109.96 107.22 2.73 18 0.00% 220.19 216.70 3.49
62 5 0.00% 29.18 26.54 2.64 9 0.00% 7.79 4.25 3.54
63 5 0.00% 35.44 32.75 2.69 3 0.00% 44.68 41.15 3.53
64 6 0.00% 38.71 35.98 2.72 12 0.00% 46.20 42.56 3.63
65 7 0.00% 5.84 3.11 2.72 4 0.00% 42.19 38.47 3.71
66 5 0.00% 40.22 37.54 2.68 6 0.00% 45.42 41.85 3.56
67 6 0.00% 33.20 30.45 2.74 2 0.00% 41.84 38.30 3.53
68 4 0.00% 34.56 31.82 2.73 3 0.00% 7.11 3.44 3.67
69 2 0.00% 22.91 20.20 2.71 2 0.00% 27.45 23.91 3.53
70 8 0.00% 34.24 31.51 2.73 3 0.00% 45.33 41.74 3.59

101 4 187.10% 300.20 292.16 8.04 7 528.60% 300.27 293.55 6.72
102 2 18.57% 300.20 292.50 7.69 3 34.19% 300.16 293.42 6.73
103 6 91.80% 300.19 292.33 7.86 4 206.00% 300.16 293.46 6.69
104 5 70.13% 300.24 291.97 8.27 5 558.10% 300.21 293.63 6.58
105 5 305.70% 300.26 292.44 7.82 9 716.50% 300.21 293.61 6.60
106 5 88.98% 300.33 292.52 7.80 2 80.20% 300.13 293.52 6.60
107 3 110.80% 300.22 292.46 7.76 3 237.90% 300.14 293.58 6.56
108 6 102.20% 300.23 292.21 8.01 6 102.20% 300.26 292.21 8.05
109 5 65.80% 300.34 292.31 8.03 7 186.40% 300.20 293.28 6.92
110 4 21.60% 300.26 292.27 7.98 3 49.62% 300.21 293.38 6.83

The average time spent in solving was 52.78 s and varied from 9.50 s to 115.25 s for
the 1st layout (instances 21–30). The average time spent on solving was 52.82 s and varied
from 7.11 s to 200.19 s for the 2nd layout (instances 61–70). The average time spent solving
was 300.20 s and varied from 300.13 s to 300.27 s for the 3rd layout (instances 101–110).

Table 6 reports the results of the matheuristics’ 1st step solution—pickers’ free time
minimization problem—for 20 orders. The search was completed for eight instances of
the 1st layout and for all instances of the 2nd layout. They were solved optimally. For the
rest of the instances, the percentage comparison with the lower bound was calculated. For
111–120 instances, the average gap to the lower bound was 786.91% and varied from 33.78%
to 6306.00%. The number of solutions varied from 2 to 15 for the 1st layout (instances
31–40), from 1 to 15 for the 2nd layout (instances 71–80), and from 1 to 18 for the 3rd layout
(instances 111–120).

The average time spent on solving was 135.41 s and varied from 14.07 s to 300.18 s
for the 1st layout (instances 31–40). The average time spent solving was 52.49 s and varied
from 6.36 s to 107.29 s for the 2nd layout (instances 71–80). The average time spent solving
was 300.42 s and varied from 300.26 s to 301.16 s for the 3rd layout (instances 111–120).

Table 6 also reports the results of the matheuristics’ 1st step solution—the buffer free
time minimization problem—for 20 orders. The search was completed for eight instances
of the 1st layout and for all instances of the 2nd layout. They were solved optimally. For the
remaining instances, the percentage comparison with the lower bound was calculated. For
111–120 instances, the average gap to the lower bound was 861.18% and varied from 81.56%
to 3147.00%. The number of solutions varied from 3 to 12 for the 1st layout (instances
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31–40), from 1 to 14 for the 2nd layout (instances 71–80), and from 3 to 17 for the 3rd layout
(instances 111–120).

Table 6. Step 1: Pickers’ and Buffers’ free time minimization problem for 20 orders.

