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Abstract: The extraction of impacted third molars is one of the most common dental operations.
When the impacted third molar is extracted, the operation plan is generally different because of the
different impacted positions of the tooth. Therefore, judging the impacted type of the third molar is
the basis of the third molar extraction operation. At present, oral health professionals usually analyze
panoramic radiographs to determine the types of impacted third molars, but the diagnosis is easily
affected by oral health professionals’ subjective consciousnesses. Computer vision technology can
help doctors analyze medical images faster and more accurately, so it is very desirable to use computer
vision to detect and classify the impacted third molars. Based on the panoramic radiographs of
the School of Stomatology, Lanzhou University, this paper establishes an object detection dataset
containing six types of impacted third molars. On the basis of this dataset, the lightweight third
molar impacted detection and classification model is studied in this paper. This study introduces
the method of knowledge distillation on the basis of YOLOv5s and uses YOLOv5x as the teacher’s
model to guide YOLOv5s, which not only ensures the light weight of the model but also improves
the accuracy of the model. Finally, the YOLOv5s-x model is obtained. The experimental results
show that the introduction of knowledge distillation effectively improves the accuracy of the model
while ensuring its light weight, the mAP of YOLOv5s-x is increased by 2.9% compared with the
original model, and the amount of parameters and calculations is also reduced to a certain extent.
Compared with mainstream object detection networks, including YOLOv8, YOLOv5s-x also has
certain advantages, which can provide oral health professionals with better impacted third molar
detection and classification services.

Keywords: knowledge distillation; computer vision; third molar; classification; panoramic radiograph

1. Introduction

With the progression of human evolution, there has been an inconsistent degradation
of jawbones in comparison to teeth, resulting in relatively smaller bone sizes when com-
pared to tooth sizes. As a consequence, there is often inadequate space in the mandible
to accommodate all the teeth, leading to the common occurrence of impacted teeth [1].
Among impacted teeth, mandibular third molars are the most frequently encountered [2].
The incidence of impacted wisdom teeth is particularly high, with approximately 72%
of individuals aged 20–30 in Sweden having at least one impacted third molar [3]. The
occurrence of impacted mandibular third molars can easily lead to pericoronitis, and in
severe cases, it can even result in secondary infections such as maxillary space infection or
osteomyelitis. These conditions are known to be directly or indirectly associated with vari-
ous oral, jaw, and facial diseases, including caries, pericoronitis, cystic lesions, periodontal
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disease, tumors, or root resorption [4–7]. Consequently, the extraction of third molars has
become one of the most frequently performed surgical procedures by oral and maxillofacial
surgeons [8].

The position of the impacted mandibular third molar presents unique challenges. It
is situated in close proximity to important anatomical structures and is closely associated
with adjacent teeth, making extraction surgery often difficult [9]. Additionally, surgical
procedures can easily lead to complications such as reactive pain and swelling after tooth
extraction [10]. Therefore, it is necessary to develop an appropriate and comprehensive sur-
gical plan prior to the procedure. The impacted mandibular third molar can be categorized
into different positions, including vertical, mesioangular, and horizontal positions, among
others. Each position presents varying difficulties for tooth extraction. Consequently, preop-
erative evaluation of the position of the third molar plays an important role in determining
the specific surgical plan [11].

Usually, oral health professionals can determine the position of the impacted mandibu-
lar third molar by analyzing panoramic radiographs. However, the traditional way for
oral health professionals to analyze panoramic radiographs increases their daily workload
and reduces their diagnostic and treatment efficiency. What is more, the determination of
the position of mandibular impacted third molars is also susceptible to subjective factors
such as experience level and fatigue level, resulting in many uncertainties. Therefore,
an automated, low-cost, accurate, and rapid model for the detection and classification of
impacted third molars is urgently needed.

