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Abstract: To test silicon photonics component performances, a silicon (Si) grating coupler (GC) is
used to couple the light from a single-mode fiber (SMF) into the chip. However, silicon nitride (Si3N4)
waveguides have recently become more popular for realizing photonic integrated circuits (PICs),
which may be attributable to their exceptional characteristics, such as minimal absorption and low
back reflection (BR) in the O-band spectrum. Thus, to test the photonic chip, a waveguide converter
from Si3N4 to Si needs to be added to the photonic circuit, which can lead to more power losses and
BR. To avoid this conversion, we propose in this manuscript a configuration of a GC based on Si3N4

structures, which can be employed to minimize the footprint size and obtain better performance. The
achievement of high efficiency was possibly obtained by optimizing the structural properties of the
waveguide and the coupling angle from the SMF. The results demonstrated high efficiency within
the O-band spectrum by using a wavelength of 1310 nm. Notably, at this specific wavelength, the
findings indicated a coupling efficiency of −5.52 db. The proposed design of the GC consists of a
uniform grating that offers improvements regarding affordability and simplicity in manufacturing
compared to other GC models. For instance, using a reflector or a GC with non-uniform grooved
teeth introduces challenges in fabrication and incurs higher costs. Thus, the proposed design can be
useful for improving the testing abilities of the Si3N4 photonic chips used in transceiver systems.