Step 1: Pickers’ Free Time Minimization Problem Step 1: Buffers’ Free Time Minimization Problem

Instance
Number

of
Solutions

Comparison
with the
Lower
Bound

Time
Spent in
Solving

[s]

Engine
[s]

Extraction
[s]

Number
of

Solutions

Comparison
with the
Lower
Bound

Time
Spent in
Solving

[s]

Engine
[s]

Extraction
[s]

31 2 0.00% 109.4 102.70 6.69 3 0.00% 116.64 109.86 6.77
32 5 0.00% 95.68 89.18 6.50 5 0.00% 96.10 89.35 6.74
33 11 0.00% 116.38 109.80 6.57 7 0.00% 108.37 101.64 6.72
34 3 0.00% 97.50 90.87 6.63 4 0.00% 93.97 87.13 6.84
35 15 0.00% 99.68 92.80 6.88 9 0.00% 105.61 98.78 6.82
36 9 0.00% 14.07 7.48 6.58 7 0.00% 16.14 9.14 7.00
37 15 0.00% 104.58 97.86 6.72 12 0.00% 102.55 95.75 6.80
38 5 0.00% 116.49 109.91 6.58 12 0.00% 119.88 113.24 6.63
39 4 44.07% 300.14 293.49 6.64 3 44.07% 300.20 293.41 6.78
40 6 49.85% 300.18 293.59 6.58 3 44.48% 300.18 293.21 6.96

71 12 0.00% 56.96 53.26 3.70 8 0.00% 62.34 57.50 4.84
72 3 0.00% 6.36 2.70 3.66 4 0.00% 8.35 3.61 4.73
73 1 0.00% 70.63 66.98 3.64 1 0.00% 79.91 75.16 4.75
74 10 0.00% 69.66 66.07 3.59 14 0.00% 104.96 100.32 4.63
75 2 0.00% 48.76 45.13 3.62 1 0.00% 51.33 46.66 4.67
76 6 0.00% 52.96 49.34 3.62 3 0.00% 63.11 58.47 4.63
77 4 0.00% 42.93 39.23 3.69 6 0.00% 11.32 6.49 4.83
78 15 0.00% 60.95 57.33 3.62 13 0.00% 76.11 71.44 4.67
79 3 0.00% 107.29 103.69 3.60 4 0.00% 92.86 88.01 4.85
80 3 0.00% 8.44 4.79 3.64 5 0.00% 53.92 49.21 4.70

111 6 201.40% 300.38 289.58 10.80 14 1472.00% 300.29 291.52 8.77
112 5 126.90% 301.16 290.68 10.48 5 540.20% 300.23 291.43 8.80
113 3 208.50% 300.34 289.78 10.56 17 669.10% 300.46 291.43 9.03
114 5 100.10% 300.28 289.71 10.57 6 190.50% 300.27 291.44 8.82
115 10 133.90% 300.38 289.55 10.82 8 538.70% 300.33 291.40 8.93
116 2 33.78% 300.35 289.76 10.59 4 174.00% 300.23 291.34 8.88
117 9 591.10% 300.35 289.70 10.65 10 3147.00% 300.28 291.38 8.90
118 18 6306.00% 300.35 289.70 10.65 15 1436.00% 300.33 291.52 8.81
119 1 45.54% 300.32 289.34 10.97 3 81.56% 300.33 291.51 8.82
120 9 121.90% 300.26 289.65 10.60 8 362.70% 300.60 291.84 8.76

The average time spent on solving was 135.96 s and varied from 16.14 s to 300.20 s for
the 1st layout (instances 31–40). The average time spent on solving was 60.42 s and varied
from 8.35 s to 104.96 s for the 2nd layout (instances 71–80). The average time spent solving
was 300.34 s and varied from 300.23 s to 300.60 s for the 3rd layout (instances 111–120).

The outcomes show that the proposed order picking makespan minimization problem
for five orders could be solved by the CPLEX solver. In the 1st step, both matheuristics
(pickers and buffers free time minimization problems) found optimal solutions for all
30 instances, but in the 2nd step, only 1 optimal solution from 30 instances was obtained.