Artificial intelligence (AI) was founded by McCarthy et al. in the 1950s [12], referring
to a branch of computer science in which predictions are made using machine methods
to mimic what humans may do in the same situation. Deep learning is a special form
of machine learning based on artificial neural networks (ANNs) inspired by the human
nervous system [13]. It is a subfield of artificial intelligence that uses neural networks
inspired by human brain structures to learn from a large amount of data. A deep learning
algorithm can automatically recognize and extract the features of the original data (such as
images, sounds, and texts) and use them for prediction or decision-making [14].

With the continuous development of deep learning, it has been widely used in many
fields of medical treatment. Deep learning shows excellent performance in many tasks, such
as brain disease detection and classification, COVID-19 diagnosis, dental segmentation, and
so on, and effectively shortens the treatment time of patients [15–17]. In stomatology, deep
learning is applied to orthodontics, cariology, endodontics, periodontology, implantology,
oral and maxillofacial surgery, and other studies [13]. Judging the impacted type of the
third molar by panoramic radiographs is one of the most common tasks in stomatology.
At present, there are few applications of deep learning in this task. Celik ME (2022) used
YOLOv3 and Faster RCNN to detect and classify impacted third molars on a dataset of
440 panoramic radiographs [18]. It was shown that YOLOv3 had excellent performance
for the detection. It is worth mentioning that Celik used Winter’s classification approach,
which is classified based on the angle between the long axes of the third and second molars.
However, the rectangular box, when tagging the data set, includes only the third molars,
which may cause the target detection model to fail to learn the association between the
third molars and the second molars. In addition, he only considered the mesioangular
position and horizontal position of the mandibular third molars. Therefore, in view of the
problems existing in the previous research, such as small datasets, inconsistent classification
and labeling methods, and older models, this study established a dataset containing
1645 panoramic radiographs, and the rectangular box included both the third molars and
the second molars. And this paper used all six categories of Winter’s classification when
tagging. At the same time, this paper combined a more novel target detection model with
knowledge distillation to ensure the accuracy of detection and classification as well as the
light weight of the model in order to obtain a high-precision and lightweight third molar
impacted detection and classification model. Our model is designed to provide oral health
professionals with an auxiliary diagnostic tool. It can help oral health professionals reduce
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their workload, reduce mistakes, and devote more energy to clinical treatment. At the same
time, it can also be used in intern education.

The remainder of this paper is organized as follows. Section 2 introduces, in detail,
the dataset used in this study, YOLOv5 target detection model, knowledge distillation,
experimental environment, and evaluation indicators of the model. In Section 3, the
performance of the YOLOv5s-x algorithm obtained by YOLOv5 combined with knowledge
distillation is evaluated through experiments. The results of the discussion are given in
Section 4. Finally, the fifth part summarizes the work of this study.

2. Materials and Methods
2.1. Ethical Statement

This study was conducted with the approval of the Ethics Committee of School of
Stomatology, Lanzhou University, under approval number LZUKQ-2020-031.

2.2. Dataset Acquisition and Labeling
2.2.1. Data Acquisition and Preprocessing

The impacted mandibular third molar dataset constructed for this study came from the
School of Stomatology, Lanzhou University, with 2146 images; all the images were collected
by Gendex Orthoralix 9200 DDE panoramic X-ray machine. After removing panoramic
radiographs with artefacts, underdeveloped roots (which mean that the apical foramen has
not been completely closed), and distorted positions, 1347 qualified images were finally
obtained. The original images were in DCM format, and we used Python to convert them
to JPG format; the size of the converted image is 2720 × 1444, and the converted images
are shown in Figure 1.
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Figure 1. Example images of the dataset.

2.2.2. Definition of the Classification of Impacted Third Molars

According to the relationship between the long axis of the impacted third molar and
the long axis of the second molar, Winter divided the impacted position of the third molar
into seven categories: vertical impaction, horizontal impaction, mesioangular impaction,
distoangular impaction, buccoangular impaction, linguoangular impaction, and inverted
impaction [19]. Based on Winter’s classification, considering that the imaging features
of buccoangular and linguoangular impaction are similar, this paper classified the types
of impacted mandibular third molars into six categories according to the angle of the
third molar to the second molar, namely Vertical position (10◦ to −10◦), Mesioangular
position (11◦ to 79◦), Horizontal position (80◦ to 100◦), Distoangular position (−11◦ to
−79◦), Other (101◦ to −80◦), and Buccolingual position (which refers to any tooth oriented
in a buccolingual direction with crown overlapping the roots), as shown in Figures 2 and 3.