Keywords: grating couplers; Si3N4; photonic integrated circuits; FDTD; O-band

1. Introduction

Grating couplers (GC) based on silicon (Si3N4) are now widely used to couple the
light between a single-mode fiber (SMF) and photonic integrated circuits (PICs) [1,2]. The
use of GC in the field of PICs has brought significant advantages by enabling the avoid-
ance of expensive processing and packaging steps [3]. GCs are devices that couple light
into and out of waveguides on PICs [4,5]. They supply a proficient and budget-friendly
resolution, achieving an efficient interface between the optical fiber and waveguides on the
PICs without the need for complex alignment techniques [6–8]. Traditionally, the optical
waveguides on chips required polishing to achieve good coupling efficiency with optical
fibers [9]. This process was time-consuming and costly, as it involved the precise polishing
and alignment of the waveguide facets [10]. Similarly, lensed fibers were used to focus light
into the waveguides, which required careful alignment and often resulted in additional
expenses [11,12]. GCs can be useful in addressing this challenge by enabling efficient
optical signal coupling and transmission [13]. A GC based on Si3N4 has become a preferred
choice for PICs because of its excellent optical properties, such as low absorption and
low back reflection (BR) in the O-band spectrum [14–16]. These properties are crucial in
integrated photonic systems as they help prevent signal degradation, interference, and
increased noise levels, ensuring high-quality and efficient signal transmission [17]. A
study [18] was conducted by employing an Si3N4 on a silicon (Si) bi-layer configuration.
This O-band design was developed through an optimization-driven strategy and realized
on a 200 mm wafer. These designs exhibited resilience to fabrication variations, main-
taining a consistently high performance across the entire wafer. Particularly noteworthy
is the attainment of a remarkable peak coupling efficiency of −2.2 dB and a substantial
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1-dB wavelength range of 72.9 nm in a representative device. Additionally, an innovative
accomplishment is presented in a study [19], introducing a trim Sin platform that enables
a fiber-chip featuring a dual-band grating coupler with single-state polarization in the
transverse electric (TE) mode. This coupler efficiently couples with both O- and C-band
wavelengths. In the field of photonics, testing the performance of photonic chips is a
crucial step in the development and characterization of integrated photonic devices [20]. A
study [21] proposed a design optimization approach to enhance the efficiency of GC using
Si material. The focus of their work was to improve the coupling efficiency by utilizing Si
on insulator (SOI) technology, which involved a top Si layer with a buried oxide layer. The
GC was designed to operate in the TE mode. The result of this study was 30% coupling
efficiency with a 1 dB bandwidth of 40 nm on standard wafers. Another study [22] aimed
to address the bandwidth limitation of GC. The researchers proposed a focusing-curved
arrangement utilizing wide band subwavelength grating couplers (SWGCs). The SWGCs
are created using electron-beam lithography (EBL) on a conventional SOI platform through
a one-stage complete etching process. TE mode light demonstrates a 1 dB bandwidth
exceeding 100 nm around the 1550 nm wavelength. This proposed solution enables seam-
less integration with different optical devices and systems, expanding the capabilities of
GC. An additional notable study [23] delves into the application of Si3N4 as a waveg-
uide. This study demonstrates a semiconductor laser’s functionality within a structured
Si photonics platform, displaying proficient light coupling into a waveguide. The diode
laser employed in this research is centered on mid-infrared gallium antimonide, grown
directly on a pre-patterned Si photonics wafer featuring Si3N4 waveguides enveloped
by Si dioxide. The experimental outcomes are striking, as the laser emits over 10 mW
of continuous wave light at room temperature. Impressively, approximately 10% of this
light is effectively directed into the Si3N4 waveguides. This accomplishment highlights
the potential of Si3N4 waveguides as a viable stage for integrating semiconductor lasers
on a chip, promising significant advancements in integrated photonics technology. When
used for testing Si3N4 waveguide signals within a photonic chip, the use of a waveguide
converter from Si3N4 to Si can decrease the performance due to a few factors [24,25]. The
difference in the refractive index between Si3N4 and Si can cause mode mismatch and lead
to increased coupling losses during the transition [26,27]. Additionally, the fabrication
process and material properties of the waveguide converter can introduce additional losses,
such as scattering or absorption, which can further degrade the overall performance [28].
Furthermore, the interface between the Si3N4 waveguide and Si waveguide converter
may introduce reflections or mode distortions, affecting signal integrity and transmission
efficiency. During the conversion, there is the potential for BR in the system and power
degradation, which can affect the accuracy and reliability of the testing results. The need
for a waveguide converter from Si3N4 to Si can result in the increased footprint size of the
photonic chip. The additional space required for integrating the converter adds complexity
and potentially limits the available area for other components or functionalities on the chip.
One popular waveguide converter is the mode-size converter [29], which is a device that
converts the size of optical waveguide modes. An example of a high-efficiency, wideband
fiber-to-waveguide mode-size converter with minimal coupling loss has been validated on
nano-scale waveguides on the SOI platform [30]. In this mode-size converter, the goal is to
efficiently couple light into a conventional single-mode fiber (SMF) possessing a mode field
diameter (MFD) of approximately 9.6 µm to the nano-scale waveguides with smaller MFD,
typically around 500 nm or less [31–33]. The challenges associated with this mode-size
converter include the significant mode mismatch between the larger MFD of the SMF
and the smaller MFD of the nano-scale waveguide [34,35]. This mode mismatch leads to
high coupling losses, limiting the efficiency and performance of the converter. To address
the challenges mentioned earlier, we propose a GC using Si3N4 on an insulator substrate
that operates within the O-band spectrum under a TE polarization mode. The geometric
parameters critical for optimal performance were fine-tuned using the finite difference
time domain (FDTD) technique to achieve power distribution, modal analysis, and design
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optimization. This study shows the ability to design an excellent Si3N4 GC with high light
efficiency in the O-band spectrum, which can be very useful for testing Si3N4 photonic
chips in data center applications.

2. Grating Coupler Design and Theoretical Aspects

Figure 1 provides a detailed representation of the x-z cross-section structure of the GC
waveguide with the SMF, highlighting its key geometrical parameters.
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Figure 1. 2D schematic diagram of the GC configuration and key parameters.