For 10 orders, only the first step was solved by both matheuristics, which also found
optimal solutions for all 30 instances. For 15 orders in the 1st step, both matheuristics could
find optimal solutions for 2 out of 30 instances for the 1st and 2nd layouts only. For 20 orders
in the 1st step, both matheuristics could find optimal solutions for 8 out of 10 instances for
the 1st layout and for all 10 instances for the 2nd layout. For the remaining 10 instances
of the 3rd layout, feasible solutions were obtained. Despite the problem decomposition, it
was not possible for the CPLEX solver to solve the 2nd step of both matheuristics for 10, 15,
or 20 orders. The 3rd layout, where more than one picker was assigned to one buffer, was
the most difficult to solve. Therefore, for wholesalers, if the order includes a large variety
of different products, the proposed mathematical programming is not appropriate, and
more advanced heuristics are required.
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Managing orders in the distribution centers and warehouses means finding ways to
improve order-picking activities that allow the pickers to have a better work experience.

6. Conclusions

With the help of warehouse management systems, distributors can utilize the power of
innovation to eliminate waste, boost order accuracy, cut operational expenses, and provide
high levels of service.

The heuristics are broad guidelines you can use to make technological products that are
easier to use, more readily available, and more intuitive. The best heuristics are developed
by practitioners, who incorporate their years of professional experience, insights, and skills.

In this research, the order-picking problem is formulated as a mixed integer program
(MIP); next, we solve it using a commercial solver. As for medium and large instances, MIP
solvers cannot always provide an optimal or even any solution in a limited time, and we
propose a method of how the order picking problem could be decomposed for solving it
using the optimizer, for example, the CPLEX solver.

Also, through our numerical experiments, we gain some managerial knowledge.
Appropriate decision-making in warehouses and distribution centers enhances the effec-
tiveness of order-picking operations as a whole. At the cost of a slight increase in operating
expenditures, it is possible to improve employee well-being and loyalty.

The experiment confirms that the proposed matheuristics can solve the proposed order
picking makespan minimization problem for five orders with good enough results.

Despite the fact that all instances for 10 orders were solved optimally by the first step
of both matheuristics (pickers and buffers free time minimization problems), the solution
of the 2nd step of both matheuristics could not be obtained by the CPLEX solver as it was
out of memory and returned the error “Opl process is not responding”. A similar situation
occurred with 15 and 20 orders. This means that the proposed approach of decomposing
the main problem into two subproblems and trying to solve each of them separately is
suitable for small instances that are very frequently encountered in distribution centers
and warehouses. This is the most frequent case in the distribution center. Therefore, the
proposed matheuristics are very useful.

For large instances, more sophisticated heuristics are required. The solution from the
first step of both matheuristics (pickers and buffers free time minimization problems) could
be used as the initial part of future heuristics. Next, the newly developed matheuristics
could improve assignment orders to pickers in buffers by re-arranging them.

Obviously, each sale and shipping type involves a different approach to the organi-
zation of the distribution center and warehouse, as well as economic and technological
activities. When the products are sold directly to consumers with a small amount of product
variety in the order, the developed matheuristics can improve decision-making, allow for
better operations, and lower costs through digital transformation.

The proposed matheuristics could be part of the warehouse management solutions
that are made to help the supply chain reach its full strategic potential so the distributors
can obtain a competitive edge.

The obvious prospective area of future study is how to enhance the heuristic. Re-
garding that, we have one recommendation. With the help of an effective 1st step of both
matheuristics (pickers and buffers for free time minimization problems), the performance of
the next parts of heuristics can be improved. This proposition also includes the methods of
simplifying and reformulating constraints in order to make the 1st step of both matheuris-
tics be solved optimally or near optimally for large instances. Further improvement should
also include hybridization methods, for example, the combination of mathematical pro-
gramming with heuristic and metaheuristic algorithms. Such an approach could enhance
well-known mathematical programming methods.
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POIR.01.01.01-00-0352/22).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Diefenbach, H.; Emde, S.; Glock, C.H.; Grosse, E.H. New Solution Procedures for the Order Picker Routing Problem in U-Shaped

Pick Areas with a Movable Depot. OR Spectr. 2022, 44, 535–573. [CrossRef]
2. van Gils, T.; Ramaekers, K.; Caris, A.; de Koster, R.B.M. Designing Efficient Order Picking Systems by Combining Planning

