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Abstract: The study in this paper characterizes lightweight IoT networks as being established by
devices with few computer resources, such as reduced battery life, processing power, memory, and,
more critically, minimal security and protection, which are easily vulnerable to DDoS attacks and
propagating malware. A DDoS attack detection model is crucial for attacks in various industries,
ensuring the availability and reliability of their networks and systems. The model distinguishes
between legitimate and malicious traffic by analyzing network traffic patterns and identifying
anomalies. This safeguards critical infrastructure, preserves business continuity, and protects the
user experience, minimizing the impact of DDoS attacks. Numerous scholars have studied the
notion that protecting lightweight IoT networks essentially requires improving intrusion detection
systems. This research is valuable, as it follows a tailored pre-processing methodology specific to IoT
network challenges, addressing a pressing need in cybersecurity by focusing on a growing concern
related to IoT devices and DDoS attacks, enhancing the security of essential network systems in
various industries by effectively detecting DDoS attacks, and developing a lightweight intrusion
detection system that aligns with the limited resources of IoT devices. This manuscript proposes a
compact and lightweight intrusion detection system that blends machine learning classifiers with a
fresh approach to data pre-processing. The handling of missing values, data standardization using
Standard Scalar, feature selection using ExtraTreeClassifier wherein only the 15 best features are
extracted, and anomaly detection using a classifier are performed. The network dataset of TON-IOT
and BOT-IOT datasets is used for experiments, specifically binary classifications and multiple-class
classification for the experiment with DDoS and all attacks, respectively. There is an imbalance
between the TON-IOT and BOT-IOT attack classes. In trials using the TON-IOT and BOT-IOT
datasets, the classes were balanced using several iterations of the SMOTE approach. This research
provides a number of classifier types, namely logistic regression, random forest, naïve bayes, artificial
neural network, and k nearest neighbor algorithms, which are used to build a lightweight intrusion
detection system that is ideally suited for protecting against DDoS attacks in IoT networks. The time
taken to train and predict the DDoS attacks is also implemented. Random forest performed well
under TON-IOT and naïve bayes performed well under BOT-IOT under binary and multiple-class
classification, achieving an accuracy of 100% with less training and prediction time.

Keywords: machine learning; BOT-IOT; TON-IOT; DDoS; SMOTE; IoT; logistic regression; KNN;
ANN; random forest; naïve bayes

1. Introduction

IoT devices create a network of connected objects that interact with each other and with
humans. They communicate wirelessly or through wired connections like Wi-Fi, Bluetooth,
or cellular networks. IoT devices collect data from their surroundings, such as temperature,
location, health stats, etc. The collected data is sent to cloud-based platforms or local servers
for storage, analysis, and processing. IoT devices enable various applications in healthcare,
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transportation, agriculture, and home automation. They improve efficiency, convenience,
and productivity by taking actions based on the collected data. IoT devices contribute to
the interconnectedness of our world, enabling smarter systems and providing valuable
insights for decision-making, ultimately enhancing our quality of life.

1.1. DDoS Attacks

DDoS assaults directed toward IoT systems can seriously damage IoT devices [1].
According to the most current estimate, there will be up to 35 billion connected IoT devices
by 2025, with roughly 50% unprotected and vulnerable to most security attacks, including
DDoS attacks.

In 2017, the IoT Reaper, also referred to as IoTroop, was a botnet that exploited
IoT device vulnerabilities to form a large botnet [2]. It targeted devices like IP cameras,
routers, and network-attached storage (NAS) devices, infecting them. While its motives
were uncertain, the Reaper botnet had the capability to execute significant DDoS attacks.
Luckily, security researchers intervened and stopped its growth by gaining control of its
command-and-control infrastructure.

In 2018, Satori, also called Okiru, emerged as a variant of the Mirai botnet. It focused
on exploiting vulnerabilities in IoT devices, particularly Huawei routers [3]. Satori took
advantage of a remote code execution vulnerability found in the routers’ management
interface to enlist them into the botnet. Once compromised, these devices became potential
sources for launching DDoS attacks and carrying out other harmful actions.

