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Abstract: Image classification has become highly significant in the field of computer vision due to its
wide array of applications. In recent years, Convolutional Neural Networks (CNN) have emerged as
potent tools for addressing this task. Attention mechanisms offer an effective approach to enhance the
accuracy of image classification. Despite Global Average Pooling (GAP) being a crucial component of
traditional attention mechanisms, it only computes the average of spatial elements in each channel,
failing to capture the complete range of feature information, resulting in fewer and less expressive
features. To address this limitation, we propose a novel pooling operation named “Binary Pooling”
and integrate it into the attention block. Binary pooling combines both GAP and Global Max Pooling
(GMP), obtaining a more comprehensive feature vector by extracting average and maximum values,
thereby enriching the diversity of extracted image features. Furthermore, to further enhance the
extraction of image features, dilation operations and pointwise convolutions are applied on the
channel-wise. The proposed attention block is simple yet highly effective. Upon integration into
ResNet18/50 models, it leads to accuracy improvements of 2.02%/0.63% on ImageNet.

Keywords: ResNet; attention; image classification

1. Introduction

Computer vision is widely recognized as a critical component of artificial intelligence,
as it enables machines to “see” and understand the physical world. Over the past two
decades, computer vision has undergone rapid development, with the emergence of nu-
merous theories and methods, resulting in significant progress in various core issues. Over
the years, with the advancement of deep learning technology, image classification has been
widely studied and applied successfully in several domains such as medical image analysis,
autonomous driving, security monitoring, and garbage classification, among others. Jakub
Kufel [1] indicated that artificial intelligence demonstrates promising outcomes in the
field of medicine. Particularly in radiation therapy, studies by Liesbeth Vandewinckele [2],
Guangqi Li [3], Jakub Kufel [4], and Krithika Rangarajan [5] have all shown that image
classification technology can assist doctors in identifying patient conditions. The potential
of image classification technology is enormous.

Historically, image classification relied on statistical learning techniques such as
Bayesian classifiers and K-Nearest Neighbors for feature extraction and pattern recog-
nition. However, these approaches were limited in handling larger datasets and could not
scale to larger tasks. The advent of artificial neural networks, particularly CNNs, revolu-
tionized image classification, providing a flexible and powerful method for training and
reasoning with large datasets. CNNs have become the gold standard for image classification
and have resulted in significant advancements in image processing and computer vision.
The limitations in the structure and learning algorithms of early neural network models
hindered their ability to effectively address complex image processing problems. However,
in the late 1980s and early 1990s, LeCun [6] first proposed a convolutional neural network
model combining convolution operation, pooling operation, and nonlinear activation func-
tion, which can effectively process image data. In the 2012 ImageNet large-scale visual
recognition challenge, AlexNet [7] achieved a significant result, surpassing traditional
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machine learning methods. Since then, several well-established CNN models, including
VGGNet [8], GoogLeNet [9], ResNet [10], and DenNet [11], have shown impressive perfor-
mance on various image classification tasks. However, these models are computationally
expensive and require significant memory resources, making them challenging to deploy
on mobile devices. To address this issue, researchers have developed lightweight models
such as SqueezedNet [12], MobileNet [13], ShuffleNet [14], and EfficientNet [15], which are
designed to be easily deployable on mobile devices.

