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Abstract: Explainable artificial intelligence (XAI) methods aim to explain to the user on what basis
the model makes decisions. Unfortunately, general-purpose approaches that are independent of the
types of data, model used and the level of sophistication of the user are not always able to make
model decisions more comprehensible. An example of such a problem, which is considered in this
paper, is a predictive maintenance task where a model identifying outliers in time series is applied.
Typical explanations of the model’s decisions, which present the importance of the attributes, are not
sufficient to support the user for such a task. Within the framework of this work, a visualisation and
analysis of the context of local explanations presenting attribute importance are proposed. Two types
of context for explanations are considered: local and global. They extend the information provided by
typical explanations and offer the user greater insight into the validity of the alarms triggered by the
model. Evaluation of the proposed context was performed on two time series representations: basic
and extended. For the extended representation, an aggregation of explanations was used to make
them more intuitive for the user. The results show the usefulness of the proposed context, particularly
for the basic data representation. However, for the extended representation, the aggregation of
explanations used is sometimes insufficient to provide a clear explanatory context. Therefore, the
explanation using simplification with a surrogate model on basic data representation was proposed
as a solution. The obtained results can be valuable for developers of decision support systems for
predictive maintenance.

Keywords: XAI; local explanations; predictive maintenance; time series; outlier detection; decision
support

1. Introduction

Explainable artificial intelligence (XAI) methods aim to elucidate the decision-making
processes of artificial intelligence (AI) for end users [1]. Consequently, AI systems should be
better understood by their developers, more trustworthy for end users and should meet the
legal requirements that pertain to them [2]. Research on explainable artificial intelligence
has significantly intensified in recent years due to the development of advanced machine
learning (ML) techniques and the growing demand for transparency in AI solutions. As a
result, XAI methods are increasingly finding applications in various fields. These appli-
cations span from medical systems [3–5] and service-oriented systems [6] to industrial
solutions [7,8]. XAI methods can be classified into two categories: those that generate expla-
nations at the level of the entire data set (global), and approaches that provide explanations
for individual data instances (local) [9]. Global explanations focus on a machine learning
model as a whole and tend to explain its average behaviour, whereas local explanations
focus on a single prediction or recommendation to explain what drove the model to make
such a decision [10].

Understanding the range of XAI solutions and their possible applications, it is im-
portant to take into account the needs of the end user and the specifics of the data being
analysed. For example, global explanations are of grater interest to data scientists creating
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and evaluating the model, while local explanations are more interesting for the end user
who is affected by a particular model decision. In some cases, in addition to a single
explanation it may be helpful to consider the broader context of the analysis to properly
assess the situation. The necessity to consider explanation context can arise from both the
data type and the predictive model used. This means that the development of decision sup-
port systems with explainable artificial intelligence methods requires a multi-dimensional
analysis of user needs and requirements, and the analytical solutions used.

The motivation for this study comes from prior research [11] on a predictive mainte-
nance task. Predictive maintenance (PdM) aims to prevent unexpected machine failures
by identifying deteriorating machine condition and scheduling maintenance in advance.
While preventive servicing can effectively avert failures, the absence of failures can pose
a challenge for data-driven analytical approaches. To train a machine learning model
capable of predicting machine state the proper representations of both “alarm” and “correct
operation” classes are required. The solution is to use the anomaly identification (outlier
detection) method. In this case, alarms indicating machine malfunctions stem from the
anomalies identified in the measurements. Whether the reported alarms indicate a fail-
ure must be decided by the operator based on their experience and domain knowledge.
The operator’s judgment can be augmented by local explanations, which are generated
for a single data point and show the importance of the attributes on which the model
made its decision. Such explanations can guide the operator towards specific machine
components that behave abnormally, e.g., if sensor readings for a particular component are
the most important for the model’s anomaly detection decision. Typically, however, the
XAI methods used do not support the operator in identifying false alarms. In addition, the
model’s decisions may be based on derived attributes, which provide the operator with
limited insight.

