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Abstract: X-ray diffraction (XRD) is a proven, powerful technique for determining the phase composi-
tion, structure, and microstructural features of crystalline materials. The use of machine learning (ML)
techniques applied to crystalline materials research has increased significantly over the last decade.
This review presents a survey of the scientific literature on applications of ML to XRD data analysis.
Publications suitable for inclusion in this review were identified using the “machine learning X-ray
diffraction” search term, keeping only English-language publications in which ML was employed
to analyze XRD data specifically. The selected publications covered a wide range of applications,
including XRD classification and phase identification, lattice and quantitative phase analyses, and
detection of defects and substituents, as well as microstructural material characterization. Current
trends in the field suggest that future efforts pertaining to the application of ML techniques to XRD
data analysis will address shortcomings of ML approaches related to data quality and availability,
interpretability of the results and model generalizability and robustness. Additionally, future research
will likely incorporate more domain knowledge and physical constraints, integrate with quantum
physical methods, and apply techniques like real-time data analysis and high-throughput screening
to accelerate the discovery of tailored novel materials.

Keywords: X-ray diffraction; phase identification; phase transitions; crystal structure; machine
learning; cluster analysis; deep learning; neural networks

1. Introduction

Machine learning (ML) has recently found numerous applications, and it is being
leveraged as a powerful tool in various fields: computer science, engineering, telecom-
munications, chemistry, physics, mathematics, imaging science, materials science, and
environmental sciences. The importance of ML is also confirmed by an increasing trend
in the volume of work published over the last decade, according to Web of Science data
(Figure 1).

In computer science, ML is used for various tasks, such as natural language process-
ing [1–5], image recognition [6–8], or computer vision [9–14]. In engineering, ML is applied
in the optimization and control of complex systems [15–18], the prediction of equipment
failures [19–21], or the enhancement of manufacturing processes [22–25]. ML is also exten-
sively used in materials science for materials discovery [26–30], property prediction [31–34],
and accelerated materials design [35–37].
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Figure 1. Number of publications about machine learning, according to Web of Science: (a) yearly
publication counts; (b) classification by research area.

Understanding materials’ structure, composition, and properties is essential in exper-
imental materials science. Thus, spectroscopy and microscopy are used to characterize
the behavior of materials at various scales. The integration of machine learning meth-
ods has brought transformative advancements to the analysis of complex data. Several
models have been employed to automate the interpretation of intricate spectroscopic data,
facilitating the enhancement of signals, feature extraction, compound classification, and
property prediction. Similarly, these methods have enabled automated particle detection,
crystallographic analysis, and defect recognition in electron microscopy images, surpassing
conventional image processing approaches [38–40].

One example is [41], which showed that deep learning has great potential in per-
forming all the steps and emphasized the importance of addressing the estimation of the
prediction quality of deep learning models on small datasets with complex covariance
structures. Another example is the case of scanning transmission electron microscopy–
electron energy loss spectroscopy studies, for which [42] used a principal components



Appl. Sci. 2023, 13, 9992 3 of 22

analysis (PCA) algorithm to analyze the momentum-resolved spectra for SiGe quantum
dots and Si-SiGe interfaces. In their case, the low acquisition parameters for mapping
datasets required the PCA method to improve the signal quality. The authors state that by
using this method instead of traditional Fourier filtering or smoothening techniques, the
important features are maintained, and their quality is improved.

The focus of this paper was to assess the implications of ML in the field of data
analysis of X-ray diffraction (XRD), compare the accuracy of the reported models with that
of traditional XRD data analysis procedures, and present future development opportunities.

1.1. Overview of X-ray Diffraction (XRD) Technique

More than 100 years after its discovery, X-ray diffraction is still one of the most
powerful and versatile techniques widely employed for understanding crystalline materials’
phase composition, structure, and microstructural features. The technique was developed
in the early twentieth century when Max von Laue discovered that crystals diffract X-rays,
and the obtained pattern reveals the crystal’s structure [43]. The findings suggested both
the wave-particle duality of the X-ray and the validity of the space lattice hypothesis [44].
When monochromatic X-rays interact with a crystalline material, they undergo constructive
and destructive interference caused by the periodic arrangement of atoms within the crystal
lattice. The interference generates a diffraction pattern, which is recorded on a detector and,
subsequently, used to deduce structural information about the sample. Since its discovery,
XRD has been used by engineers, particularly in materials science, chemists, physicists,
and biologists, aiding them in the discovery, development, and optimization of novel
compounds with tailored properties for numerous practical and research applications [45].

The foundation of XRD lies in Bragg’s law, formulated by Sir William Lawrence Bragg
and his father Sir William Henry Bragg [46]. Bragg’s law states that the conditions for the
constructive interference of X-rays in a crystal lattice are determined using the equation:

n·λ = 2 · d · sinθ (1)

where:

• n is the order of the diffraction peak (usually 1 for primary peaks);
• λ is the wavelength of the incident X-rays;
• d is the lattice spacing of the crystal planes;
• θ is the angle between the incident X-rays and the crystal plane.

From an experimental setup perspective, XRD typically involves an X-ray source,
such as a sealed tube or a synchrotron radiation source, which emits X-rays of a specific
wavelength [47]. Next, the X-rays pass either through a system of slits to produce a
divergent beam or through a collimator to produce a parallel beam that interacts with the
crystalline sample [48,49]. The diffracted X-rays are then collected with a detector, such as
a scintillation counter or a semiconductor detector, which records the intensity of diffracted
X-rays as a function of the diffraction angle (2θ) [50].

The analysis of an obtained XRD pattern allows researchers to identify the phases in
the studied material, determine their relative abundances, and estimate the crystallite size
and microstrain of the sample [51–54]. Additionally, the crystallographic orientation can be
deduced by analyzing the preferred orientation of the crystallites [55].