In our model, we selected the GC based on a uniformly grooved teeth configuration
for its ease of fabrication and compact footprint, which leads to low-cost GC devices. It is
important to emphasize that while complex configurations, such as using a reflector [35,36],
a GC with non-uniform grooved teeth [37–42], or edge couplers [38], can improve coupling
efficiency, they also introduce fabrication difficulties and increased costs. For example, the
reflectors used in GCs are sensitive to fabrication variations, such as dimensional errors or
imperfections in the grating structure. Similarly, non-uniform grooved teeth increase the
complexity of the fabrication process, making precise control over the grating structure and
dimensions more challenging. Even small fabrication variations can significantly impact
device performance. Due to these considerations, the design of a GC with a uniformly
grooved teeth configuration is a reliable, easy-to-fabricate, and cost-effective choice.

Our proposed design consists of three layers with different thicknesses that are care-
fully chosen to achieve maximum coupling efficiency between the GC and SMF at a
wavelength of 1310 nm. The sub-ground layer is made of Si (TSi) with a thickness of 4 µm,
followed by a middle layer of SiO2 with a thickness of 1 µm. The top layer is composed
of Si3N4 (TSi3N4 ) with a thickness of 0.76 µm. The top layer features grooved teeth made
of SiO2 material. The grating period between the grooved teeth, denoted as Λ, has been
set to 0.84 µm, where the SiO2 width of each grooved tooth is 0.34 µm, represented by W,
and the Si3N4 width of each grooved tooth is 0.5 µm. The angle of the SMF, defined as θ, is
7.5 degrees, and the distance between the SMF and GC, denoted as h, is 2.6 µm. The etch
depth corresponds to the thickness of the grooved teeth, and the optimal value for this
parameter is 0.38 µm. By optimizing these key values, the light can propagate through the
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GC more effectively, and as a result, achieve higher light coupling efficiency between the
GC and SMF.

To analyze the propagation characteristics of light within the GC waveguide, we
employed the FDTD method. This numerical technique provides valuable insights into the
behavior of electromagnetic fields and their propagation through the GC waveguide.

The principal work of GC is to change the mode size of the Si3N4 waveguide to be a
better match to the SMF mode. Mode matching refers to ensuring that the guided mode in
the Si3N4 waveguide is appropriately coupled to the desired SMF mode for efficient light
transmission. To achieve this goal, the Bragg condition [1] must be fulfilled, which can
be achieved by carefully optimizing the grating parameters, such as the grating period,
the coupling angle from the SMF, and etch depth, and the GC can enhance the coupling
efficiency, enabling the effective transmission of light into and out of the Si3N4 waveguide.

The grating period Λ is the key parameter that refers to the distance between the
grooves in the grating structure. The grating period Λ of the GC is given by [21]:

Λ =
λ

ne f f − ncsin(θ)
(1)

Within this mathematical expression, λ symbolizes the wavelength, neff is the refractive
index, nc is the refractive index of the cladding material, and θ is the coupling angle from
the SMF.

The diffraction behavior of a GC can be described using the Bragg condition, which
is also referred to as the phase matching condition. This reveals the relationship between
the wave-vector k0 of a light beam through the waveguide and propagation constant β of
the corresponding coupled light beam out of the waveguide to the SMF, and the Bragg
condition is expressed as [1]:

β = k0sin(θ) + m
2π

Λ
(2)

where 2π
Λ denotes the grating vector, while m corresponds to the order of grating diffraction.

To calculate the coupling efficiency between the modes of the waveguide and SMF, we
need to calculate the overlap integral between the Gaussian profile of the waveguide and
the Gaussian profile of the SMF [21].

2α(z) =
G2(z)

1 −
∫ z

0 G2(z)dt
(3)

This equation is for two-dimensional and TE polarization, and α(z) is the coupling
efficiency to the fiber as a function of the propagation distance z. The G(z) normalized
Gaussian profile had a beam diameter of 9.6 µm for coupling to the fiber.

3. Simulation Results

The numerical studies of the GCs of Si3N4 structures were performed using RSoft-
CAD software by utilizing a 2D FDTD method. The mode solution of the waveguide and
SMF was contacted by the Finite Element Method (FEM), which is a generalized mode
solver. The FEM solver enabled us to gather valuable insights into the mode profiles and
propagation characteristics of the waveguide, which is crucial in the optimization process.