The objective of this study is to propose and assess extensions to the local explanations
of PdM model decisions. This research assumes that the model relies on outlier detection
and processes multivariate time series. The proposed solution uses the temporal charac-
teristics of data and has the form of a context for local explanations. Thus, it aligns with
the concept of human-centred explanations by considering the context for a given data
point instance. Furthermore, the aim of the proposed context for local explanations is to
support machine operators in their tasks. Such support is significant because in case of the
model identifying outliers within time series, machine operators may have to deal with
false alarms and data representation consisting of numerous derived attributes.

The contribution of this work consists of the following:

• Proposing context (local and global) for explanations generated for decisions on
time series data; this explanation context aims to aid machine operators in assessing
identified alarms;

• Verifying the aggregation of explanations with the aim of enhancing the transparency
of explanations when dealing with decisions based on data containing numerous
derived attributes;

• Proposing a surrogate model to generate explanations and their contexts for decisions
on data with numerous derived attributes.

This paper is organised as follows. Section 2 presents an overview of previous research
related to the presented topics. Section 3 presents the concept of local and global context
for the local explanations of decisions on time series. Section 4 describes performed
experiments, presenting the data set that was used, experimental settings and results of the
analysis. Section 5 summarises the presented research.

2. Related Work

This work focusses on explainable artificial intelligence methods and their application
in decision support systems, particularly within industrial contexts involving time series
data. To provide context, an overview of the relevant literature related to these themes is
presented below.
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The explainable artificial intelligence methods have been extensively analysed, com-
pared and classified in numerous reviews and surveys [3,9,10,12–18]. These studies anal-
yse the XAI domain identifying various classes of approaches, e.g., model-specific and
model-agnostic, or global and local explanations. From the perspective of this study, model-
agnostic methods giving local explanations are of particular interest. There are several
methods of this type. Counterfactual explanations [19] highlight what should be changed
in a data instance in order to receive a different output. Ceteris paribus profiles (also named
individual conditional expectations) [9,20] present the impact of a given attribute on the
model’s decision. Various methods determine which attributes are the most important
to the model during the decision-making process for a given data instance. SHAP [21]
refers to coalitional game theory. LIME [22] is based on locally generated linear models.
RuleXAI [23] uses a surrogate rule-based model and evaluates the impact of individual
rule conditions (related to the data attributes and their values) on the model’s decision.

The XAI methods characterised above can be applied to various types of data, includ-
ing time series, which can be treated as tabular data, particularly when derived variables
characterising the time series are generated [11,24]. However, in addition to the general
XAI methods, other solutions dedicated to time series have been developed. Several aspects
of XAI methods on time series were discussed in [25], e.g., the global and local scale of
explanations, their purpose and intended audience and evaluation approaches. Among the
methods presented, four types were distinguished. The first two types were related to neu-
ral networks. For convolutional neural networks, methods based on backpropagation and
perturbation were discussed, whereas for recurrent neural networks attention mechanisms
were considered. The third type of approaches were called data mining based methods.
They included the approaches based on symbolic aggregate approximation (SAX) [26]
and fuzzy logic. The last mentioned type was based on representative examples, that is,
on Shapelets [27]. A slightly different set of XAI methods for time series was presented
in [28], where a perturbation-based method for generating explanations was discussed.
The identified classes of methods included Shapelets, Saliency and Counter-examples.

A natural example of an IT system where it is crucial to provide clear explanations
for suggested decisions is a decision support system (DSS). Decision support systems
using XAI are particularly often discussed in the literature, particularly within medical
applications [3–5]. This is understandable, as one of the most essential features that should
characterise medical DSS is trustworthiness, which is one of the goals of XAI [13]. Among
the approaches to the design of medical decision support systems, work on human-centred
XAI [29] should also be mentioned. This work introduces the approach based on three
components: domain analysis, requirements elicitation and assessment, and multi-modal
interaction design and evaluation. Moreover, a set of explanation design patterns was
proposed in this work.