X-ray diffraction finds extensive applications in multiple scientific fields. Professionals
in chemistry, physics, geology, and materials science use this technique for both qualitative
and quantitative analysis [56]. The first application of XRD was in the field of geology
for the identification of minerals and rocks, and the technique has decisive contribution
in crystal system determination [57]. In the microelectronics industry, qualitative phase
analyses, stress measurements, and microstructural features determinations are routinely
performed using XRD [58]. In the pharmaceutical industry, XRD is applied to examine
formulations by providing polymorph identification, relative abundance, and degree of
crystallinity. Moreover, nonambient XRD analysis is useful for the study of moisture
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influence on drug properties [59]. Although not as popular, XRD is also used in the
forensic sciences for the analysis of soils, explosives, pigments and paints, alloys, metals, or
drugs. Compared with other techniques, XRD has several advantages such as the ability
to work with small-volume samples; it is a nondestructive method, and it allows for the
identification of phases in mixtures [60]. The Fourier analysis of XRD patterns is a clever
technique used for the determination of the local arrangement of atoms, which proved the
noncrystalline nature of soda–silica glass [61].

Over the years, XRD instrumentation has undergone significant advancements. Tra-
ditional parafocusing instruments were developed during the 1950s and are mostly used
in Bragg–Brentano geometry. However, this configuration can introduce significant sys-
tematic errors such as specimen displacement. Parallel-beam diffractometers minimize
errors arising from sample displacement and transparency but have the disadvantage of
poor particle statistics. Modern XRD systems offer high-resolution detectors, faster data
acquisition rates, improved sample handling mechanisms, and portability for in situ and
operando studies [62].

1.2. Applications of XRD Data Analysis

XRD data analysis is of paramount importance for many scientific and industrial
applications. This section highlights the significance of XRD data analysis and its role in
advancing materials science, research, and technology.

One of the primary objectives of XRD data analysis, whether acquired on single crystals
or polycrystalline samples, is the determination of crystal structure. Thus, the technique
is used for the identification of the arrangements of atoms within crystalline materials in
terms of lattice parameters, unit-cell dimensions, crystal symmetry and subsequent space
group. As emphasized in a paper by Zok [63], the mechanical behavior of solid materials
is strongly connected to the crystal structure; consequently, by controlling the processing
parameters for obtaining a desired structure, the compressive strength of a material might
be controlled.

XRD data analysis enables the identification of different phases in a sample. The set of
d lattice spacings and corresponding I (intensity) values are characteristic for a material
like a fingerprint is for a human [62]. Moreover, many materials can exist in various
crystallization systems (polymorphic forms) and can undergo phase transformations under
different temperature or pressure conditions. Identifying the phases accurately is crucial for
ensuring material purity, assessing the success of synthesis processes, and characterizing
complex multiphase materials.

Quantitative phase analysis allows researchers to determine the relative abundance
of different phases in a sample. This determination is useful for various materials, such
as cement, ceramics, steel, alloys, electronic materials, and composite materials. In the
cement industry, the quantitative phase analysis of clinker provides information for the
control of kiln parameters, whereas the analysis of Portland cement provides the quality
assessment of the finished product [64]. In the case of traditional ceramics, the abundance of
phases and the evaluation of the crystallinity degree is decisive for establishing the thermal
processing parameters [65]. Assessing the phase fraction of zirconia polymorphic phases is
of great importance in dental ceramics applications for predicting the mechanical behavior
of the material [65]. The mechanical behavior of stainless steel is primarily governed by
its martensite and austenite content. Even if the material is textured, like in the case of
orthodontic wires, assessments can still be made based on X-ray diffraction patterns [66].
In the case of electronic materials, Angus et al. established the crystallization kinetics of
PbZr1-xTixO3 using an in situ X-ray diffraction study [67].

XRD data analysis plays a vital role in texture and microstructure characterization.
Texture refers to the preferred orientation of crystalline planes in a material, influencing its
anisotropic properties. Understanding texture is crucial in fields like metallurgy, where it
impacts mechanical properties such as strength and ductility [68]. Additionally, XRD anal-
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ysis provides information on crystallite size, microstrain, and defects, which are essential
in assessing material stability and mechanical behavior [69].

1.3. Motivation for Machine Learning in XRD Data Analysis

The motivation for incorporating machine learning (ML) techniques into the analysis
of XRD patterns stems from the increase in volume of available data and the need for
accurate phase identification, as well as the quantification of multiphase mixtures with
varying raw data quality. The following points highlight the advantages of ML over
traditional methods of XRD data analysis:

• Handling big data: The development of synchrotrons has enabled the fast acquisition
of XRD patterns, which results in a significant increase in the amount of data collected
during experiments. The fine-tuning of beam-time experiments depends on the analy-
sis of patterns, and, thus, an automatic processing flow would be required to further
increase its autonomy. In this regard, machine learning routines using clustering
represent a potential solution to the challenges faced by the scientific community [70];

• Automated phase identification: In traditional XRD data analysis, the manual identifi-
cation of phases in complex samples can be time consuming and error prone, especially
when dealing with overlapping peaks or noisy data recorded in cases in which short
measurement times are a must. ML algorithms can accurately identify and quantify
phases and even predict material features from XRD patterns. Moreover, the successful
implementation of the algorithms would save time while also benefitting XRD users
who are not experts [71–73];

• Quantitative phase analysis (QPA): Several traditional methods with different com-
plexity and sample preparation requirements are available for the evaluation of phase
fractions, including the reference intensity ratio (RIR) method, which requires the
introduction of an internal standard calibration [74]; the whole pattern fitting pro-
cedure [51–54]; or Rietveld refinement [54]. Each of the traditional methods is time
consuming and requires trained personnel to deliver accurate results. ML algorithms,
such as regression models and support vector machines, can efficiently estimate phase
proportions based on trained patterns, greatly improving the accuracy and speed of
QPA [75,76].

The main goal of this study was to assess currently available ML methods for XRD
data analysis, their applications, challenges, and limitations, as well as future directions
and emerging trends. For this purpose, all results obtained after a search procedure in
the Web of Science and Scopus databases using the search term “machine learning X-ray
diffraction” were assessed by two reviewers using a blind method. From the total number
of 754 entries, 513 were identified as unique, and 11% of these were included in the current
review based on several selection criteria:

• The bibliographic source must refer to the use of machine learning methods for the
analysis of XRD patterns;

• The bibliographic source must be written in English;
• The bibliographic source represents a peer-reviewed article, conference proceeding, or

an edited book.

The findings are presented and compared to traditional XRD data analysis methods.