The data obtained from the FDTD results were analyzed using MATLAB codes and,
in our simulations, the grid size was set to 10 nm for both axes.

To comprehend the issue of the mismatch size between the Si3N4 waveguide mode
and the standard SMF mode with dimensions of a core diameter of 8.2 µm and cladding
diameter of 125 µm, an illustration of the mode solution profile at an operating wavelength
of 1310 nm was simulated. Figure 2 displays the outcomes of the TE fundamental mode
of the standard SMF depicted in red color, and the Si3N4 waveguide with dimensions of
500 × 760 nm is depicted in blue color. The width size was selected to ensure a single TE
mode solution, and the Si3N4 thickness was optimized.
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Figure 2. Gaussian profile of the TE fundamental mode for SMF (red color) and Si3N4 waveguide
(blue color).

It is evident from the figure that a significant mode mismatch is obtained, resulting
in a minimum energy loss of 80%. Thus, to improve the light coupling between the Si3N4
waveguide chip and the SMF, a GC is employed to increase the Si3N4 waveguide mode so
that it is more suitable to the SMF mode, and as a result, the overlap area between the two
modes is increased, which leads to more energy efficiency.

Figure 3 showcases the optimal grating period Λ in the GC waveguide, which is
determined to be 0.84 µm. This carefully chosen value guarantees a robust configuration
that can tolerate shifts of up to ±30 nm from the optimal value. With this grating period,
light can propagate through the GC waveguide to the SMF in an exceptional manner,
enabling efficient and reliable transmission. However, fabricating smaller grating periods
demands the utilization of high-resolution lithography techniques, and achieving the
desired resolution can pose significant challenges. This optimization is crucial for achieving
high efficiency and ensuring good fabrication quality.
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Figure 3. Coupling efficiency as a function of grating period Λ.

Figure 4 presents an essential analysis of the influence of etch depth on the coupling
efficiency performance of the GC. Etch depth is a key fabrication parameter that governs the
periodic corrugations etched into the GC structure. This parameter significantly impacts
the interaction of light with the GC, thereby affecting the coupling efficiency and overall
device performance. The graph showcases high coupling efficiency at an optimal value of
0.05 µm, yielding a coupling efficiency of 28%, with a tolerance range of ±0.05 µm from
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the optimal value. As a result, this range can be useful when handling fabrication errors
that can happen at the fab faculty.
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Figure 5a,b provide a visualization of the thickness of the SiO2 layer (TSiO2 ) and
the Si3N4 thickness (TSi3N4 ) versus coupling efficiency to the SMF. In Figure 5a, it can be
observed that a TSiO2 thickness of 1 µm demonstrates a high coupling efficiency of 28%, with
a tolerance shift of ±25 nm. Figure 5b demonstrates the optimized value for TSi3N4 , which is
determined to be 0.76 µm, and the tolerance shift of ±30 nm ensures the allowable variation
within this range. At this thickness, alongside the operation wavelength of 1310 nm, there
is a reliable operation in the O-band spectrum. These findings provide valuable insights
incorporated within the exact design criteria that are essential for attaining the intended
GC performance, encompassing sturdy manufacturing processes.
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Figure 6 provides a detailed analysis of the coupling efficiency in relation to the angle
of the SMF, which is located at a distance of 2.6 µm from the GC, specifically focusing on
an operational wavelength of 1310 nm. The angle, denoted as θ, has been meticulously
chosen to optimize the coupling efficiency between the GC and SMF. By utilizing the
principles of Bragg conduction, alongside the FDTD simulations, the optimal angle has
been found to be 7.5 degrees, as shown in Figure 6. Additionally, the figure also showcases
a tolerance range spanning from 6.6 to 8.6 degrees. This range is particularly noteworthy
as it demonstrates that even within this wide span of angles, the coupling efficiency is over
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24%. This observation further emphasizes the robustness and effectiveness of the proposed
design technology.
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Figure 7 illustrates the scattered light within the GC directed towards the SMF at the
x-z cross-section. The associated simulation depicts the intensity profile of the light being
transmitted through the GC. A red arrow indicates the direction of the input signal, pointing
towards the GC structure denoted by a white arrow, while a green arrow symbolizes the
SMF. When examining the graph, it is evident that when the laser source transmits, the
light scatters through the grating structure. Some of the light is absorbed by the SiO2 layer,
while a portion propagates through the grating.
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The phenomenon of light transmission through the grating can be observed in the
middle of the graph where wave patterns emerge. These waves exhibit varying intensities,
ranging from 0 (gray) to 1 (light blue), with the light blue color indicating higher intensity.
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The greater the intensity of these waves, the more light can be captured by the SMF. The
process of light scattering through the GC is known as the Bragg effect, where there is
a partial matching of phases between the incident wave and the scattered wave. As the
waves propagate from the GC towards the SMF, their intensity increases, as indicated by
a lighter shade of blue, and the coupling efficiency also improves. This implies that the
integral overlap between the mode of the GC and the mode of the SMF increases. To better
see the diffracted light coming from the GC into the SMF and the light scattering into the
air, a zoom in on Figure 7a is conducted, as shown in Figure 7b.