The use of explanations is becoming increasingly common for AI solutions used in
industry. An interesting survey related to the domain investigated in this study is presented
in [7]. It is focussed on applications of XAI methods for identifying or predicting events
related to predictive maintenance. The survey presents several conclusions regarding
the state of research on XAI methods from the perspective of predictive maintenance.
It indicates that there is space for further research on XAI and time series in the context of
PdM. Another substantial work [8] categorises the domain of this study as “explainable
predictive maintenance”. It presents reasons why explanations are required for PdM,
discusses predictive maintenance tasks and XAI techniques and presents four industry-
based use cases. Examples of predictive maintenance systems that are based on outlier
detection methods and that offer SHAP-based explanations are presented in [11,30–32].
These works deal with different applications of predictive maintenance, use SHAP as a
ready-to-use method and do not analyse how comprehensible its explanations are to the
user. Another approach, based on a semi-supervised model to identify the degradation of
machine elements is presented in [33]. Counterfactual explanations were used in this study,
which can be considered an easier to understand solution for the user. Finally, there are
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approaches to the predictive maintenance task [34,35] where the aim of the explanations is
to support a user in defining what maintenance actions should be performed and how the
maintenance process may be optimised.

The above review of related work shows numerous XAI methods, along with a grow-
ing array of applications employing these methods to explain the decisions of predictive
maintenance models. Different papers in the field under review focus on different aspects—
some on the model generated, others on explanations for time series, and finally there are
those that take a user as a central reference point for the generated explanations. However,
to the best of the author’s knowledge, no research has been conducted that combined the
above issues to improve the quality of explanations and support user decision-making,
given the specifics of PdM, such as outlier analysis and temporal data. None of the
aforementioned studies considered the explanation context that can be determined when
data with temporal characteristics are analysed. Furthermore, there is a lack of research
addressing the simplification of explanations for time series analysis using an extended
representation composed of multiple derived variables.

3. Proposed Methods

Local explanations provide an understanding of what influenced a model’s decision
for a particular data instance. In the typical scenario, when analysing tabular data, standard
local explanations show the most important attributes for the model decision. These
methods serve as a foundation for subsequent deliberations. The contextual extensions
to the explanations proposed below were the result of the specific conditions determined
by the assumed application. This work focusses on decision support related to predictive
maintenance, which determines the type of model and data, and suggests the potential end
user of local explanations.

Considering the specificity of the assumed application, the following should be emphasised:

• Due to the lack of historical data, the decision model adopted does not learn the
characteristics of the class represented by the alarm examples, but it identifies outliers;

• Measurements characterising the the machine operation are analysed; therefore, the
data are a multivariate time series.

Considering the aforementioned points, it is reasonable to establish a context for the
generated local explanations. This context can show a broader perspective because the
particular data instance being explained is not independent of the measurements that were
made earlier.

Two types of context for explanations can be distinguished. The first is local context,
which refers to a limited set of examples preceding in time the instance currently being
explained. This type of context is particularly relevant if a model based on outlier detection
is used, and the identified anomalies represent alarms reporting a deteriorating machine
state. In this case, the explanations for such anomalies, registered closely in time, should
form a coherent description of the alarm class. However, if the identified outliers lack
shared characteristics because they do not originate from a common source, such as an
impending failure, their explanations may differ greatly.

The second type of context proposed in this study is the global context, which involves
a broader perspective. The global context includes explanations for all data instances be-
longing to the same class since the model’s deployment. In case of a stationary process, the
incoming data can be characterised as originating from a source with fixed characteristics.
Therefore, the explanations generated for each subsequent data instance within the same
class should be related to the established definition of that class. As the condition of the
monitored machine deteriorates, potentially leading to future failure, the characteristics
of the data and the class definition change. Consequently, the explanations of subsequent
data instances (attribute importances) will also change. Thus, by analysing historical
explanations and changes in their values, it becomes possible to infer impending failure.

Considering the graphical representation of the concepts presented, it becomes evident
that the local context refers to the explanation of relatively few decisions, aiming to evaluate
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their consistency. Therefore, a representation of the local context in a single visualisation
could be advantageous. Whereas, the global context considers the complete history of
attribute importance. Presenting such a context collectively for all attributes may not be
clear. However, it is feasible to analyse separate plots for selected attributes.