There are a lot of techniques for ameliorating the model performance, which encom-
pass enhancements of the model structure, augmentation of the training data, and adoption
of transfer learning approaches. The success achieved by the Vision Transformer [16] has
brought attention to the utility of attention mechanisms in facilitating feature extraction.
The attention mechanism is a technique for selectively attending to the most informative
regions in an image while disregarding irrelevant regions. This approach is inspired by
the human visual system’s ability to efficiently analyze and comprehend complex scenes
through selective attention. The potential of this mechanism has led researchers to explore
its application in computer vision systems to enhance their performance. Specifically,
the attention mechanism can be viewed as a dynamic selection process that adaptively
weights input features according to their importance, which enables the network to effec-
tively focus on the most informative and relevant aspects of the input. The beginning of
attention mechanisms in computer vision is the Recurrent Attention Model (RAM) [17],
which combined deep neural networks with attention mechanisms to recurrently predict
important regions in an image and update the entire network. The initial stage heavily
relied on recurrent neural networks (RNNs) for implementing the attention mechanism.
Subsequently, the advent of the SENet [18] marked the beginning of a new stage, which
introduced a channel attention network. ECANet [19] and Convolutional Block Attention
Module (CBAM) [20] were representative works in this phase. Finally, the concept of
self-attention mechanism was initially introduced by Transformer [21] in natural language
processing and then successfully applied to computer vision by Vision Transformer. Series
of models based on Vision Transformers such as Tokens-to-Token Vision Transformer [22],
Pyramid Vision Transformer [23], Swin Transformer [24], Convolutional Vision Trans-
former [25], Vision Outlooker [26], and CoAtNet [27] demonstrate the immense potential
of attention mechanisms.

GAP has played an important role in previous attention mechanisms. However,
it suffers from significant information loss as it fails to preserve the spatial structure
and positional information in the feature maps. Consequently, it cannot capture subtle
differences and local structures in different regions of the image. Additionally, since
GAP uniformly processes the entire image, it fails to differentiate between important and
unimportant regions in the image. This results in the model assigning equal importance
to features from all regions, without focusing on the areas that are more relevant to the
classification task. Moreover, GAP leads to a single spatially invariant global feature
representation lacking diversity. This limitation prevents the model from capturing multiple
local feature patterns or information at different scales in the image, thus restricting the
expressive capability of the model.

The proposed attention mechanism no longer relies solely on GAP, but instead com-
bines GAP with GMP in a binary pooling approach. GMP is utilized to extract the most
salient features from the image or feature maps. By performing max pooling over the
entire feature map, only the most important features in each channel are retained, while
suppressing less significant features. This helps reduce redundancy and highlight crucial
elements in the image, resulting in more discriminative features being extracted. Fur-
thermore, channel attention is incorporated to enhance the extraction of image feature
vectors. Channel attention is implemented by applying fully connected layers and point
convolutions after the pooling operation. This combination allows the model to better focus
on important features in each channel, facilitating improved feature representation.

Our work contributions can be summarized as follows:
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• To address the issue of insufficient information in GAP, a binary pooling operation
is proposed. This approach effectively enhances the representational capacity of the
convolutional network.

• The proposed channel attention mechanism leads to improved image feature repre-
sentation.

• Experimental results demonstrate that the proposed method outperforms other atten-
tion mechanisms, yielding superior performance on ImageNet.

The rest of the paper is structured as follows. Section 2 presents a review of related
work. Section 3 illustrates how the model is constructed. In Section 4, comprehensive
experiments are conducted on ImageNet to evaluate the effectiveness of the proposed
method, which achieves excellent results. Finally, this work is summarized in Section 5.

2. Related Work
2.1. Pooling

Pooling operations are commonly used in convolutional neural networks to make
models more robust to variations in feature positions within input images. The most
common pooling methods are max pooling and average pooling. However, there are
several other pooling methods in convolutional neural networks. GAP [28] helps prevent
overfitting and serves as an alternative to fully connected layers, removing the black-box
nature of features in fully connected layers and providing each channel with a meaningful
category interpretation. Inspired by dropout, which randomly sets some activation func-
tions to zero during model training, mix pooling [29] combines max pooling and average
pooling randomly during training. Unlike max pooling, which always selects the maximum
element, stochastic pooling [30] randomly selects elements from the feature map based
on their probability values, giving it stronger generalization capabilities. Power average
pooling [31] combines average pooling and max pooling by using a learnable parameter to
determine the relative importance of these two methods. Local importance pooling [32]
learns adaptive and discriminative feature maps to aggregate downsampling features while
discarding uninformative features, thereby preserving image details and being particularly
useful for tasks with exceptionally rich detailed information. Soft pooling [33], based on
softmax weighting, aims to minimize information loss during the pooling process while
preserving information features and improving the classification performance of convo-
lutional neural networks. In contrast, the proposed binary pooling is a pooling operation
specifically tailored for attention, with the aim of enhancing the representation capacity of
the fundamental modules throughout the entire network.