Appl. Sci. 2023, 13, 9970 4 of 12

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 13 
 

the types of impacted mandibular third molars into six categories according to the angle 
of the third molar to the second molar, namely Vertical position (10° to −10°), Mesioan-
gular position (11° to 79°), Horizontal position (80° to 100°), Distoangular position (−11° 
to −79°), Other (101° to −80°), and Buccolingual position (which refers to any tooth ori-
ented in a buccolingual direction with crown overlapping the roots), as shown in Figures 
2 and 3. 

 
Figure 2. Winter’s classification. 

 
Figure 3. Six impacted category images. (a) Vertical position, numbered 0; (b) Mesioangular posi-
tion, numbered 1; (c) Horizontal position, numbered 2; (d) Distoangular position, numbered 3; (e) 
Other, numbered 4; (f) Buccolingual position, numbered 5. 

2.2.3. Data Labeling 
The dataset was labeled using the open-source script LabelImg from 

https://github.com/HumanSignal/labelImg (accessed on 9 July 2023), a rectangular box 
containing both the crowns and roots of the second and third molars, as shown in Figure 
4. 

Figure 2. Winter’s classification.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 13 
 

the types of impacted mandibular third molars into six categories according to the angle 
of the third molar to the second molar, namely Vertical position (10° to −10°), Mesioan-
gular position (11° to 79°), Horizontal position (80° to 100°), Distoangular position (−11° 
to −79°), Other (101° to −80°), and Buccolingual position (which refers to any tooth ori-
ented in a buccolingual direction with crown overlapping the roots), as shown in Figures 
2 and 3. 

 
Figure 2. Winter’s classification. 

 
Figure 3. Six impacted category images. (a) Vertical position, numbered 0; (b) Mesioangular posi-
tion, numbered 1; (c) Horizontal position, numbered 2; (d) Distoangular position, numbered 3; (e) 
Other, numbered 4; (f) Buccolingual position, numbered 5. 

2.2.3. Data Labeling 
The dataset was labeled using the open-source script LabelImg from 

https://github.com/HumanSignal/labelImg (accessed on 9 July 2023), a rectangular box 
containing both the crowns and roots of the second and third molars, as shown in Figure 
4. 

Figure 3. Six impacted category images. (a) Vertical position, numbered 0; (b) Mesioangular position,
numbered 1; (c) Horizontal position, numbered 2; (d) Distoangular position, numbered 3; (e) Other,
numbered 4; (f) Buccolingual position, numbered 5.

2.2.3. Data Labeling

The dataset was labeled using the open-source script LabelImg from https://github.
com/HumanSignal/labelImg (accessed on 9 July 2023), a rectangular box containing both
the crowns and roots of the second and third molars, as shown in Figure 4.
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2.3. Data Enhancement

Neural networks usually require a large amount of data for training, and in real-life
scenarios, there are often insufficient training samples available due to acquisition costs
and other issues. Due to the small number of patients with Buccolingual and Distoangular
positions, there is a data imbalance in the dataset of this paper, so it is particularly important
to use data enhancement methods to make the model have better generalization.

Considering the specificity of medical images, this paper adopted the data enhance-
ment method of adjusting the contrast and brightness. The effect of data enhancement is
shown in Figure 5. After data enhancement, the final experimental dataset was formed,
with a total of 1645 images. This study divided the dataset into a training set, a test set, and
a validation set according to the ratio of 8:1:1.
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2.4. YOLOv5

Target detection is a fundamental research area in deep learning techniques, consisting
primarily of single-stage and two-stage methods. The YOLO (You Only Look Once) algo-
rithm family is among the prominent examples of single-stage target detection algorithms
and has significantly impacted the field of computer vision [20–26]. Over time, the YOLO
algorithm has undergone continuous improvement and evolution and has now evolved
to YOLOv8.