The temporal nature of the data allows explanations of the model’s decisions to be
extended by analysing their context. At the same time, however, it can affect the clarity of
explanations. Analysis of multivariate time series often involves calculation of numerous
derived attributes. These can encompass temporal characteristics within the chosen time
window. In this way, a significantly extended representation of the analysed phenomenon is
obtained, which potentially leads to better results of the analysis. Nonetheless, explanations
considering derived attributes may be of little value to their recipient, who is the machine
operator. The fact that some attribute corresponding to a sophisticated mathematical
expression is important for the model’s decision-making does not support the operator’s
understanding of the decision-making system operation. Moreover, it does not increase
their confidence in this system. Such explanations operate on a completely different
conceptual level and do not correspond to the operator’s understanding of the industrial
process or the machine operation. Therefore, it is important that the explanations relate
to the parameters that are originally monitored. If an extended representation is used for
analysis, aggregating explanations to the representation centred on the primary attribute
can be used to address this concern.

4. Experiments

The experiments aimed to verify whether the proposed context for the model’s decision
explanations provided valuable information that supported the decision of the machine
operator. The model’s task was to report alarms (identified outliers) that might indicate an
impending failure. The operator’s task would be to assess whether the reported alarm was
correct, i.e., whether the condition of the machine required maintenance work to prevent
failure. For this reason, the performed experiments focussed on analysing the alarms
reported by the model. Moreover, the objective of the experiments was not to elevate the
accuracy of the applied model, but to verify what information could be provided by the
local explanations and their context.

A general illustration of the process implemented within the experiments is presented
in the diagram in Figure 1. This diagram depicts operations performed on data and
their results. The first step of the process is pre-processing of the measurements creating
original data set. Next, the model based on outlier identification is generated and applied
to the data analysis. This model is re-generated following the annotation of machine
failure in the data. For each recommendation provided by the model, a local explanation
is generated. Finally, for each explanation, its context is presented. A more detailed
description of the process elements is provided in the subsequent sections. The data set and
its processing are described in Section 4.1. The selected methods generating the model and
local explanations, and their experimental settings are presented in Section 4.2. The results
containing local explanations and their context are presented in Section 4.3. Finally, the
additional conclusions from the experiments are discussed in Section 4.4.

Data
pre-processing

Model
generation

Model
application

Explanation
generation

Explanation
context

generation

Original
data

Pre-processed
data

Decisions
(alarm / normal

operation)

Local
explanations

Context
of local

explanation

if failure

Figure 1. Diagram of the process implemented in the experiments.
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4.1. Data Set

The data set used in the experiments is based on the data reported in [11]. The initial
data set consists of the measurements recorded for a coal crusher operating at the boiler of
the power plant. The crusher, named NW-10, was equipped with two sensors C122 and C123
located on the opposite sides of the rotating shaft. The data collected by the sensors include
three attributes: maximum and root mean square (RMS) value of vibration, and temperature.
The measurement values were recorded every 10 s between 13 July 2019 and 30 March 2021.
During this period, two machine failures requiring servicing operations were reported.

For the purpose of the analysis, the measurement values were aggregated within a
time window of 8 h, which corresponds to the length of the shift. The aggregation resulted
in a data set consisting of 717 examples that covered the period from the beginning of the
measurements until the second machine failure. Two distinct approaches to aggregation
were applied, which resulted in two different data representations. The first representation,
hereinafter referred to as Basic, was calculated as a mean value of each attribute value within
the time window. Therefore, Basic representation consists of six attributes, which correspond
to the three measurements recorded by each of the two sensors (C122 and C123). The second
representation, hereinafter referred to as Extended, was calculated by means of the tsfresh [36]
library. This Python package offers methods for calculating a large number of time series
characteristics. For each attribute of the data set, the following 15 statistical and time-based
characteristics were calculated and taken as derived attributes: sum, median, mean, standard
deviation, variance, root mean square, maximum, absolute maximum, minimum, intercept of
the regression line, slope of the regression line, standard error of the estimated slope (gradient),
assuming normality of the residuum, R value of the regression line, non-directional p-value
for a test whose null hypothesis is that the slope is zero, using the Wald test with t distribution
of the test statistic. Thus, the Extended representation consists of 90 attributes.