2. Challenges in Traditional XRD Data Analysis

XRD data processing allows for various applications based on the determined struc-
ture parameters and phase composition. However, traditional XRD data analysis meth-
ods face several challenges that can hinder the accurate and efficient interpretation of
experimental measurements.
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2.1. Data Preprocessing and Reduction

Raw XRD data often contain noise, background signals, and artefacts that can obscure
diffraction peaks and affect the accuracy of subsequent analysis. Additionally, the sheer
volume of data generated by modern XRD instruments can be overwhelming, making data
reduction and handling a significant challenge.

Traditional XRD data preprocessing is performed most often by Sonneveld and Visser
technique [77], which consists of background and noise level determination followed
by the refining of peak positions and intensities. The approximation of the background
can be performed by taking into consideration 5% of the data points, each point being
expressed as the arithmetic mean of its neighbors. Then, the noise is separated from
the peak contribution by assessing the standard deviation and the mean value of noise
contribution. After the determinations of background level and noise, peak discovery is
performed by searching for negative regions in the second derivative of the scan, which
is calculated using a sliding polynomial filter according to Savitsky and Golay [78]. The
result of the preprocessing will be a list of peak positions (angles or converted d-spacings)
and their corresponding intensities.

2.2. Phase Identification and Crystallographic Analysis

Identifying and distinguishing between multiple phases present in a complex sample
can be challenging, especially when diffraction peaks overlap or exhibit broadening due
to microstructural effects. Additionally, crystallographic analysis to determine lattice
parameters and symmetry requires meticulous peak indexing and fitting.

The successful accomplishment of this task often requires experienced personnel. In
terms of procedures, several strategies were reported. Manual search was first implemented
by Hanawalt [79] and consisted of comparisons among the three most intense characteristic
d-spacings determined from the patterns. Crystallographic analysis of new materials can
be performed using a full-pattern fitting algorithm like Rietveld refinement [79], which
compares a measured profile with a calculated one from crystal structure data. This method
accounts for several contributions to the XRD pattern: scale factor, multiplicity, Lorentz
polarization factor, structure factor, absorption, and extinction. Thus, simultaneous phase
identification and crystallographic analysis are enabled.

2.3. Quantitative Phase Analysis

Quantitative phase analysis involves determining the relative proportions of different
phases in a sample. Traditional methods like those described in Section 1 (RIR, whole pat-
tern fitting procedure, or Rietveld refinement) can be computationally intensive, especially
for samples with many phases, leading to long processing times.

2.4. Microstructural Characterization

Extracting microstructural information, such as crystallite size, microstrain, and tex-
ture, from XRD data requires specialized techniques and complex mathematical models.
Additionally, microstructural effects can lead to peak broadening and distortions, compli-
cating the interpretation of diffraction patterns.

Microstructural characterization can be accomplished through a Scherrer analysis [80],
Williamson–Hall plot [81], and Warren–Averbach analysis [82], which relate peak broaden-
ing to crystallite size and microstrain. Texture analysis requires specialized mathematical
models to deduce preferred crystallographic orientations in polycrystalline materials like
March–Dollase model [83].

3. Introduction to Machine Learning

Machine learning (ML) is a type of artificial intelligence where computer algorithms
“learn” from example data and can make predictions without being explicitly told what
to do or how to achieve their targets. ML is a powerful data analysis tool, used in diverse
applications, such as data processing, pattern recognition, and automated decision making.
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To build a machine learning model capable of making predictions, training data are first
collected and processed, then a (machine learning) model is chosen, which is then trained
and evaluated for the intended task [84].

Machine learning encompasses several paradigms, each offering unique approaches
to tackle different data analysis challenges. By leveraging these ML techniques, researchers
can automate efficient and accurate data interpretation, leading to significant advancements
in materials science, chemistry, and other fields. We briefly present five fundamental
paradigms of machine learning below.

Supervised learning is a type of ML in which an algorithm learns from sets of labeled
data where both the input data and corresponding desired output are provided during
training. The goal of supervised learning is to learn (or optimize) the parameters of a
mapping function and use it to accurately predict the output for new inputs that are
not available to the algorithm during the training phase [84]. Common algorithms and
structures used in supervised learning include linear regression (when the output is a
continuous variable), support vector machines (SVMs), decision trees (DTs), random forests
(RFs), k-nearest neighbors (KNN)s, naïve Bayes (NB), and neural networks (NNs) [85].

• SVMs, which are very suitable for binary classification and linearly separable data,
work by transforming (mapping) the input data to a high-dimensional feature space
such that different categories become linearly separable [86];

• Decision trees work (as their name implies) by inferring simple if–then–else decision
rules from the data features and can be visualized as a piecewise constant approxima-
tion of the data [86];

• Random forests (RFs) are ensemble methods that make predictions by aggregating
the output of multiple decision trees. Randomness is built into the algorithm to
decrease the variance in the predictions of the generated forest. RFs are robust in
overfitting and useful for both regression and classification applications. A different
ensemble method, called “extremely randomized trees” may be employed to increase
the prediction power by reducing the variance [86];

• Nearest neighbor methods predict labels from a predefined number of training samples
that are closest to the given input point; in KNNs, this number is a user-defined
constant [86];

• Naïve Bayes methods are an application of Bayes’ theorem under the “naïve” as-
sumption that input features are independent from each other [86]. For example, this
assumption would be violated when using length, width, and area as input features in
the same data analysis workflow;

• Neural networks can identify and encode nonlinear relationships in high-dimensional
data; sometimes NNs used in machine learning are referred to as ANNs, where the
letter A stands for “artificial”. NNs are composed of layers of “neurons” that mimic
their biological counterparts: they have multiple input streams (which work like
dendrites) and a single output activation signal (similar in function to an axon). Each
layer of neurons has adjustable parameters that are used to compute the output signal.
Based on the connectivity between layers, NNs can be categorized as dense (whereby
each neuron in a layer is connected to every neuron in the previous layer) or sparse.
The term multilayer perceptron (MLP) is sometimes used to refer to modern ANNs;
MLPs consist of (at least three) dense layers: input, output, and at least one hidden
(other) layer [86].