Problems: State-of-the-Art Classification and Review. Eur. J. Oper. Res. 2018, 267, 1–15. [CrossRef]
3. Grosse, E.H.; Glock, C.H.; Jaber, M.Y.; Neumann, W.P. Incorporating Human Factors in Order Picking Planning Models:

Framework and Research Opportunities. Int. J. Prod. Res. 2015, 53, 695–717. [CrossRef]
4. de Koster, R.; Le-Duc, T.; Roodbergen, K.J. Design and Control of Warehouse Order Picking: A Literature Review. Eur. J. Oper.

Res. 2007, 182, 481–501. [CrossRef]
5. Guo, X.; He, Y. Mathematical Modeling and Optimization of Platform Service Supply Chains: A Literature Review. Mathematics

2022, 10, 4307. [CrossRef]
6. Song, M.; Fisher, R.; de Sousa Jabbour, A.B.L.; Santibañez Gonzalez, E.D.R. Green and Sustainable Supply Chain Management in

the Platform Economy. Int. J. Logist. Res. Appl. 2022, 25, 349–363. [CrossRef]
7. Georgijevic, M.; Bojic, S.; Brcanov, D. The Location of Public Logistic Centers: An Expanded Capacity-Limited Fixed Cost

Location-Allocation Modeling Approach. Transp. Plan. Technol. 2013, 36, 218–229. [CrossRef]
8. Fedorko, G.; Molnár, V.; Mikušová, N. The Use of a Simulation Model for High-Runner Strategy Implementation in Warehouse

Logistics. Sustainability 2020, 12, 9818. [CrossRef]
9. Nechi, S.; Aouni, B.; Mrabet, Z. Managing Sustainable Development through Goal Programming Model and Satisfaction Functions.

Ann. Oper. Res. 2020, 293, 747–766. [CrossRef]
10. Govindan, K.; Agarwal, V.; Darbari, J.D.; Jha, P.C. An Integrated Decision Making Model for the Selection of Sustainable Forward

and Reverse Logistic Providers. Ann. Oper. Res. 2019, 273, 607–650. [CrossRef]
11. Wulfert, T.; Woroch, R.; Strobel, G.; Seufert, S.; Möller, F. Developing Design Principles to Standardize E-Commerce Ecosystems:

A Systematic Literature Review and Multi-Case Study of Boundary Resources. Electron. Mark. 2022, 32, 1813–1842. [CrossRef]
12. Ali, S.S.; Kaur, R.; Khan, S. Evaluating Sustainability Initiatives in Warehouse for Measuring Sustainability Performance: An

Emerging Economy Perspective. Ann. Oper. Res. 2023, 324, 461–500. [CrossRef]
13. Chiang, T.A.; Che, Z.H.; Hung, C.W. A K-Means Clustering and the Prim’s Minimum Spanning Tree-Based Optimal Picking-List

Consolidation and Assignment Methodology for Achieving the Sustainable Warehouse Operations. Sustainability 2023, 15, 3544.
[CrossRef]

14. Ries, J.M.; Grosse, E.H.; Fichtinger, J. Environmental Impact of Warehousing: A Scenario Analysis for the United States. Int. J.
Prod. Res. 2017, 55, 6485–6499. [CrossRef]

15. Du, S.; Hu, L.; Wang, L. Low-Carbon Supply Policies and Supply Chain Performance with Carbon Concerned Demand. Ann.
Oper. Res. 2017, 255, 569–590. [CrossRef]

16. Den Berg, J.P.V.; Zijm, W.H.M. Models for Warehouse Management: Classification and Examples. Int. J. Prod. Econ. 1999, 59,
519–528. [CrossRef]

17. Staudt, F.H.; Alpan, G.; Di Mascolo, M.; Rodriguez, C.M.T. Warehouse Performance Measurement: A Literature Review. Int. J.
Prod. Res. 2015, 53, 5524–5544. [CrossRef]