Figure 2 presents the values of the vibration-based attributes calculated for the Basic
representation. In addition to the data characteristics, the figure presents when the failures
took place in the form of dashed vertical lines. Looking at Figure 1, it can be noticed
that around example 220 the characteristics of the measurements recorded by sensor C123
changed. Specifically, the values of VibrRMS_123 and VibrMax_123 decreased noticeably.
This change occurs more than two months prior to Failure 1 and it can be interpreted as
an indication of an impending failure, in a post hoc analysis. Similarly, it can be noticed
that around example 600 the characteristics of the measurements recorded by sensor C122
changed. Specifically, the values of VibrRMS_122 and VibrMax_122 decreased noticeably.
This change occurs almost one-and-a-half months prior to Failure 2 and it can be interpreted
as an indication of an impending failure, in a post hoc analysis.
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0 200 400 600
Example
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VibrMax_122
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Figure 2. Values of the selected attributes (representing vibrations [mg]) of crusher data set, machine
failures are marked by red dashed vertical lines.
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4.2. Experimental Settings

In this study, it was assumed that, due to the insufficient number of failure examples,
the identification of the machine’s fault condition would be performed using an outlier
identification algorithm. Following the approach validated in [11], the outlier identifica-
tion method based on the HDBSCAN algorithm [37] and implemented in the hdbscan
(https://hdbscan.readthedocs.io/en/latest) (accessed on 1 August 2023) Python library
was chosen. HDBSCAN is a hierarchical density-based clustering algorithm that can be
used to identify anomalies [38] by determining how much each data instance stands out.
The initial 30 days of measurements were used as the initialisation period for the method.
During this period the monitored machine was assumed to operate under normal condi-
tions. After this period, the model was used to identify measurements that were anomalies,
potentially indicating an impending failure. The model was used statically, with no adap-
tation of model parameters, until the failure occurred. After the failure, the model was
generated again on data collected up to a week before the failure. The only parameter
set for the HDBSCAN algorithm was min_cluster_size. The value of this parameter was
assumed to be 0.01, as the share of outliers in the monitored data was assumed to be 1%.

For the purpose of generating explanations, the SHAP method [21] was selected. This
well-established and frequently used method aligns with the assumptions set forth in this
study. It generates local explanations in the form of an attribute ranking that illustrates
attribute importance in the model’s decision-making. In this way, a user who needs to
decide whether a reported alarm is indicating an impending failure can refer to the sensors
(and their locations) represented by individual attributes. The generation of model decision
explanations was performed in the shap (https://shap.readthedocs.io/en/latest/index.
html) (accessed on 1 August 2023) Python library.

4.3. Results
4.3.1. Basic Representation

The first part of experiments was performed on the Basic data representation. To verify
the quality of the created model, the number of outliers identified in the weeks following
model training and preceding machine failure was calculated. The results are presented in
Table 1. Common intuition suggests that at the very beginning (just after model training),
a relatively small number of outliers should be identified. Whereas, in the period of time
preceding a failure the number of identified outliers should be relatively high. The values in
Table 1 reflect this intuition only for Failure 1. In case of Failure 2 the number of identified
outliers is high from the very beginning. It suggests that the model is not well fitted to the
distribution of data registered after Failure 1. Therefore, inferring an impending failure
based on the increasing number of reported alarms would be possible for the generated
model only before Failure 1.

Table 1. Number of alarms (outliers) identified in data (Basic representation) collected before Failure
1 and afterwards until Failure 2; Ti represents week number after model training (when the machine
is operating correctly), Fi represents week number before failure.

T1 T2 T3 F3 F2 F1

Failure 1 3 1 8 21 21 21
Failure 2 21 19 15 21 19 21

The explanations of selected decisions of the model trained on the Basic data represen-
tation are presented in Figure 3. Among the alarms identified by the model, a selection of
three cases is presented in Figure 3. Case 1 is an alarm that was reported when the machine
was operating correctly, i.e., relatively recently after the model was trained. With insights
into the analysed data, it was assumed that an outlier identified after approximately four
weeks was reported during correct machine operation. Thus, Case 1 presents example
87 (considering an 8 h aggregation window, 4 weeks corresponds to 84 examples). This

https://hdbscan.readthedocs.io/en/latest
https://shap.readthedocs.io/en/latest/index.html
https://shap.readthedocs.io/en/latest/index.html
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instance was identified as the first outlier after four weeks, and the 17th outlier overall.
Case 2 presents the last alarm before Failure 1, and Case 3 presents the last alarm before
Failure 2.