2.2. Attention Mechanism

Attention can be regarded as a mechanism that strategically allocates computational
resources to the most salient components in the input image, ensuring an enhanced focus
on the most informative features. SENet [18] introduced a novel squeeze-and-excitation
channel attention module that captures the correlation between convolutional feature chan-
nels. ECANet [19], an improved version of SENet, replaces fully connected layers with
cheaper 1D convolutions. Inspired by SENet, GENet [34] captures remote spatial context
information by providing recalibration function in spatial domain, in which the lightweight
gather-and-excitation module can be inserted into each residual block like SE. SKNet [35]
employs a module composed of Split, Fuse, and Select to adaptively process the output
with different parameter weights and receptive fields for different inputs. CBAM [20] and
Bottleneck attention module (BAM) [36] focus on the dual attention mechanism, consider-
ing both space and channel. Additionally, it should be pointed out that CBAM also uses
GAP and GMP but the distinction from our proposed binary pooling is they concatenate the
pooling outputs along specified dimensions. Style-based recalibration module (SRM) [37]
first extracts style information using style pooling that combines GAP and standard pooling,
then allocates attention weights through fully connected layers. Global attention mecha-
nism (GAM) [38] proposes an attention mechanism that can exploit essential features in all
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three dimensions (channel, spatial width, and spatial height) to enhance cross-dimensional
interactions. In contrast, coordinate attention (CA) [39] captures remote dependencies
along one spatial direction while preserving precise location information along another. It
encodes feature maps as orientation-aware and position-sensitive attention maps, which are
then applied to the input feature maps to enhance the representation of objects of interest.
FcaNet [40] designed a unique pooling based on frequency, which can simultaneously pay
attention to low-frequency and high-frequency information in images.

3. System Design

In this section, the attention mechanism module put forward in the study is delineated,
as depicted in Figure 1. Initially, a binary pooling approach that merges GAP and GMP
is introduced. This innovative method empowers the model to adeptly extract image
features. Following this, a pair of fully connected layers undertakes the processing of the
pooled outcomes. Ultimately, a pointwise convolution is used to amplify the consolidation
of channel-related information. Through the employment of this module, a notable aug-
mentation in the model’s feature extraction prowess is achieved, consequently leading to
heightened accuracy levels.
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Figure 1. An attention block. C represents the number of channels in the image, H represents
the vertical dimension of the image in pixels, W represents the horizontal dimension of the image
in pixels, X represents the input, X̃ represents the output, Fpooling(·) is binary pooling operation,
Fintegration(·, W) is integration operation and Fscale(·, ·) is weighting operation.

3.1. Binary Pooling

The idea of binary pooling originates from the principle of “Zhong Yong” in Confu-
cianism, which emphasizes the pursuit of balance and harmony in all ways. The formula
for binary pooling is as follow:

yk = Fpooling

(
xkpq

)
= 0.5×

 1
|R| ∑

(p,q)∈R
xkpq + max

(p,q)∈R
xkpq

 (1)

where yk represents the binary pooling output of the kth feature map, xkpq represents the
element located at position (p, q) in the regionR of the kth feature map, |R| represents the
total number of elements in the kth feature map.