18. Revillot-Narváez, D.; Pérez-Galarce, F.; Álvarez-Miranda, E. Optimising the Storage Assignment and Order-Picking for the
Compact Drive-in Storage System. Int. J. Prod. Res. 2020, 58, 6949–6969. [CrossRef]

19. Islam, M.R.; Ali, S.M.; Fathollahi-Fard, A.M.; Kabir, G. A Novel Particle Swarm Optimization-Based Grey Model for the Prediction
of Warehouse Performance. J. Comput. Des. Eng. 2021, 8, 705–727. [CrossRef]

20. Baruffaldi, G.; Accorsi, R.; Manzini, R. Warehouse Management System Customization and Information Availability in 3pl
Companies: A Decision-Support Tool. Ind. Manag. Data Syst. 2019, 119, 251–273. [CrossRef]

https://doi.org/10.1007/s00291-021-00663-8
https://doi.org/10.1016/j.ejor.2017.09.002
https://doi.org/10.1080/00207543.2014.919424
https://doi.org/10.1016/j.ejor.2006.07.009
https://doi.org/10.3390/math10224307
https://doi.org/10.1080/13675567.2022.2045763
https://doi.org/10.1080/03081060.2013.770945
https://doi.org/10.3390/su12239818
https://doi.org/10.1007/s10479-019-03139-9
https://doi.org/10.1007/s10479-017-2654-5
https://doi.org/10.1007/s12525-022-00558-8
https://doi.org/10.1007/s10479-021-04454-w
https://doi.org/10.3390/su15043544
https://doi.org/10.1080/00207543.2016.1211342
https://doi.org/10.1007/s10479-015-1988-0
https://doi.org/10.1016/S0925-5273(98)00114-5
https://doi.org/10.1080/00207543.2015.1030466
https://doi.org/10.1080/00207543.2019.1687951
https://doi.org/10.1093/jcde/qwab009
https://doi.org/10.1108/IMDS-01-2018-0033


Appl. Sci. 2023, 13, 10099 23 of 23

21. Diefenbach, H.; Glock, C.H. Ergonomic and Economic Optimization of Layout and Item Assignment of a U-Shaped Order Picking
Zone. Comput. Ind. Eng. 2019, 138, 106094. [CrossRef]

22. Masae, M.; Glock, C.H.; Grosse, E.H. Order Picker Routing in Warehouses: A Systematic Literature Review. Int. J. Prod. Econ.
2020, 224, 107564. [CrossRef]

23. Bozer, Y.A.; Aldarondo, F.J. A Simulation-Based Comparison of Two Goods-to-Person Order Picking Systems in an Online Retail
Setting. Int. J. Prod. Res. 2018, 56, 3838–3858. [CrossRef]

24. Bormann, R.; de Brito, B.F.; Lindermayr, J.; Omainska, M.; Patel, M. Towards Automated Order Picking Robots for Warehouses and
Retail. In Computer Vision Systems, Proceedings of the 12th International Conference, ICVS 2019, Thessaloniki, Greece, 23–25 September
2019; Lecture Notes in Computer Science (LNCS); Springer: Berlin/Heidelberg, Germany, 2019; Volume 11754, pp. 185–198.

25. Boysen, N.; Stephan, K.; Weidinger, F. Manual Order Consolidation with Put Walls: The Batched Order Bin Sequencing Problem.
EURO J. Transp. Logist. 2019, 8, 169–193. [CrossRef]

26. Klumpp, M.; Loske, D. Order Picking and E-Commerce: Introducing Non-Parametric Efficiency Measurement for Sustainable
Retail Logistics. J. Theor. Appl. Electron. Commer. Res. 2021, 16, 846–858. [CrossRef]

27. Pérez-Rodríguez, R.; Hernández-Aguirre, A.; Jöns, S. A Continuous Estimation of Distribution Algorithm for the Online
Order-Batching Problem. Int. J. Adv. Manuf. Technol. 2015, 79, 569–588. [CrossRef]

28. Le-Duc, T.; de Koster, R.M.B.M. Travel Time Estimation and Order Batching in a 2-Block Warehouse. Eur. J. Oper. Res. 2007, 176,
374–388. [CrossRef]