Unsupervised learning involves finding structure and relationships in data without
using explicit (output) data labels. The ML algorithm tries to identify patterns or clusters in
the data that are not known a priori, making unsupervised learning useful for tasks such as
data exploration, dimensionality reduction, or anomaly detection [84]. Common unsuper-
vised learning algorithms include K-means clustering, Gaussian mixture, fuzzy c-means
(FCM), hierarchical clustering, principal component analysis (PCA), and autoencoders [87].
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• The K-means method is used for partitioning the data into a predetermined number
of K disjoint clusters, which are chosen with the aim to evenly distribute the variance
between different clusters [86];

• Gaussian mixture models are probabilistic in nature and try to represent the input data
as a mixture of a finite number of Gaussian distributions with unknown parameters to
be learned during training [86];

• In fuzzy clustering, points are not assigned (only) to specific clusters; instead, each
point has an association (weight) with each cluster. Since each point can belong to
more than one cluster, fuzzy c-means is sometimes referred to as soft K-means [86,88];

• Hierarchical clustering works by successively merging or splitting clusters to create a
tree-like (nested) representation of the data. In agglomerative clustering, a hierarchy is
built using a bottom-up approach (each observation starts as a single-item cluster, and
clusters are successively merged until a single, all-encompassing cluster is formed) [86];

• PCA is a linear decomposition technique used for reducing the dimensionality of
the data by projecting it onto a lower dimensional space while preserving the most
amount of variance; in kernel PCA, the algorithm is applied to a transformed version
of the data [86,88];

• Autoencoders use ANNs to learn an encoder–decoder pair that can efficiently represent
unlabeled data: the encoder compresses the input data, while the decoder reconstructs
an output from the compressed version of the input. Autoencoders are suitable for
unsupervised feature learning and data compression [86].

Deep learning utilizes artificial neural networks with multiple layers (deep architec-
tures) to learn hierarchical representations from data [84]. Common algorithms include
convolutional neural networks (CNN), and recurrent neural networks (RNNs, which are
more suitable for sequential data such as speech in natural language processing applica-
tions) [87].

• CNNs, belonging to the artificial neural network group, are commonly used in image
data analysis. Their name stems from the mathematical operation convolution, which
is used in at least one of the neuron layers, instead of the simpler matrix multiplication
used by regular ANNs [86];

• The architecture of RNNs makes them suitable for identifying patterns in sequences of
data and are used for applications such as speech and natural language processing. In
contrast to regular ANNs, in which calculations are performed layer-by-layer from
input to output, in recursive NNs information can also flow backward, allowing the
output from some nodes to affect their inputs in the future (in subsequent evaluations
of the neural network), thus introducing an internal state useful for inferring meaning
in text processing based on words previously read by the algorithm [86,89];

• Long short-term memory (LSTM) units were introduced within the RNN framework
to enable RNNs to learn over thousands of steps, which would have not been possible
otherwise because of the problem of vanishing or exploding gradients (that accumulate
and compound over multiple iterations of the NN) [86,89].

In reinforcement learning (RL) an agent learns to make decisions by repeatedly inter-
acting with an environment. The agent receives feedback (rewards or penalties) based on its
actions and uses this information to tune its parameters and improve its decision-making
process over multiple iterations. It is commonly used in robotics, computer games, and
control systems [84].

Transfer learning can be used when the required knowledge for one task or domain
can be leveraged by using insight gained in a different but related task or domain. Instead
of training a model from scratch for a specific task, transfer learning allows pretrained
models to be reused and fine-tuned, often with limited labeled data [90].
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4. Applications of Machine Learning in XRD Data Analysis

Over the last decade, ML has found various applications in XRD data analysis, revolu-
tionizing the way researchers extract information from XRD patterns. In this section, we
explore how ML techniques have been applied to different aspects of XRD data analysis.
An overview of machine learning algorithms and their use cases in X-ray diffraction data
analysis is presented in Figure 2.
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The remainder of this section presents the main results from publications that have
used ML as part of their XRD data analysis, as well as some challenges that are inherent to
ML. Many of the works cited herein have expressed the performance of their classification
algorithms in terms of accuracy, which is a measure of how often ML models correctly
predict the desired outcome. Accuracy is calculated by dividing the number of correct
predictions by the total number of predictions made by the model [88]. Precision is another
measure that is often used in binary classification tasks in which the algorithm predicts
whether an item belongs (or not) to a target category. Precision is calculated as the propor-
tion of correctly classified items out of all items that were predicted to be part of the target
category [88]. Both accuracy and precision must have values between 0 and 1, and they
were reported for predictions made on the test set, unless explicitly stated otherwise.

4.1. Pattern Matching and Classification Algorithms

Wang et al. [91] applied support vector machine and deep learning methods (con-
volutional neural network) to extract image features from synchrotron data streams and
compared the accuracy of their algorithm against synthetic and real datasets. Image features
to be identified and classified belong to several groups (experiments, instrumentation, imag-
ing, scattering features, samples, materials, and specific substances), as depicted in Table 1.
The experimental dataset consisted of 2832 grayscale X-ray images and the dataset used
to train the CNN consisted of 100,000 synthetic (simulated) images. In what concerns the
deep learning algorithm, the basic units were a convolutional layer, a subsampling/pooling
layer, and an activation layer based on ReLU (rectified linear unit) activation function. The
mean average precision determined for the SVM algorithm on the synthetic dataset was
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0.6705, compared with 0.771 for the CNN algorithm, which showed superior performance
in this instance.

Table 1. Attributes groups to be identified from synchrotron data streams images. Data from
reference [91].

Group Number Group Attributes Labels

G1 Experiments GIWAXS, GISAXS, TSAXS, TWAXS, GTSAXS, Theta sweep, and phi sweep.
G2 Instrumentation Beam off image, photonics CCD, MarCCD, Linear beamstop, saturation,

asymmetric (left/right), and circular beamstop.
G3 Imaging Specular rod, weak scattering, 2D detector obstruction, strong scattering,

saturation artifacts, misaligned, beam streaking, blocked, bad beam shape,
direct, object obstruction, empty cell, parasitic slit scattering, and point
detector obstruction.

G4 Scattering Features Horizon, peaks: isolated, ring: oriented z, halo: isotropic, ring: isotropic, ring:
textured, higher orders: 2 to 3, ring: oriented xy, vertical streaks, peaks:
many/field, diffuse high-q: isotropic, higher orders: 4 to 6, higher orders: 7 to
10, Bragg rods, ring: anisotropic, peaks: along ring, diffuse low-q: isotropic,
Yoneda, halo: oriented z, high background, ring: spotted, peak: line Z, peaks:
line xy, diffuse low-q: anisotropic, many rings, diffuse low-q: oriented z,
diffuse low-q: oriented xy, diffuse specular rod, smeared horizon, symmetry
ring: 4-fold, higher orders: 10 to 20, ring doubling, halo: anisotropic, specular
rod peaks, ring: oriented other, peaks: line, diffuse high-q: oriented z, peak
doubling, halo: oriented xy, diffuse high-q: oriented xy, peaks: line other,
waveguide streaks, higher orders: 20 or more, substrate streaks/Kikuchi,
diffuse low-q: oriented other, halo: spotted, diffuse low-q: spotted, and diffuse
high-q: spotted.