Firstly, binary pooling allows the model to capture both average and maximum
features within each channel of the feature map. GAP calculates the average, providing
a measure of overall importance for each feature, while GMP captures the maximum
value, representing the most prominent feature in each channel. Secondly, it also helps
in extracting diverse and discriminative features from the input. While GAP emphasizes
global features, reducing the impact of noisy or less important features, GMP focuses on
capturing the most unique and information-rich features. Therefore, binary pooling helps
in capturing both global and local information, resulting in more robust and expressive
representations.
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3.2. Integration

In Contribution 2, we propose a channel attention that enhances the representation
of image features through channel-related integration. The proposed channel attention
mechanism is carried out by the integration operations. To make fully use the information
obtained after pooling, an integration operations is followed with the aim of fully capturing
the channel-related dependencies and appropriately enhancing or attenuating them. This
objective is accomplished through the following formula:

z = Fintegration(W, y) = ϕ(λ(ϕ( f (W, y)))) = ϕ(λ(ϕ(γ(W2(W1y))))) (2)

where ϕ refers to the sigmoid function, λ refers to the pointwise convolution, γ refers
to the ReLU function, W1 ∈ RCr×C and W2 ∈ RC×Cr. To enhance the flexibility of the
attention block, two fully connected layers and a pointwise convolution are adopted.
Firstly, there is an upscaling layer with parameters W1 with expansion rate r, a ReLU
and then a downsizing layer with parameters W2 and activated by a sigmoid. Next, a
pointwise convolution is applied to aggregate the features, followed by a sigmoid. It
is worth mentioning that point convolution can be used to fuse features from different
channels. By performing convolution operations on corresponding elements of different
channels at the same position, information from different channels can interact and combine
with each other, thereby extracting more diverse feature representations.

3.3. Scale

The final output of the attention block is achieved through the following formula:

X̃ = Fscale(z, x) = z · x (3)

where x ∈ RH×W refers to the input feature vector and z refers to the weights. The final
operation is to perform matrix multiplication between the weight matrix and x.

3.4. Example

As a plug-and-play attention mechanism module, it is highly flexible. One example
based on ResNet is shown in Figure 2. The attention module is the non-identity branch
of the residual module, and it operates before the summation with the identity branch.
This approach allows the module to be integrated into other advanced backbone networks,
enhancing the effectiveness of the model.
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Figure 2. The design of the original residual module (left) and the ResNet module with attention
mechanism (right).
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4. Experiments

In this section, the experimental setup is first described and the effectiveness of the
proposed method in image classification tasks is studied. Then, the ablation research of the
model is introduced. Finally, the data of the model are visualized.

4.1. ImageNet Classification

The evaluation of the proposed method is conducted on the ImageNet [41] classifi-
cation dataset which consists of 1000 classes. The models are trained on the 1.28 million
training images, and evaluated on the 50k test images. For the training set, a 224× 224
crop is randomly sampled from an image or its horizontal flip, with the per-pixel mean
subtracted. For the test set, images are resized to 256× 256 and cropped from the center of
the picture to 224× 224.

Setup: To evaluate the performance of the proposed attention block on ImageNet,
two popular CNN architectures are used as backbone networks: ResNet18 and ResNet50.
Regarding the hyperparameters, in ResNet18, the learning rate was initialized as 0.1 and
decayed by 1/10 each 30 epochs. An SGD optimizer with a weight decay of 1× 10−4, a
momentum of 0.9, and a batch size of 256 was used. In ResNet50, the learning rate was
initialized as 0.05 and decayed by 1/10 each 30 epochs. An SGD optimizer with a weight
decay of 1× 10−4, a momentum of 0.9, and a batch size of 128 was used.

The proposed method is also compared with other prominent networks with attention,
including SENet [18], CBAM [20], SRM [37], FcaNet [40], and ECANet [19]. Evaluation
metrics included parameters, floating point operations per second (FLOPs), and top-1/top-5
accuracy. No augmentation techniques such as mixup [42], cutout [43], cutmix [44], etc. or
label regularization such as label smoothing [45] are adopted in the implementation. All
networks have been trained for 100 epochs on NVIDIA 3090 GPU, Intel i5-12400F CPU,
and Pytorch framework.

Comparison of results on ResNet: Figure 3 shows the training curves after inserting
the proposed attention blocks into ResNet18 and ResNet50. At the beginning of the training,
due to the model’s lack of exposure to effective representations in the data, both the training
accuracy and the test accuracy are low, and the training and test losses are high. As training
progresses, the training accuracy and test accuracy gradually improve, while the training
and test losses decrease. This indicates that the model is learning to extract features and
patterns from the data and achieving better fit to the training data. Starting from the
60th epoch, the improvement in both training accuracy and test accuracy tends to approach
a smaller value, and the training and test losses stabilize. This suggests that the model has
learned the general features present in the data and performs well on the test data.