Figure 3. Selected SHAP-based explanations of the model decisions and their contexts for Basic data
representation—the selected data instances contain the following: alarm from the period of normal
machine operation (Case 1), last alarm before Failure 1 (Case 2), last alarm before Failure 2 (Case 3).
The figures present SHAP-based attribute importance ranking (A), local context heatmap (B), global
context for the most important attribute indicated by SHAP (C), global context for the second most
important attribute indicated by SHAP (D).

An explanation of each alarm in Figure 3 consists of four figures (Figure 3A–D).
Figure 3A presents a SHAP-based ranking of attribute importance. This is a typical local
explanation. It identifies the attributes that have the greatest impact on the model’s decision.
Figure 3B presents a local context to the SHAP-based explanation presented in Figure 3A.
It has the form of a heatmap depicting attribute importance values for the alarm being
explained and for the five preceding alarms. This figure (Figure 3B) allows for an assessment
of how consistent the explanations for a given data instance are in comparison to those



Appl. Sci. 2023, 13, 10068 9 of 15

of examples that occurred at a similar time. It is of particular importance if the model
based on outlier identification is used, as it visualises whether a class labelled as alarm has
consistent explanations at a given time. In addition, this figure may help to identify an
outlier among the outliers if a particular instance deviates significantly from the alarms
immediately preceding it. Finally, Figure 3C,D present the global contexts to the SHAP-
based explanation presented in Figure 3A. The global context is generated for each attribute
independently. Figure 3 presents the global context for the most important attribute (C)
according to the SHAP-based explanation and the second most important attribute (D).
The figures presenting global context contain a scatter plot of all the attribute importance
values calculated for the preceding examples of the alarm class. Moreover, there is a line in
the figure representing the smoothed mean of the plotted values to support interpretation
of the data characteristics. The mean value for the example yi was determined as follows:

yi =
1

l − k + 1

l

∑
j=k

yj, (1)

where k = max(1, i− w
2 ), l = min(n, i + w

2 ), n is the number of data examples forming the
context and visualisation , w = b α·n

2 c · 2 is a smoothing window size, and α is a parameter
defining the size of the smoothing window and it was set to 0.1. Additionally, each scatter
plot has a rug plot on the x axis illustrating the density of the identified alarms.

The basic results presented in Figure 3 are the SHAP-based explanations consisting
of the attribute rankings presented in Figure 3A. Case 1 represents the outlier identified
during the correct machine operation; therefore, for Case 1, Figure 3A does not allow any
conclusions to be drawn with regard to supporting the identification of the pre-failure
state of the machine. The analyses of the next two cases can be performed regarding data
characteristics presented in Section 4.1. They showed that the values measured by sensor
C123 may carry important information about the impending Failure 1 and the values
measured by sensor C122 may carry important information about the impending Failure 2.
The explanation of Case 2 presented in Figure 3A shows that vibrations measured by
sensor C123 were among the most important for the decision of the model, whereas the
explanation of Case 3 presented in Figure 3A shows that vibrations measured by sensor
C122 were the most important. Thus, the SHAP-based explanations are consistent with
conclusions based on the distribution of data and can support decision-making.

The local context (Figure 3B) shown for each explanation is consistent, i.e., the attribute
importance rankings are similar for the alarms reported most recently. This means that the
alarm class definition is consistent for the recent examples.

The results show that the global context presented in Figure 3C,D for the most signifi-
cant attributes provides valuable additional information. For Case 1, this context consists
of relatively few examples and the plot they create does not illustrate any clear trend. For
Case 2 and Case 3, the context in Figure 3C,D shows a clear change in SHAP-determined
attribute importance. This change means that the characteristics of the class whose exam-
ples were identified have changed. Assuming that the machine was working correctly at
the beginning, a change in the concept alarm may indicate an impending failure. Moreover,
the changes in characteristics visible in Figure 3C,D in Cases 2 and 3 are consistent with the
change in characteristics of the recorded measurements presented in Section 4.1.