G5 Samples Thin film, ordered, single crystal, grating, amorphous, composite, nanoporous,
powder, and polycrystalline.

G6 Materials Polymer, block–copolymer, and superlattice.
G7 Specific Substances P3HT, SiO2, PCBM, rubrene, PS-PMMA, silicon, MWCNT, PDMS, AgBH, and

LaB6.

The detection of synchrotron image features was also studied by Czyzewski et al. [92],
which aimed to identify seven types of flaws: ice rings, diffuse scattering, background rings,
nonuniform detector responses, loop scattering, strong background, and digital artefacts.
The group compared several algorithms (SVM; naïve Bayes—NB; k-nearest neighbors—
KNNs; random forest—RF) with CNN, in which they used different inputs (cartesian
coordinates and polar coordinates with different interpolation methods: min and max). The
dataset used in the study comprised 6311 diffraction images from the Integrated Resource
for Reproducibility in Macromolecular Crystallography, from which 5048 were used as
a training set, 631 were used as a validation set, and, subsequently, 632 were used in the
testing set. The accuracy of class-specific predictive performance for the different classifier
algorithms is shown in Table 2. Their results clearly show that CNN performance was
consistently better than any other of the tested classifiers. Moreover, it is worth mentioning
that the differences among the CNNs were generally approximately 0.01–0.02.
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Table 2. Accuracy of the class-specific predictive performance for the different classifier algorithms.
Data from reference [92].

Class
Classifier

SVM NB KNN RF CNN:
Cartesian

CNN:
Polar-Min

CNN:
Polar-Max

Artifact 0.85 0.78 0.87 0.91 0.94 0.93 0.92
Background Ring 0.72 0.61 0.72 0.86 0.92 0.91 0.90
Diffuse Scattering 0.93 0.45 0.93 0.93 0.96 0.95 0.97

Ice Ring 0.14 0.80 0.93 0.95 0.99 0.99 0.98
Loop Scattering 0.70 0.62 0.71 0.83 0.94 0.95 0.96

Nonuniform Detector Response 0.45 0.68 0.75 0.81 0.87 0.89 0.89
Strong Background 0.90 0.87 0.89 0.93 0.94 0.91 0.93

Chakraborty and Sharma [93,94] compared several algorithms (RF, KNN, decision tree,
SVM, and gradient boosting) with the CNN for the purpose of the classification of crystal
systems into seven categories: triclinic, monoclinic, orthorhombic, tetragonal, hexagonal,
rhombohedral, and cubic. The training dataset consisted of 164 compounds extracted from
the Inorganic Crystal Structure Database with a similar composition, expected crystal sym-
metry, and space group. Their work showed that the CNN performed better than the other
studied algorithm achieving a cross-validation accuracy for crystal system classification of
95.6% as compared to 55% for naïve Bayes, 64.3% for KNN, 68.5% for logistic regression,
56.5% for RF, 45.6% for decision trees, 67.1% for SVM, 62.3% for decision trees and 65.4%
for deep neural network.

Massuyeay et al. [95] explored RF and CNN to distinguish between perovskite and
non-perovskite-type materials in a series of hybrid lead halides. The synthetic (simu-
lated) dataset was based on 998 crystal structures from the Cambridge Structural Database:
375 perovskite-type compounds (50 chlorides, 105 bromides, and 220 iodides) and
623 non-perovskite-type compounds (50 chlorides, 139 bromides, and 426 iodides). The
study also used experimentally measured X-ray powder diffraction data on 23 freshly
prepared lead halides: 9 previously published (and reported in Cambridge Structural
Database) and 14 new compounds. The categories used for the classification were per-
ovskite and nonperovskite. On the one hand, in the RF algorithm, the number of trees was
set to 100, with a maximum of 10 levels in tree, a minimum number of 2 samples on a leaf,
a minimum number of samples to split a node of 10, and a step size for the XRD patterns of
2.18◦. On the other hand, the CNN was designed with 23 layers and simulated patterns
acted as 1D input. The mean values of the accuracy obtained after the classification were
0.92 in the case of CNN and 0.89 in the case of RF. In what concerns the 23 experimentally
synthesized samples, the mean values of accuracy were 0.73 for CNN and 0.78 for RF.
The lower accuracy obtained for the experimentally raw patterns was explained by the
authors in terms of the different effects, such as the preferential orientation and different
signal/noise ratio [92–95].

In geothermal fields, the classification of rock cuttings is important for understanding
the geothermal system and for selecting a promising site [96]. Rock cuttings containing
24 minerals (Table 3) were obtained from two wells in the Hachimantai geothermal field,
which may have formed during hydrothermal alteration according to Ishitsuka et al. For
the assessment of three ML algorithms, namely, K-mean clustering, Gaussian mixture
model, and agglomerative clustering [96], the authors prepared a dataset of 88 simulated
samples with four mineral distributions along a well down to 1000 m with a depth spacing
of 10 m. The classification of the samples was performed using three labels: quartz index,
temperature, and depth.
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Table 3. List of minerals identified from XRD data for the rock cuttings. Data from reference [96].

Mineral Group Mineral

Clay Minerals Smectite, chlorite, sericite, and kaolinite
Zeolite Minerals Laumontite and wairakite
Silica Minerals Tridymite and cristobalite

Silicate Minerals Clinopyroxene, epidote, prehnite, antrophyllite, and biotite,
cordierite, and talc

Oxide Minerals Magnetite, ilmenite, hematite, anatase, and rutile
Sulfide Minerals Marcasite
Sulfate Minerals Anhydrite and alunite

Carbonate Minerals Calcite

The K-means clustering and Gaussian mixture algorithms provided similar results,
whereas the agglomerative clustering showed unique classification outcomes. The method-
ology proposed by the authors is applicable to other boreholes in geothermal fields.