The output electric field from the FDTD monitor was extracted and used as a launch
field to simulate and study the physical mechanism of the electric field distribution over
the SMF, as shown in Figure 8. It can be seen that strong light confinement is achieved
inside the SMF core, which ensures that all the light coupled from the GC can be utilized to
test the signals at the output SMF.
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Figure 9 provides a comprehensive analysis of the coupling efficiency in relation to the
SMF location from the GC. The graph illustrates two areas with strong coupling efficiency
that can be utilized for the measurement of the chip signal. Additionally, the graph indicates
a decrease in the coupling efficiency as h increases, which is clearly expected because of
the absorption of the light in the free-space (air) zone. Thus, from a testing view, it will be
better to use area 1 or area 2 to obtain good stability for dealing with mechanical errors,
such as the shifting or vibrations of the SMF in the optical setup. Area 1 is located where h
is between 2.2 and 3 µm, and θ is between 6.6 and 8.6 degrees. The maximum coupling
efficiency is obtained at 2.6 µm, alongside 7.5 degrees. Area 2 is located where h is between
3.65 and 4.35 µm, θ is in the same range as the first area, and the maximum coupling
efficiency is obtained at 4 µm, alongside 7.5 degrees. These results show a wide tolerance
range of h with 400 nm and 350 for area 1 and area 2, respectively.

Figure 10 presents the coupling efficiency in relation to the wavelength in the O-band
spectrum, specifically considering TE mode polarizations. The wavelength tolerance range
spans from 1270 to 1360 nm, which is notably suitable for achieving a coupling efficiency of
over 24%. Hence, our suggested GC device can readily manage the laser drift phenomenon,
which can happen due to the heating process of the laser that can shift the wavelength
around 0.08 nm/◦C.
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BR is another noteworthy facet of the GC. It can potentially pose substantial risks to
the signal transmission because it can lead to undesired disturbances in the laser, which can
reduce the signal integrity. To determine the BR power in our model, two monitors (green
color in Figure 11a) were positioned. One was placed at the input of the GC waveguide
to capture the entirety of the light that was reflecting from the GC region, as depicted
in Figure 11a. Another one was located at the Si background substrate to collect all the
diffraction light coming back from the rectangular teeth areas of the GC, as shown in
Figure 11a. The FDTD BR results show that 31.5% of the input light comes back into the Si
substrate layer, and a minor BR light of 0.015% is reflected into the input waveguide section,
as shown in Figure 11b. Hence, integrating a mirror located at the bottom before the Si
substrate area can dramatically improve the light coupling from 28% to around 50% and
above. However, this solution is not recommended because of the high cost of fabrication,
alongside a larger footprint size. The BR coming to the input signal can be handled easily
by integrating a Si3N4 adiabatic waveguide taper, which can reduce it to 40 dB BR [43].
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Table 1 presents an extensive comparison of Si3N4 on an insulator-based chip-to-
fiber GC, involving essential factors such as Si3N4 GC technology, coupling efficiency,
wavelength, complexity of fabrication, and fabrication costs. From this table, it can be
seen that only a GC with a complex configuration alongside a high cost can obtain a
higher coupling efficiency ranging from 38% to 56%. Our proposed device shows superior
characteristics, such as a low cost with a simple configuration that is easy to fabricate, and
can also be operated in the O-band spectrum. Thus, our GC is the most suitable GC to use
for testing signals for PICs working in data center applications.