YOLO transforms the target detection task into a single regression problem, returning
the location and class label of the target directly, enabling end-to-end target detection
without the need for an additional candidate region extraction step, compared to the two-
stage target detection algorithms represented by the Faster RCNN, the algorithm of choice
for many applications.

YOLOv5 was proposed in 2020 and is widely used for a variety of target detec-
tion tasks [27]. YOLOv5 consists of four versions, YOLOv5s, YOLOv5m, YOLOv5l, and
YOLOv5x. YOLOv5 uses CSPNet as the backbone to extract feature information, the SPP
module to extract multi-scale depth features, and then the feature pyramid constructed
by PANet to fuse the different scales. The network architecture of YOLOv5 is the same
for all four versions, and the size of the network structure is controlled by two parame-
ters: depth_multiple and width_multiple. The network structure of YOLOv5 is shown
in Figure 6.

Among the four versions of YOLOv5, YOLOv5s has the smallest number of parameters
and the largest model size, and YOLOv5x has the largest number of parameters and the
largest model size. Along with this, the detection accuracy of YOLOv5x is better than that
of YOLOv5s, and YOLOv5s is chosen as the benchmark model for this study due to the
need for a lightweight model.
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2.5. Knowledge Distillation

Larger models can often be used to achieve higher accuracy in the same dataset, and in
many computer vision tasks, including target detection and semantic segmentation, larger
models can often give better performance. However, larger models are often accompanied
by high hardware resource requirements and the disadvantage of long model inference
times, which pose many obstacles to practical applications. Therefore, improving the
accuracy of models while keeping them lightweight has become a key research direction
and is the basis for their application on the ground.

Knowledge distillation is one of the common methods to reduce model size [28]. Un-
like pruning and quantized model compression methods, knowledge distillation involves
constructing a small, lightweight model and using a larger model with better performance
to guide this small model so that the output of the small model is close to that of the large
model, with a view to achieving better performance and accuracy. It aims to improve the
accuracy of the small model without changing the computational efficiency.

The aim of this study is to ensure that the third molar detection and classification
model is lightweight while improving the accuracy of the third molar detection classification
model. Therefore, this paper chose YOLOv5x, which has the largest number of parameters
and the highest detection accuracy among the four versions of YOLOv5, as the teacher
network for knowledge distillation, and YOLOv5s, which has the smallest number of
parameters, as the student network for knowledge distillation, so that the detection accuracy
of YOLOv5s can be improved while ensuring the lightweight.

2.6. Experimental Environment

The experiment was conducted on Windows 10 based on the Pytorch framework;
Python version: 3.6.13; Torch version 1.8.0; and the server configuration used was an Inter
Xeon Gold 5218 CPU, an NVIDIA RTX 3080ti graphics card, and 128 G RAM.

2.7. Evaluation Indicators

Three commonly used evaluation metrics for target detection, mean Average Precision
(mAP), parameters, and Giga Floating-point Operations Per Second (GFLOPs), were used
as evaluation metrics for this study.

mAP is a widely accepted evaluation metric for target detection tasks. mAP takes
values between 0 and 1, with higher mAP indicating higher model detection accuracy.
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mAP@0.5 refers to the mAP value when IoU = 0.5, and many algorithms, including YOLO
and Faster-RCNN, use mAP@0.5 as an evaluation index to evaluate model performance.

The number of parameters refers to the number of trainable parameters for the
model. These parameters are trained by the model from data to optimize the perfor-
mance and accuracy of the model. In general, the larger the number of parameters, the
better the performance of the model, but it also means higher computational load and more
memory consumption.

GFLOPs are a measure of the computational efficiency of a model. The lower the
GFLOPs, the better the computational efficiency under the same training conditions.