In materials science, the composition–structure–properties (CSP) paradigm is often
used for predicting materials behavior under certain conditions. Yuan et al. [97] developed
a supervised machine-learning algorithm to classify materials encountered in aviation se-
curity determinations based on CSP and XRD patterns without material identification. For
this purpose, a dataset of 206 relevant materials in stream of commerce baggage (explosives,
prohibited flammables, acids, plastic, metals, food, etc.) was prepared. It is worth men-
tioning that the dataset included both crystalline and amorphous compounds, which can
easily be discerned from XRD data. The dataset was classified by crystalline/noncrystalline,
solid/liquid, explosive/nonexplosive, prohibited/allowed classes with satisfactory results,
as the authors state.

In what concerns pattern matching and classification, ML methods offer rapid au-
tomation and complex pattern recognition in XRD data analysis, improving accuracy and
adaptability. However, their effectiveness relies on the availability of labeled data, and com-
plex models might overfit noise. Further improvement of the models might arise from using
larger databases compared to those reported by the authors in our review, such as Crys-
tallography Open Database (505,398 entries) or Powder Diffraction File (1,186,076 entries).
Conventional methods lack automation and struggle with intricate patterns, but they are
more interpretable and require less data.

4.2. Quantitative Phase Analysis

Phase identification and phase-fraction determination of multiphase inorganic com-
pounds were performed by Lee et al. [98] for the Li-La-Zr-O compositional system using
a data-driven approach. The authors prepared a training dataset starting from a total of
218 known inorganic compounds from the Li-La-Zr-O quaternary compositional system,
which comprised 21 independent structures. In the simulation process, lattice parameters
variation and randomly chosen peak profile parameters, as well as mixing parameters,
were considered. Two training datasets containing 89,943 (D1) and 180,056 (D2) synthetic
patterns were generated for the phase identification algorithms. For phase-fraction predic-
tion a total of 13,930,000 (D3) XRD patterns were prepared. Moreover, a real-world dataset
was obtained by acquiring XRD patterns of conventionally prepared inorganic powders.
The prepared samples were synthesized from Li2O, La2O3, and ZrO2 powders by mixing
and subsequent firing at 1000 ◦C.

Phase identification was performed using the CNN, KNN, RF, and SVM algorithms.
A comparison of the highest test accuracy values obtained in each case are presented in
Table 4, which shows the superior performance of the CNN algorithm over other ML
methods included in the study.
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Table 4. Phase identification test accuracy values for the CNN, KNN, RF, and SVM. Data are from
Reference [98].

Dataset CNN KNN RF SVM

Synthetic
dataset

D1-trained 94.36% 12.15% 56.82% 33.60%
D2-trained 96.47% 13.08% 63.62% 42.74%

Real-world
dataset

D1-trained 88.88% 24.44% 17.78% 13.33%
D2-trained 91.11% 22.22% 15.56% 13.33%

In what concerns the phase-fraction determination, the authors used an artificial neural
network with a fixed architecture. This algorithm was also compared in terms of test errors
by assessing the mean square error and R-square values of the phase-fraction regressions
(Table 5). From the presented values, one can assess the KNN and SVM algorithms as best
performing at the phase-fraction regression tasks.

Table 5. Phase-fraction regression of the MSE and R2 values for the ANN, KNN, RF, and SVM. Data
are from Reference [98].

Dataset ANN KNN RF SVM

Synthetic
dataset

MSE 0.004612 0.002507 0.003987 0.001809
R2 0.923253 0.956168 0.930789 0.968471

Real-world
dataset

MSE 0.008260 0.008035 0.006453 0.002423
R2 0.821816 0.860250 0.894196 0.958704

Quantification of the mineral composition of gas hydrate-bearing sediments was
performed by Park et al. [99] using various algorithms including CNN, recurrent neural
network (RNN), multilayer perceptron (MLP), RF, and long-short term memory (LSTM).
A total of 488 materials with complex compositions, including 12 minerals (quartz, albite,
opal-A, calcite, muscovite, dolomite, chlorite, kaolinite, illite, pyrite, NaCl, and K-feldspar)
were quantified using the mentioned algorithms. The algorithms showed promising results
for predicting mineral composition even for those which showed an amorphous broad peak.
On the other hand, for samples with low opal-A content, compared to the others in the
dataset, all algorithms had high errors compared to the traditional indexing method. This
might have occurred because the training dataset contained only hundreds of patterns, and,
because of this fact, the RF algorithm showed the highest possibility among the studied
ones to predict mineral compositions.

The ML methods used for the quantitative phase analysis offer automation and adapt-
ability advantages, while the conventional methods are established but time consuming.
The ML algorithms showed good results for the identification of composition and limited
accuracy in terms of phase fraction determination. To the best of our knowledge, to date
there is no available database containing experimental patterns with complex compositions
and different phase fractions, which may contribute to the limited success of these ML
models. For the quantitative phase analysis task, a hybrid model using ML for identifica-
tion and classification coupled with conventional phase fraction determination based on
Rietveld refinement or whole powder pattern fitting procedures would be the most suitable
approach from our perspective.

4.3. Lattice Analysis

Pasha et al. [100] proposed a specialized learning engine for identifying the cubic
structure of materials regardless of their composition. Their approach borrows from human
gene regulation theory to conduct the training of a group of distributed neural networks,
where each neural network is managed by the engine in a similar manner to how genes are
regulated inside the human body. The application of this approach to the classification of
cubic lattices showed an accuracy rate over 99% over a representative range of materials.
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Since the proposed method is also computationally efficient, it can potentially be used for
partial automation of the complex XRD analysis task.

The space group determination problem from powder XRD patterns was studied
by Vecsei et al. [101] employing a dense neural network method for the classification
of crystal symmetry. The model was trained on theoretically computed XRD patterns
and tested on both theoretical and experimental data. The authors report a space group
classification accuracy on real experimental data of approximately 54%, with incorrectly
classified structures often exhibiting close symmetry to the correct space group. The
certainty of the predicted space group was ascertained using a softmax activation function
for the output layer, which was chosen because it produces results that can be interpreted
as a probability distribution. Notably, when uncertain predictions were dropped (i.e., those
for which the highest softmax probability was less than 0.45), the classification accuracy
for the remaining data (approximately half of the initial dataset) improved to about 82%.
Thus, the method may be used to automatically characterize a subset of the data (for
which the algorithm has arbitrarily high certainty), leaving the remaining diagrams to
be processed manually.