Furthermore, in Case 2, with the change in attribute importance, the density of iden-
tified alarms increased. An increase in alarms reported should be regarded as a clear
indicator of impending failure. The alarm frequency for the global context for Case 1 is
relatively low, which is consistent with the fact that this period is unrelated to the failure.
In contrast, in Case 3 the frequency of reported alarms is very high from the very beginning,
indicating a poorly calibrated model that identifies too many outliers.



Appl. Sci. 2023, 13, 10068 10 of 15

4.3.2. Extended Representation

For the Extended data representation, similar analyses to those presented above were
performed. Table 2 presents the number of outliers identified in the weeks following
model training and preceding machine failure. The model based on the Extended data
representation did not improve the distinction between the period of normal machine
operation and the period prior to the machine failure. In the case of Failure 1, the number
of alarms is only slightly lower during normal operation, and there are no significant
differences between the two periods in the case of Failure 2.

Table 2. Number of alarms (outliers) identified in data (Extended representation) collected before
Failure 1 and afterwards until Failure 2; Ti represents week number after model training (when the
machine is operating correctly), Fi represents week number before failure.

T1 T2 T3 F3 F2 F1

Failure 1 4 13 17 19 20 17
Failure 2 21 20 20 21 21 21

The Extended representation contains many attributes that are hardly informative to
the machine operator. Consequently, additional processing is required to derive explana-
tions of the model decisions that are understandable to the user. Therefore, the explanations
generated by SHAP as the importance value of the derived attributes were aggregated
to the basic attributes associated with the recorded measurements. Different aggregation
functions were applied and evaluated. To select the best method of aggregation, the SHAP
rankings determined for the Basic representation were chosen as a reference point. Table 3
presents Pearson correlation and root mean square error (RMSE) values assessing the
similarity of the SHAP rankings for the two representations. The worst of the methods
compared in Table 3 was Median, while the most stable quality results were obtained for
Max. Among the best results obtained were those generated for the Sum function and this
aggregation function was used in further analyses.

Table 3. Evaluation of similarity between attribute importance rankings determined for Basic and
Extended data representations.

Correlation RMSE

Sum Max Mean Median Sum Max Mean Median

Failure 1 0.22 0.54 0.22 −0.05 8.50 7.11 8.51 9.29
Failure 2 0.87 0.48 0.87 0.06 2.92 7.28 2.91 8.27

The explanations for selected decisions of the model trained on the Extended data
representation are presented in Figure 4. The analysis procedure mirrors that of the Basic
representation (Figure 3). Therefore, a selection of three cases is presented in Figure 4.
Case 1 is an alarm reported when the machine was operating correctly, i.e., relatively
recently after the model was trained (approximately four weeks). For Extended representa-
tion, Case 1 refers to example 87, which was identified as the first outlier after four weeks,
and the 48th outlier overall. Case 2 presents the last alarm before Failure 1, and Case 3
presents the last alarm before Failure 2.

The SHAP-based explanations of the true alarms (Case 2 and 3) presented in Figure 4
A are not perfectly correlated with the conclusions drawn from the analysis of the mea-
surement characteristics. For Case 2, the attribute associated with the C122 sensor is the
most important. The attributes associated with the C123 sensor (which, based on measure-
ment characteristics, seemed to be important before Failure 1) are ranked next but their
importance is significantly lower. In Case 3, as expected, the attributes associated with the
vibration measurements from the C122 sensor are the most important.
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Figure 4. Selected SHAP-based explanations of the model decisions and their contexts for Extended
data representation and Sum aggregation—the selected data instances contain the following: alarm
from the period of the normal machine operation (Case 1), last alarm before Failure 1 (Case 2), last
alarm before Failure 2 (Case 3). The figures present local explanations, where attribute importances
were aggregated using the sum operation: SHAP-based attribute importance ranking (A), local
context heatmap (B), global context for the most important attribute indicated by SHAP (C), global
context for the second most important attribute indicated by SHAP (D).

The local context of the SHAP-based explanations is presented in Figure 4B. Although
Case 1 presents false alarms, it contains one stable indication that temperature measured
by the C123 sensor was important for all decisions considered for this case. In Case 2, the
explanations forming the local context differ to such an extent that it is easier to identify
what was not important (temperature and RMS of vibration measured by the C122 sensor),
than what was important for the presented group of decisions. In Case 3, the local context
shows that vibration measurements from the C122 sensor were the most important for this
group of model decisions.