1.2. Motivation

Given the IoT devices’ and systems network’s limited resources, the attackers are
not unsophisticated and have expanded themselves with a variety of inventive strategies
to infiltrate them. There is typically a lot of traffic when there are billions of IoT devices.
As a result, it could be difficult to distinguish between a DDoS attack and an ordinary
traffic increase. DDoS identification intelligence is necessary to solve these problems. Both
machine learning and deep learning techniques may play predictive roles across a range
of various cases to fight against DDoS attacks on IoT infrastructure, giving organizations
new insights and increasing the demand for performance tools and IT development. Deep
learning and machine learning algorithms are among the best and most powerful methods
to protect IoT networks from various attacks. One concern regarding this derives from the
fact that DDoS assaults have become more frequent and attempt to target consumer-level
IoT devices, as well as from the reality that consumers lack technological expertise or
awareness of inherent weaknesses.

A command server in Figure 1 contains multiple users in the internet world who access
IoT devices on a day-to-day basis, which is all in turn connected with the target server. This
gives the attacker an opportunity to attack the command server, which would indirectly
affect the IoT devices that are connected to the network of bots. The creation of resistant
solutions for IoT systems to identify attacks is one of the primary objectives for researchers
to improve the rate of success in detecting dangerous threats against IoT architecture. To
track and forbid unsuitable data flowing through the IoT network, security must be able to
find unwanted and malicious traffic. The anomaly detection is done on edge devices, where
it can be performed to analyze the data at the edge, allowing for real-time decision-making
and reducing the need to transmit large amounts of data to a central server. This is often
essential in IoT networks where bandwidth might be constrained. This performance is
important, as performing detection at the edge saves bandwidth and reduces latency. Edge
devices have constraints on computational power and memory, so efficient algorithms are
needed and high performance must be achieved with minimal energy usage, especially
in battery-powered devices. Quick detection is essential to respond to threats like DDoS
attacks promptly and effective anomaly detection at the edge can provide early warnings
of suspicious activities, enhancing overall network security. However, some ML models
frequently misclassify the most hazardous traffic flows as a result of incorrect and subpar
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feature selection. The main objective is to undertake extensive research that can be applied
to IoT fraud detection.
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1.3. Contributions

In the current work an unconventional data pre-processing method is suggested,
firstly to find the important features required, and then the feature drop-out technique
is suggested to get rid of low-priority features. This article presents a set of classifiers
for anomaly detection in IoT traffic network data using machine learning models, along
with comparing the performance ratings of each classifier. The identification of DDoS
attack patterns and the proliferation of malware with DDoS capabilities remain the main
objectives of the research. This article focuses on the detection of DDoS attack labels and
malware propagation in IoT network data traffic using the suggested feature selection and
pre-processing methods, which are detailed below in Section 3 of the manuscript.

This research has used BOT-IOT and TON-IOT datasets to show how effective the
proposed model is with respect to its robustness and generalizability. Diverse datasets
capture various network traffic patterns, attack types, and network conditions to develop
models that effectively detect attacks in different scenarios. Additionally, this helps re-
searchers gain insights into the challenges of detecting attacks in diverse IoT deployments,
as different datasets reflect real-world scenarios. By leveraging two datasets, bias can be
avoided, more comprehensive models can be developed, and different attack patterns
and network conditions can be effectively handled. The proposed model is proven to be
lightweight and much more effective than the previous state-of-the-art models, as feature
selection methods like ETC are used and feature dimensionality is narrowed down by using
only 15 features. The SMOTE technique is used to resample and balance the datasets to
avoid overfitting. K-fold cross-validation is used to enhance the accuracy of multiple-class
classification and time factor is implemented to depict the training and prediction time to
detect the DDoS attacks. Labels on the dataset were used to group DDoS attack tests with
other testing. The following are the research’s contributions:

• A modern method of ensemble feature selection for data pre-processing for network
IoT datasets.

• Withdrawal of DDoS-attack-related traffic patterns from the TON-IOT and BOT-
IOT datasets.
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• Comparing and analyzing the performance of machine learning algorithms like LR,
NB, RF, ANN, and KNN with binary and multiple-class classification.