Figure 3. Training process of model on ImageNet. (Left) is the TOP-1 accuracy of the model on
ImageNet; (right) is the CrossEntropy loss of the model on ImageNet.

Table 1 shows the comparison of results on the ResNet18 and ResNet50 backbones.
The following observations can be obtained: (1) On the ResNet18 backbone, the proposed
method achieves a higher top-1 accuracy compared to all other models, resulting in a 2.02%
improvement over the baseline model. (2) However, on the larger ResNet50 backbone, the
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proposed method significantly increases the parameter count due to the dimensionality
expansion operation in the fully connected layer. Despite the limited increase in compu-
tational cost, the proposed method still achieves a higher top-1 accuracy compared to all
other models, resulting in a 0.63% improvement over the baseline model.

Taking a comparison between ResNet-18 and ResNet-18 with the proposed attention
block, for image inputs of 224× 224, ResNet-18 requires approximately 1.82 GFLOPs. Our
attention block employs binary pooling in the pooling stage, two fully connected layers
and a pointwise convolution in the aggregation stage, and finally, an inexpensive scaling
operation. Overall, when setting the expansion ratio r to 8, the new ResNet-18 requires
approximately 1.83 GFLOPs, which represents a relative increase of 0.55% compared to the
original ResNet-18. In exchange for this slight additional computational burden, the new
ResNet-18 achieves higher accuracy than ResNet-18. In addition, when the mini-batch size
is 256, training a batch on ResNet-18 takes 216 ms, while on the new ResNet-18, it takes
240 ms. We believe this represents a reasonable time overhead, which could potentially
be further reduced if pooling and small internal product operations are optimized in
PyTorch. Considering its contribution to the model’s performance, the minor additional
computational cost generated by the attention block is acceptable.

Table 1. Comparison of results on ImageNet test set. All results are the average of five training runs
in the same environment.

Model Backbone Params (M) FLOPs (G) Top-1 Acc (%) Top-5 Acc (%)

ResNet 11.69 1.82 70.25 89.38

SENet 11.78 1.82 70.98 90.03

CBAM 11.78 1.82 71.01 89.85

SRM ResNet-18 11.70 1.82 71.23 90.16

ECANet 11.69 1.82 70.60 89.68

FcaNet 11.78 1.82 71.11 90.10

Our 23.53 1.83 72.27 90.62

ResNet 25.56 4.11 75.91 92.86

SENet 28.07 4.12 76.31 93.33

CBAM 28.07 4.12 76.46 93.49

SRM ResNet-50 25.62 4.11 76.54 93.47

ECANet 25.56 4.12 76.34 93.44

FcaNet 28.07 4.12 76.68 93.54

Our 367.60 4.46 76.94 93.52

4.2. CIFAR-10 and CIFAR-100

Experiments are also conducted on two classic small datasets, CIFAR-10 and CIFAR-
100 [46], which consist of sets of 50,000 training and 10,000 test RGB images of size
32 × 32 pixels. These datasets are labeled with 10 and 100 classes, respectively. The
attention blocks were integrated into ResNet-18 and ResNet-50 architectures. During train-
ing, the images were randomly flipped horizontally and zero-padded with four pixels
on each side before undergoing random 32× 32 cropping. Mean and standard deviation
normalization was also applied. The training hyperparameters, such as batch size, initial
learning rate, and weight decay, were set following the recommendations in the original
paper. The performance on CIFAR-10 and CIFAR-100 is shown in Tables 2 and 3. It can be
seen that in each table, the new ResNet outperformed the baseline architectures, indicating
that the benefits of the proposed attention block are not limited to the ImageNet dataset.
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Table 2. Classification acc (%) on CIFAR-10. All results are the average of five training runs in the
same environment.