Suzuki et al. [102] also approached crystal system and space group classification
using ML models. Their most successful model, which exceeded 90% accuracy for crystal
system classification, is built on an extremely randomized trees (ensemble) algorithm.
The positions of the ten left-most peaks (low values of 2θ) in the XRD were included as
part of the input to the model to mimic the process that human experts perform, while
the decision tree model was chosen to obtain an interpretable model that would provide
insight into the classification process. The model also performed space group classification,
with an accuracy of 80% for the most likely candidate; when considering a list of the five
top candidates, the accuracy increased to above 92% (probability that the list contains
the correct space group). Despite the generally high accuracy, the model significantly
underperformed on the triclinic crystal system, with an accuracy just below 50%; this
reduced performance was attributed to a shortage of triclinic training data, suggesting that
any ML-based approach would be affected by this issue.

A report by Oviedo et al. [103] introduces a CNN-based ML model for space group
and crystal dimensionality. The ML algorithms they tested used both experimental and
computed XRD patterns, which were generated using a data augmentation process based
on domain knowledge. As stated by the authors, physics-informed data augmentation is
more robust (avoids overfitting), model independent, and offers higher interpretability
compared with explicit regularization, while also being more robust than noise-based data
augmentation. The reported accuracy for the dimensionality and space group classification
was 93% and 89%, respectively, for a set of 115 thin film metal halides, when using data
augmentation. Interestingly, the classification accuracy was reduced to approximately 84%
and 80% (for dimensionality and space group, respectively) when using only simulated
XRD patterns for training and keeping all of the experimental data for the testing phase,
highlighting both the importance of data augmentation and some of its limitations for the
data analysis applications of real XRD data.

XRD patterns collected at several temperatures can explain structural transitions.
In this regard, fluctuations in XRD patterns are an effect of the charge density waves
that show the change in the size of the unit cell and of those that involve intra-unit cell
distortions. Venderley et al. [104] developed an unsupervised and interpretable machine
learning algorithm for the study of phase transitions in (CaxSr1−x)3Rh4Sn13 and Cd2Re2O7
materials and plotted the phase diagram of the former; by applying the introduced model
to the analysis of thousands of Brillouin zones, the authors demonstrate the potential
application of their approach to the real-time analysis of temperature dependencies and
automation of the inverse scattering problem [105]. The same model [104] was applied
by Kautzsch et al. [106] to reveal the structural evolution of the kagome superconductors
AV3Sb5 (A = K, Rb, and Cs) through the charge density wave order parameter.
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X-ray Laue microdiffraction scan analyses were indexed using a machine learning
method based on clustering and labeling algorithms by Song et al. [107]. Their model was
tested on four materials (CuAlMn, AuCuZn, and CuAlNi alloys and BaTiO3 ceramics). To
increase the computational efficiency of the approach and allow the model to be harnessed
as part of real-time processing in a synchrotron pipeline, the original Laue patterns were
processed with a CNN autoencoder for dimensionality reduction. Dropout layers were
used as part of the CNN architecture to mitigate overfitting, and PCA was applied to the
output of the CNN encoder to further reduce feature space dimensionality.

The analysis of the phase transformations in Ni-Ti-Co thin films was performed by Al
Hasan et al. [108] aided by unsupervised hierarchical clustering machine learning. The ML
model describes phase mixtures belonging to multiple cubic structures (Pm3m, Fm3m, and
Im3m), as well as orthorhombic and hexagonal structures. A total of 177 XRD patterns were
analyzed and, ultimately, clustered into six groups based on composition. Together with
the crystal structure, phase, and thermal hysteresis behavior, this study maps the material
properties of Ni-Ti-Co alloys onto the chemical composition space.

In another approach of unsupervised machine learning, a fuzzy c-means (FCM) clus-
tering algorithm was used by Narayanachari et al. [109] to classify tantalum oxynitride
thin film structures obtained by pulsed laser deposition. The unsupervised ML analysis
grouped XRD patterns into four clusters, which corresponded to mixtures having similar
chemical and phase composition. Their overall results showed that the proposed procedure
(including experimental methods and ML data analysis) is efficient and could enable the
identification of deposition parameters for obtaining a desired phase.

ML techniques used for lattice analysis tasks demand substantial training data and
might lack transparency in decision making, limiting their interpretability. The accuracy of
the models restricts their use, especially for complex structure analysis (triclinic and mono-
clinic) or for space group determinations in cases where features showing the difference
among several space groups are not apparent. Conventional methods, while often slower
and manual, provide a well-established framework for crystallographers to validate results.

4.4. Defects and Substituent Concentration Detection

Determination of substituent concentrations in [Sm1−yZry]Fe12−xTix crystal structures
was performed by Utimula et al. [110] using a dynamic time-warping (DTW) analysis
of simulated XRD patterns coupled with the Ward linkage method for clustering based
on Euclidian distances between pairs of time series. The method had an accuracy of ap-
proximately 96% distinguishing different Sm/Zr substitution concentrations. The method
is less suitable for distinguishing between XRD patterns for Fe/Ti substitutions, with a
success rate of only 33%. While this issue can be mitigated by performing the clustering
on a different dissimilarity measure, such as DTW weighted by the magnetization per
unit volume of the sample, these data (i.e., magnetization) will not always be available for
experimental XRD patterns. The authors of the work state that their algorithm is applicable
to other systems where atomic substitutions within a phase must be tuned.

In a different publication by Utimula et al. [111] an autoencoder was used to compress
XRD patterns to two dimensions. The hidden layers used ReLU activation functions, while
the final layers used tanh (hyperbolic tangent) for the encoder and a linear function for
the decoder. Although the features learned by the autoencoder algorithm do not have
physical significance in general, in this case, they appear to be related to the composition
of the samples, which is justifiable through the connection among atomic substitutions,
lattice constants, and XRD peak shifts. Clustering of the feature space was performed,
using local information (linear interpolation) instead of unsupervised ML algorithms, such
as k-means, since the different groups did not form simply connected regions within the
feature space. The authors applied the autoencoder to assess the significance of XRD peaks
by removing peaks and measuring the shift observed on the feature space. Additionally,
the feature space could also be used to simulate the XRD patterns of small concentration
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changes by conducting an interpolation on the feature space instead of performing more
costly computer simulations or experiments.