2. Literature Survey

To detect and categorize hostile network traffic inside an IoT network, a cutting-edge,
DL-based DDoS detection system is proposed in this research [4] to defend the IoT network
against new DDoS assaults. This research suggests a multi-classification method for DDoS
attacks that is effective, reliable, and scalable. The suggested approach uses a Cu-LSTM-
aided framework with GPU support to detect complex multi-vector DDoS attacks in IoTs
using the CICDDoS2019 dataset. Cu-enabled LSTM is the employed algorithm. The
suggested model showed excellent accuracy in identifying DoS assaults. However, just
a small number of folds were employed for cross-validation to achieve the highest level
of multi-class classification accuracy. The classifier claimed a detection accuracy of above
99.6% for DDoS threats in the multi-class characterization.

The purpose of this research is to suggest a methodology for identifying unusual
DDoS attacks, using the Mirai dataset [5], and to test two well-known DDoS assaults,
using the standard dataset. To normalize and clean data and extract valuable features,
two methods are implemented. A framework is created for identifying and evaluating
anomalous behavior using common machine learning techniques. Linear SVM, neural
networks, and decision tree algorithms are employed. According to the experimental
findings, a merge of random forest and decision tree was able to detect attacks with an
accuracy of 99.7%. The worst-performing algorithm is linear SVM.

The purpose of this research is to offer an IDS for the detection of DDoS attacks that
combines deep learning with multi-objective optimization [6]. In order to minimize the
dimensionality of the data and pick features, these normalized data are fed into the jumping
gene-adapted nondominated sorting genetic algorithm. This method was suggested in the
earlier research, which has been submitted for publication. For the NSGA II-aJG algorithm
implementation, the author considered the six most crucial goals, which are covered in
more depth in the subsection. The deep learning algorithm-based model receives the
reduced data that were output from the preceding stage as input data, using a sigmoid
function with binary cross-entropy. CISIDS2017 datasets on DDoS were utilized as the
datasets. MLP, SVM, bayes, random forest, and genetic algorithm (NSGA-II-aJG) were the
algorithms employed. The proposed approach (NSGA-II-aJG) has attained an F1 score
value of 99.36% and an accuracy of 99.03%.

The purpose of this article is to offer cutting-edge cyber security solutions to IoT
devices and apps for smart cities. This research suggests a botnet detection system that
uses network traffic flows and is DL-based [7]. In order to identify assaults coming from
infected IoT devices, the botnet detection framework gathers network traffic flows, turns
them into connection records, and then utilizes a DL model. Numerous tests are run on
well-known and freshly released benchmark datasets in order to identify the best DL model.
The datasets are displayed in order to comprehend their features. BASHLITE and Mirai
botnet datasets were used. Logistic regression, NB, KNN, DT, RF, RSVM, and linear SVM
were the algorithms employed. The SVM models, coupled with KNN and RF models,
provided accuracy results of 100%. The KNN and RF models together provided an accuracy
of 99%. However, it is noted that the SVM models, when compared to all other algorithms,
are computationally expensive and take a long time to learn all the many patterns that exist
in datasets during training.

This study focuses on IoT DDoS defense strategies and proposes FlowGuard, an edge-
centric IoT defensive system, for detecting, identifying, classifying, and mitigating IoT
DDoS attacks [8]. In this study, a DDoS attack detection, identification, classification, and
mitigation strategy called FlowGuard was suggested. It makes use of two machine learning
approaches that work together: long short-term memory (LSTM) and convolutional neural
network (CNN). FlowGuard is made up of two main parts: a flow handler and a flow filter.
The latter analyzes suspicious flows for DDoS attack identification and classification and
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conducts filtration rule generation using a self-evolving machine. The former maintains the
flow filtration rules generated by the handler and is responsible for DDoS attack detection.
The CICDDoS2019 dataset was utilized. The proposed model using LSTM acquired an
accuracy of 98.9% and with CNN it obtained 99.9%.

The goal of this research was to concentrate on identifying DDoS attacks launched
via IoT-bot-infected devices. First, 33 different types of scans and 60 different types of
DDoS attacks were generated to create a generic scanning and DDoS attack dataset [9].
The author then suggested a two-pronged machine learning strategy to stop and identify
IoT botnet attacks. In order to stop IoT botnet attacks, the author created a cutting-edge
deep learning model, ResNet-18, to detect scanning activity in the early stages of an attack
while training a second ResNet-18 model for DDoS attack identification to recognize IoT
botnet attacks in the second fold. For the dataset CICIDS-2019, BOT-IOT was utilized.
It is a logistic regression algorithm. In comparison to the existing trained models, the
experimental findings show that the suggested two-fold strategy may effectively prevent
and detect botnet attacks. However, if the scanning detection model is unable to stop a
botnet attack, the ResNetDDoS-1 model will be used to detect a DDoS attack. In order to
prevent and identify IoT botnet assaults, the suggested two-fold technique exhibits 98.89%
accuracy, 99.01% precision, 98.74% recall, and 98.87% F1 score.