3. Results
3.1. Comparison with YOLOv5s

Compared with the original YOLOv5s, YOLOv5s with YOLOv5x as the teacher model
(YOLOv5s-x) has a significant advantage in the impacted mandibular third molar detection
and classification task. YOLOv5s-x has a 2.9% improvement in mAP, while the number of
model parameters and GFLOPs is somewhat reduced. This paper randomly selected several
images in the validation set for detection and classification in YOLOv5s and YOLOv5s-x,
and the results are shown in Figure 7. It can be seen that YOLOv5s-x alleviates, to a certain
extent, the problems of missed, multiple, and wrong detections that exist in YOLOv5s and
has a higher detection classification accuracy.
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3.2. Comparison with Mainstream Networks

In order to verify the superiority of YOLOv5s-x in terms of accuracy, number of
parameters, and model size, six different target detection models were trained and tested
on the dataset, namely YOLOv5s, YOLOv5s-x, YOLOv7, YOLOv8n, YOLOv8s, DETR [29].
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The experimental results are shown in Table 1, and the relationship between the mAP of
each model and parameters, GFLOPs, and model size for each model are shown in Figure 8.
This study used mAP as an evaluation metric for the accuracy of detection and classification
tasks and used the number of parameters, GFLOPs, and model size as evaluation metrics
for model complexity.

Table 1. Experimental results of six networks.

Model mAP Parameters GFLOPs (G) Model Size (MB)

YOLOv5s 0.896 7,067,395 16.3 13.8
YOLOv5s-x 0.925 7,026,307 15.8 13.7

YOLOv7 0.920 37,221,635 105.2 71.3
YOLOv8n 0.913 3,006,818 8.1 6.2
YOLOv8s 0.918 11,127,906 28.4 22.5

DETR 0.874 36,724,684 101.3 474
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According to Table 1, it can be seen that among the six different target detection models,
YOLOv5s-x has the highest mAP of 0.925, surpassing the newly introduced YOLOv8n
and YOLOv8s. The mAP of YOLOv7 is closest to that of YOLOv5s-x, but the number of
parameters of YOLOv7 is 5.3 times higher than that of YOLOv5s-x. YOLOv7 has 6.7 times
the GFLOPs of YOLOv5s-x, and the model size of YOLOv7 is 5.2 times that of YOLOv5s-x.
YOLOv8n has the smallest number of parameters and GFLOPs, with 0.43 times the number
of parameters, 0.51 times the GFLOPs of YOLOv5s-x, and a model size of YOLOv5s-x by a
factor of 0.45, but the mAP is 1.2% lower than YOLOv5s-x.

Although YOLOv5s-x is not optimal in terms of a number of parameters, GFLOPs,
and model size, it has a much lower number of parameters, GFLOPs, and model size than
most models, while YOLOv5s-x has the best mAP performance of all models. Therefore,
YOLOv5s-x is easier to deploy and achieves better detection and classification results in
practical applications. These results suggest that it is reasonable to use YOLOv5s as the
baseline model and perform knowledge distillation and that the YOLOv5s-x model is more
suitable for the detection and classification of the impacted mandibular third molar.

4. Discussion

The aim of this paper is to investigate the use of computer vision-related techniques
for the detection and classification of impacted mandibular third molar and to improve the
accuracy of the model while ensuring that the model is lightweight through the technique
of knowledge distillation. In our study, we used YOLOv5x as the teacher model and
YOLOv5s as the student model, resulting in a 2.9% improvement in the accuracy of the
final model and some reduction in the number of model parameters and computational
effort. This paper also compares our model with mainstream target detection networks,
and the experimental results show that the proposed method performs best. Regarding the
feasibility of the proposed method, this paper discusses the following.

Firstly, panoramic radiography is more suitable for the application of grass-roots
hospitals because of its low-dose radiation and low price, so panoramic radiographs are
chosen as the dataset of this study. Compared with CBCT, panoramic radiographs can
only reflect the two-dimensional anatomical relationship between the root and the inferior
alveolar canal. CBCT can finely display the relationship between the mandibular impacted
third molar and the inferior alveolar canal, including buccal and lingual position and the
presence of bone septum, so as to predict the possibility of injury to the inferior alveolar
nerve during the operation. However, the price of CBCT is high, and most impaction cases
can be correctly judged by panoramic radiographs. Therefore, this study chooses panoramic
radiographs as the dataset, which has better universality. To sum up, the auxiliary diagnosis
method should be selected according to the specific situation in the clinic. In the future, we
will do further research on the application of deep learning in CBCT.