29. Vazquez-Noguerol, M.; Comesaña-Benavides, J.; Poler, R.; Prado-Prado, J.C. An Optimisation Approach for the E-Grocery Order
Picking and Delivery Problem. Cent. Eur. J. Oper. Res. 2022, 30, 961–990. [CrossRef]

30. Moons, S.; Ramaekers, K.; Caris, A.; Arda, Y. Integration of Order Picking and Vehicle Routing in a B2C E-Commerce Context.
Flex. Serv. Manuf. J. 2018, 30, 813–843. [CrossRef]

31. Pietri, N.O.; Chou, X.; Loske, D.; Klumpp, M.; Montemanni, R. The Buy-Online-Pick-up-in-Store Retailing Model: Optimization
Strategies for in-Store Picking and Packing. Algorithms 2021, 14, 350. [CrossRef]

32. Murfield, M.; Boone, C.A.; Rutner, P.; Thomas, R. Investigating Logistics Service Quality in Omni-Channel Retailing. Int. J. Phys.
Distrib. Logist. Manag. 2017, 47, 263–296. [CrossRef]

33. Boyer, K.K.; Hult, G.T.; Frohlich, M. An Exploratory Analysis of Extended Grocery Supply Chain Operations and Home Delivery.
Integr. Manuf. Syst. 2003, 14, 652–663. [CrossRef]

34. Huang, M.; Guo, Q.; Liu, J.; Huang, X. Mixed Model Assembly Line Scheduling Approach to Order Picking Problem in Online
Supermarkets. Sustainability 2018, 10, 3931. [CrossRef]

35. Öncan, T. A Genetic Algorithm for the order batching problem in low-level picker-to-part warehouse systems. In Proceedings of
the International MultiConference of Engineers and Computer Scientists 2013, IMECS 2013, Hong Kong, 13–15 March 2013.

36. Haouassi, M.; Kergosien, Y.; Mendoza, J.E.; Rousseau, L.M. The Integrated Orderline Batching, Batch Scheduling, and Picker
Routing Problem with Multiple Pickers: The Benefits of Splitting Customer Orders. Flex. Serv. Manuf. J. 2022, 34, 614–645.
[CrossRef]

37. Manzini, R.; Gamberi, M.; Regattieri, A. Design and Control of a Flexible Order-Picking System (FOPS) a New Integrated
Approach to the Implementation of an Expert System. J. Manuf. Technol. Manag. 2005, 16, 18–35. [CrossRef]

38. Manzini, R.; Gamberi, M.; Persona, A.; Regattieri, A. Design of a Class Based Storage Picker to Product Order Picking System. Int.
J. Adv. Manuf. Technol. 2007, 32, 811–821. [CrossRef]

39. Yu, M.; de Koster, R.B.M. The Impact of Order Batching and Picking Area Zoning on Order Picking System Performance. Eur. J.
Oper. Res. 2009, 198, 480–490. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cie.2019.106094
https://doi.org/10.1016/j.ijpe.2019.107564
https://doi.org/10.1080/00207543.2018.1424364
https://doi.org/10.1007/s13676-018-0116-0
https://doi.org/10.3390/jtaer16040048
https://doi.org/10.1007/s00170-015-6835-6
https://doi.org/10.1016/j.ejor.2005.03.052
https://doi.org/10.1007/s10100-020-00710-9
https://doi.org/10.1007/s10696-017-9287-5
https://doi.org/10.3390/a14120350
https://doi.org/10.1108/IJPDLM-06-2016-0161
https://doi.org/10.1108/09576060310503465
https://doi.org/10.3390/su10113931
https://doi.org/10.1007/s10696-021-09425-8
https://doi.org/10.1108/17410380510574068
https://doi.org/10.1007/s00170-005-0377-2
https://doi.org/10.1016/j.ejor.2008.09.011

	Introduction 
	Related Literature 
	The Importance of Sustainability in Logistics 
	Order Picking 

	Problem Definition and Formulation 
	Matheuristics Development 
	Step 1. Pickers (Buffers) Free Time Minimization Problem 
	Step 2. Order Picking Makespan Minimization Problem (Using yijpb  as Input from Step 1) 

	Experiment 
	Conclusions 
	References