Original Our

ResNet-18 90.25 92.54

ResNet-50 92.96 94.63

Table 3. Classification acc (%) on CIFAR-100. All results are the average of five training runs in the
same environment.

Original Our

ResNet-18 60.74 63.41

ResNet-50 74.15 76.53

4.3. Ablation Studies
4.3.1. Expansion Rate

The expansion rate r in the fully connected layer is an important hyperparameter that
affects the capacity and computational cost of the attention block. To study its impact,
experiments with various values of r are performed on ResNet-18. The comparison table
in Table 4 suggests that the performance does not monotonically improve with increas-
ing capacity. This is likely due to the channel interdependencies in the attention block
that can lead to overfitting on the data set. Specifically, it is found that setting r = 8
achieved a good balance between accuracy and complexity. Therefore, this value was used
in all experiments.

Table 4. Top-1/top-5 acc (%) on ImageNet test set and params(M) for attention block on ResNet-18 at
different expansion ratios r. All results are the average of five training runs in the same environment.

Ratio r Top-1 Acc (%) Top-5 Acc (%) Params (M)

2 72.05 90.68 15.17

4 72.09 90.65 17.96

8 72.27 90.62 23.53

16 72.17 90.62 34.67

4.3.2. Activation Function

The activation function is a nonlinear function in neural networks that introduces
nonlinear transformations to increase the expressive power and fitting capacity of the
network. The activation function processes the input of a neuron and generates an output
signal, which serves as the input for the next layer of neurons. Commonly used activation
functions include Sigmoid, ReLU, and Tanh. Different activation functions have different
effects on attention block, as shown in the Table 5. Compared to using Sigmoid, using Tanh
leads to a slight decrease in accuracy, while using ReLU results in a significant decrease.
Therefore, the final selection is to use the Sigmoid activation function.

Table 5. Effect of using different activation function for the attention block in ResNet-18 on ImageNet.
All results are the average of five training runs in the same environment.

Function Top-1 Acc (%) Top-5 Acc (%)

Sigmoid 72.27 90.62

ReLU 71.08 90.06

Tanh 71.55 90.27
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4.4. Data Visualization

It is worth mentioning that our work employs a novel binary pooling operation, as
well as fully connected and point convolution layers, to obtain attention weights, which
guarantees comprehensive feature vector extraction from images. In order to show this
powerful attention mechanism more intuitively, it is necessary to focus on the learned
attention weight. By using Grad-CAM++ [47], the attention weight of pre-trained model on
ImageNet training set can be seen in Figure 4. It should be noted that the redder the color
is, the greater the attention weight is. It can also be concluded that the red is covered on the
target, which means that attention mechanism used in this work is really on the target.

Goldfish Blenheim spaniel Sea lion Grey whale

TincatincaGreat white shark VultureTriceratops

Figure 4. Attention weight distribution map. The redder the color, the higher the attention weight.
These pictures well prove that using proposed attention block can bring good accuracy to the model.

5. Conclusions

This paper proposes a novel attention block for image classification. Compared to
previous research on attention, our work utilizes more advanced pooling operations. Addi-
tionally, to enhance the extraction capability of feature vectors, fully connected and point
convolution layers are adopted to aggregate feature maps maximally. Experiments on the
ImageNet demonstrate the effectiveness and superior performance of the proposed model.
The performance of the model is not limited to ImageNet alone. It is believed to exhibit
promising outcomes in medical applications such as disease diagnosis, organ segmentation,
and skin anomaly detection. Due to limitations in acquiring datasets, the efficacy of this
model in medical imaging will be our focus in future research. However, there is still room
for further research. For example, to avoid information loss and noise amplification, the
dimensionality of operation is roughly chosen, which significantly increased the number
of parameters in the attention block, although the increased computational complexity is
acceptable. There are considerable optimization techniques in the fully connected layers.
Furthermore, our proposed attention block is channel-based, but incorporating spatial
attention may yield even better results. Exploring spatial attention mechanisms is thus an
area for future research.
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