Secondly, our model is based on YOLOv5s, which has the advantage of being lightweight
with a smaller model size and shorter training time, allowing it to perform excellent detection
and classification tasks with limited resources. YOLOv5s is less demanding in terms of
hardware requirements, which makes it more convenient for oral health professionals to
deploy and apply, and has better generalizability.

Thirdly, this paper used knowledge distillation techniques on top of YOLOv5s to
transfer the knowledge from YOLOv5x to the YOLOv5s model, which improves the mAP
of YOLOv5s by 2.9% while ensuring the model is lightweight. Our experimental results
show that the YOLOv5s-x model outperforms mainstream target monitoring networks such
as DETR, YOLOv7, and YOLOv8. Although DETR, YOLOv7, and YOLOv8 are all newer
detection models than YOLOv5, they also have some problems. DETR has the largest and
largest model size and the lowest accuracy rate for detection classification. YOLOv7 has
the smallest accuracy difference from YOLOv5 but is still inferior to our model in terms of
a number of parameters and computational effort. This study also found that YOLOv8n
had the smallest number of parameters and computational effort, but the mAP was 1.2%
lower than YOLOv5s-x. YOLOv8s was slightly worse than YOLOv5s-x in all metrics. In
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summary, the YOLOv5s-x model is more suitable for the detection and classification of
impacted mandibular third molars.

Finally, although our model has improved in performance, there are still some issues
that need further improvement. Firstly, the mAP of our model is 0.925, which still has
more room for improvement. Secondly, the performance of our model varies in different
environments, and therefore further optimization is needed. Finally, there is still room for
our model to further reduce the number of model parameters and computational effort,
making the benefits of making a model lightweight more prominent.

In summary, our study demonstrates the feasibility of utilizing YOLOv5 for the detec-
tion and classification of impacted mandibular third molars, with the potential to enhance
model performance through the application of knowledge distillation techniques. Our
model surpasses mainstream target detection networks, yet there remains additional poten-
tial for improvement. We are confident that our study can contribute to the development
of enhanced detection tools for dental professionals and patients, thereby facilitating im-
proved oral health outcomes for a broader population.

5. Conclusions

In this study, a new method for detecting and classifying mandibular impacted third
molars was proposed. YOLOv5, combined with knowledge distillation technology, can
ensure the light weight of the model and effectively improve the accuracy of the model.
Experimental results show that our model outperforms current mainstream networks. Not
only does our method improve the accuracy of detection and classification, but it also has
fewer model parameters and computational effort, suggesting that our model can provide
a more accurate and reliable detection tool for oral health professionals and patients.

However, the study of this paper still has some limitations. Due to the influence of
equipment and other factors, the panoramic radiographs of different people may have
differences in shape, color, brightness, and so on. These differences may affect the per-
formance of the model. At present, all the datasets in this paper are obtained from the
School of Stomatology, Lanzhou University. Although this study has enhanced the data,
there are still some deficiencies in the diversity of datasets. Improving the quality and
diversity of datasets will be one of the following important works of this research. In the
future, this study will not only improve the accuracy of the model but also combine with
semantic segmentation to form a lightweight two-stage impacted third molar detection,
classification, and contour extraction model.

Overall, the method proposed in this paper can be a viable method for classifying
impacted mandibular third molar detection, ensuring that the model is lightweight while
improving detection accuracy. Through this study, we hope to provide oral health profes-
sionals and patients with a more accurate, reliable, and efficient detection tool to help more
people achieve a healthy mouth. We believe that with continued technological innovation,
we can further refine and optimize our model to achieve an even more accurate and efficient
classification of impacted mandibular third molar detection.
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