Table 1. Comparative analysis of Si3N4 Insulator-Based Chip-to-Fiber GC.

Si3N4 GC Technology Coupling
Efficiency (%) Wavelength (µm) Complexity of

Fabrication (Yes/No)
Fabrication Cost

(High/Low)

GC with bottom grating
reflector [43] 27 1.55 yes high

GC based on butt-coupled [44] 38 1.54 yes high

GC between waveguide and
fiber [45] 22 1.56 no low

GC combined inverse taper
using [46] 42 1.56 yes high

GC with bottom reflectors [47] 56 1.57 yes high

In this work 28 1.31 no low

4. Conclusions

A new design of a GC based on Si3N4 structures for efficient light coupling in the
O-band spectrum has been demonstrated. The proposed GC design, utilizing a uniformly
grooved teeth rectangular configuration, offers improvements in terms of cost-effectiveness
and ease of fabrication, compared to other GC models. Through numerical investigations
using the FDTD method, the optimal key values of the GC have been found to fulfill the
Bragg condition for increasing the Si3N4 waveguide TE mode. The optimal grating period
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(Λ) was determined to be 0.84 µm, ensuring robust performance even with slight deviations.
The thicknesses of the SiO2 and Si3N4 layers were carefully chosen with a thickness of 1 µm
for SiO2 and 0.76 µm for Si3N4, and the etch depth was set to be 0.36 µm with a tolerance
range of ±0.05 µm. The coupling angle (θ) from the SMF was optimized at 7.5 degrees,
and the distance between the SMF and GC was determined to be 2.6 µm, resulting in an
excellent coupling efficiency of 28% between the GC and SMF at a wavelength of 1310 nm.
Also, through simulation, the electric field distribution over the SMF has been studied and
shows strong light confinement inside the SMF core, which helps us to maintain the optical
energy at the SMF output for testing signals. In addition, two areas for testing measuring
with high efficiency have been found, which can be useful to deal with mechanical errors
in the optical setup. The proposed GC device can support the O-band spectrum with
a high coupling efficiency of over 24%, and can easily handle the laser drift effect. The
analysis of the proposed Si3N4-based GC with other designs and technologies highlighted
its advantages in terms of cost-effectiveness, ease of fabrication, and performance. Based on
the findings of the BR analysis, 31.5% of the input light is reflected into the Si substrate layer.
This issue can be handled by putting a bottom mirror before the Si layer. However, this
solution will increase the fabrication cost and complexity. Also, only a minimum of 0.015%
BR power is coming back into the input waveguide, which can be easily handled by adding
an adiabatic Si3N4 waveguide taper. By eliminating the need for a waveguide converter
from Si3N4 to Si, our design minimizes power losses and BR, reducing the footprint size
of the photonic chip and enabling better performances. Hence, the proposed Si3N4-based
GC design offers a promising solution for efficient light coupling in the O-band spectrum.
The optimized structural properties and design parameters contribute to high coupling
efficiency, while the use of Si3N4 waveguides in PICs provides superior optical properties.
Thus, the new design can be superior compared to the classical Si GC for testing Si3N4
photonic chips. From a system view, using our new design instead of the classical Si GC
can improve the transceiver chip performances operating within the O-band spectrum.
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