For the determination of defects and substituent concentration detection, ML tech-
niques have the advantage of providing the results in fewer steps compared with the
conventional, time-consuming approaches. However, clustering models show a good accu-
racy in distinguishing substituent concentrations only in cases where there is a substantial
difference between the element regularly placed on a certain crystallographic site and the
substituent.

4.5. Microstructural Characterization

Strain profiles from XRD data in irradiated or ion-implanted materials were deter-
mined by Boulle et al. [112] using a CNN model built on usual convolutional, max pooling,
and batch normalization layers, together with dense neuron layers. While the accuracy of
the results was above 90% for individual parameters, the accuracy for the complete strain
profile (the key output of the modeling effort) ranged between 50% and 82%. The highest
accuracies for the strain profile were achieved when training the CNN for separate strain
ranges: 82% when considering only strains above 0.5%, and 76% for the lower strain region
(in the 0.5–2% range) using a purposefully trained CNN. The lowest reported accuracy
(50%) for the strain profile was applicable to strains below 2% when the CNN was trained
using the complete strain range.

Residual stress in rails was also determined from X-ray measurements by applying
a dimensionality reduction technique to X-ray data characteristic of normal rail regions,
followed by multivariate statistical analysis based on the Gaussian distribution; finally,
the presence of stress was identified using anomaly detection [113]. After performing
dimensionality reduction on the original data using either PCA, kernel PCA, or an au-
toencoder, each datapoint was given an anomaly score corresponding to the local amount
of damage. The accuracy of the model was assessed by comparing the location of the
cracks in the rail with the anomalous zones, with appropriate thresholds for the anomaly
scores, adjusted for each dimensionality reduction method. Out of the three dimensionality
reduction algorithms, the autoencoder resulted in the highest accuracy in residual stress
measurement. This is not a surprising result, given that autoencoders are based on neural
networks that can represent nonlinear relationships using neuron activation functions,
while PCA is a linear analysis technique.

ML methods such as neural networks and autoencoder excel at nonlinear relation-
ships, capturing nuances conventional methods might miss. However, their success in mi-
crostructural characterization relies on high-quality training data and model interpretability
remains a challenge. Despite good results for determining individual parameters, because
of the limited availability of experimental data, the accuracy of the models employed for
several parameters has unsatisfactory accuracy to date. Until further improvement of the
databases or the models, conventional methods are preferred in complex situations.

4.6. Challenges and Limitations of Machine Learning

Overall, machine learning is an effective tool for XRD data analysis, but it also faces
several challenges and limitations that must be addressed to make the technique more
reliable and ubiquitous.

Data quality: ML models generally require large, diverse, and high-quality datasets for
effective training. Obtaining enough labeled XRD data for specific materials or conditions
can be time consuming and expensive. Additionally, the noise and artifacts present in
experimental XRD data can decrease the performance of ML models. To mitigate data
scarcity and diversity, data augmentation [93], transfer learning [114], or domain adaptation
might be employed [115]. Additionally, preprocessing steps, such as noise filtering and
background subtraction, help mitigate the impact of noise in the data.

Interpretability: ML algorithms can lack transparency in their decision-making pro-
cess, making it difficult to interpret and explain the underlying reasons behind predictions
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made by ML models, potentially hindering their use in scientific research. Efforts are being
made to develop more transparent ML models through techniques such as feature visual-
ization and saliency maps. Furthermore, hybrid approaches that combine ML with more
traditional methods can leverage the advantages of ML while providing more interpretable
results [116].

Generalizability: ML models may fail to generalize to new materials not seen by
the model during training; accurate predictions across different crystal structures, lattice
parameters and phase compositions require robust ML models. While generalization can
be improved by the selection of appropriate features, data representation, and model
architecture, the acquisition of datasets spanning the full range of possible variations is the
best option for tackling generalization issues [103].

Model robustness refers to the ability of ML models to perform well under different
conditions and input data quality. Overfitting negatively impacts robustness and occurs
when ML models adjust to the training data instead of uncovering the meaningful patterns.
To prevent overfitting and improve the model’s robustness, researchers can employ regu-
larization techniques to prevent extreme parameter values, cross validation to assess the
model’s performance on multiple subsets of the data, and early stopping of the model’s
training when the validation set’s performance starts to degrade [117].

5. Conclusions and Future Development

The use of machine learning (ML) for processing X-ray diffraction (XRD) measure-
ments has been increasing at an accelerating rate over the last decade, as computers have
become more powerful, and both ML and XRD have been streamlined and enhanced. Based
on current trends, it seems that ML will continue to be harnessed for XRD data analysis,
and the technique will continue to be expanded and improved.

Future research is likely to focus on developing ML models that incorporate domain
knowledge and physical constraints into the learning process. By integrating the funda-
mental principles of crystallography and materials science, the predictions of ML models
can be more meaningful and in line with known physical property values. Alternatively,
ML can be used in combination with physics-based models to obtain more interpretable,
accurate, and physically meaningful predictions [110].

Quantum mechanical methods (such as density functional theory, DFT) combined
with ML is a promising frontier in materials science, which can provide highly accurate and
detailed insights into the properties and electronic structure of materials. Hybrid models
integrating DTF calculations with ML can accelerate material discovery by increasing the
efficiency and accuracy of material property predictions [111].

In operando and in situ studies, XRD patterns are acquired continuously during
reaction or phase transformations. Real-time data analysis will facilitate and accelerate
decision making and feedback, allowing researchers to monitor and control processes as
they unfold, ultimately leading to deeper insights into material behavior under a wide
range of conditions [107].

In our opinion, currently, machine learning is most helpful when used in conjunction
with established mathematical models and domain knowledge. Hybrid approaches benefit
both from the speed and flexibility that ML techniques can offer and from the rigors of
physics informed analysis that guarantee the validity of the results up to the limitations
of current scientific knowledge. XRD data analysis needs new, faster methods, but they
should only be adopted if they can ensure the accuracy of their results.

Linking ML with combinatorial material analysis and high-throughput screening tech-
niques can accelerate the discovery of novel materials with tailored properties: automated
ML models can analyze vast libraries of XRD patterns to identify promising materials and
suggest targeted experimental designs for further investigation, with huge potential for
applications in fields like catalysis, energy materials, and drug development.
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