The global context of the SHAP-based explanations is presented in Figure 4C,D.
In Case 1, it is not possible to discern clear trends or long-term changes in the importance of
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the most important attributes. In Case 2 such changes can be identified; however, they are
not very clear. In Case 3, long-term changes in the value distributions do not occur, even
though the analysis of the measurements (Section 4.1) suggests that they should be visible.

4.4. Discussion

A comparison of the proposed explanation context for the Basic and Extended data
representations, which are presented in Figures 3 and 4, shows considerable differences.
The local context of the SHAP-based explanations for the Extended data representation
(Figure 4B) is significantly less cohesive for each of the Cases compared to the results from
the Basic data representation (Figure 3B). The attribute importance values, and the attribute
ranking, fluctuate significantly and fail to form a consistent description indicating which
attributes are important for the decision on the alarm class. Moreover, the global context of
the SHAP-based explanations presented in Figure 4C,D is significantly less informative
when comparing to the results of the Basic data representation presented in Figure 3C,D.
The attribute importance values presented on the plots do not show clear (or any) long-term
changes. Therefore, the figures do not support conclusions about the current machine state.

This implies that the proposed explanation context, designed to support the operator’s
understanding of the machine state, is significantly less helpful for the model based on
Extended data representation, despite the application of explanation aggregation. Ad-
dressing this challenge could involve the use of an explanation by simplification approach,
employing a surrogate model. In the case of the analysed task, the surrogate model is
the model generated from the Basic data representation. Therefore, generating a local
explanation for the alarm decision of the model based on Extended data representation
should consist of the following steps:

• Verification if the similar alarm was generated by the surrogate model on the Basic
data representation;

• If yes, generation of a local explanation and its context for the decision of the surro-
gate model;

• Otherwise, generation of an aggregated local explanation for the decision of the model
based on the Extended data representation and visualisation of the context for the
recent alarm decision of surrogate model.

This approach is reasonable because most of the alarms identified for the Extended
data representation were identified as alarms for the Basic representation. Considering the
time period until Failure 1, during which alarms were less frequent, almost 73% of outliers
identified in the Extended data representation were identified in the Basic representation.
If a surrogate model is used for the analysed data set, all alarms for which explanations are
given in Figure 4 will receive explanations from Figure 3. This will significantly improve
the comprehensibility of the model’s decisions.

5. Conclusions

This paper proposes to extend the typical local explanations presenting attribute
importance with an illustration of the context for these explanations. The research is
motivated by the need to better explain the decisions of a model identifying outliers in
temporal data. These models are often used in predictive maintenance tasks and a real-
world industrial application was the starting point for this study. The proposed XAI
solutions aim to support machine operator decision-making and they were verified on real
industrial data.

When utilising outlier detection to determine the state of a machine, it is not clear
whether an alarm is an anomaly or an example of an alarm class indicating an impending
failure. A better understanding of this issue is provided by the proposed two types of
explanation contexts: local and global. The determination of these contexts is possible due
to the temporal nature of the analysed data.

The analysis of the experimental results has shown that the typical local explanations
generated by the SHAP method do not provide sufficient information needed to understand
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the model’s decision concerning the current state of the machine. However, the presented
results demonstrate that extending the explanations to include local context supports
verification whether recently reported alarms had consistent characteristics. In addition, the
global context supports identification of changes in the attribute importance distribution.
These changes may indicate a modification in class definition due to the deteriorating
condition of the monitored machine. Thus, the proposed contexts can provide validation to
the reported alarms.

Furthermore, the experimental results show that the use of a model based on data with
numerous derived attributes significantly weakens the clarity of explanations and their
contexts. The proposed solution to this problem is explanation by simplification, involving
the use of explanations and their context generated for the decisions of a surrogate model
created for the basic attributes.

Future works foreseen for this subject include validation of the proposed approach
for other XAI methods, e.g., RuleXAI [23], where explanations can be more detailed yet
are potentially more difficult to use when determining context. Furthermore, it will be
important to automate inference based on the proposed explanation context to simplify
support for the machine operator.
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