In this study, a range of machine learning (ML) techniques with built in WEKA tools
are used to investigate the detection performance for DDoS assaults [10] using the most
recent CICDoS2019 datasets. CICDDoS2019 was judged to be the model that gave the best
outcomes. K-NN, SVM, NB, DT, RF, and LR are the six different kinds of machine learning
(ML) algorithms that were used in this study. In the evaluation presented, the DT and RF
algorithms generated the best results, with accuracy results of 99% and 99%, respectively.
However, because of the DT’s quicker computation time (4.53 s as opposed to 84.2 s), it
outperforms the RF. Unresolved issues are then presented for potential future investigation.

In order to guarantee security from DoS and DDoS attacks, a number of ideas have
been put forth in this article. Algorithms for Deep Learning and Machine Learning have
both been used to assess DoS and DDoS attacks [11]. For training, the UNSW Canberra
Cyber Center’s BOT-IOT dataset was utilized. For training and testing purposes, algorithms
for machine learning used random forest, KNN, and decision trees with logistic regression
as the meta-classifier. As a consequence, the best attack classification accuracies for deep
learning and machine learning algorithms, respectively, are 99.5% and 99.9%.

The purpose of this research is to offer a novel machine learning technique for the
detection and mitigation of botnet-based DDoS attacks on IoT networks. The suggested
model addresses the security concern regarding the dangers posed by bots [12]. A model
was developed using a variety of machine learning methods, including KNN, NB model,
and MLP ANN, with data from the BOT-IOT dataset as the training set. Based on the
accuracy, ROC, and AUC scores, a reference point chose the best algorithm. SMOTE
and feature engineering were integrated with ML algorithms. The performance of three
algorithms was evaluated on both the class-balanced dataset and the class-imbalanced
dataset. Notably, naive bayes mode achieved the highest accuracy of 99.4%.

In this study, the objective is to present a feature engineering and machine learning
framework for the IoT-CIDDS dataset to detect DDoS attacks [13]. In the initial stage, the
author focused on advanced feature engineering and built algorithms for dataset enrich-
ment in order to statistically analyze the dataset with a probability distribution and feature
correlation. In the second step, the author created training, validation, and testing datasets
using IoT-CIDDS and presented an ML model while performing complexity analysis of the
feature-engineered dataset using five machine learning approaches. Accuracy, precision,
recall, area under the curve, false positive rate, and computing time for classifier training
are all considered when evaluating ML models. IoT-CIDDS is the dataset in question.
Logistic regression, SVM, decision tree, MLP, and random forest algorithms are employed.
The evaluation’s findings showed that random forest outperformed all other classifiers,
having the best detection rate, the fewest false positives, and the fastest calculation time
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(98.8% accuracy). The following dataset, however, will provide more accurate results for
multi-class classification than binary.

In this research, a hybrid methodology for feature selection using feature selection
methods applied to machine learning classifiers is proposed. The entire dataset is subjected
to the train–test split, which uses 70% of the dataset’s data for training and 30% for
testing [14]. The CICDDos2019 dataset, which is based on network flow features and
covers two types of assaults (exploitation-based and reflection-based), was used by the
author. Machine learning classifiers are used on this dataset, and the highest value of
their performance parameters is noted for all attributes. The following describes how
to apply chi-square feature selection to machine learning classifiers (RF, DT, KNN, and
XGBoost). The first step is to apply these classifiers at intervals of five, after which a
series of iterations are carried out, and the number of characteristics for which the greatest
accuracy is attained is noted. These classifiers are used at an interval of one to choose
an ideal window. Therefore, at the following stage, an ideal window will be created
to begin iterations at intervals of one from 30 to 40 features, and determine the precise
number of features for which accuracy is highest. The results show that XGBoost and
ANOVA together achieve 98.374% accuracy for 15 characteristics. However, XGBoost is
not a perfect algorithm since accuracy dropped from 98 to 64 as the number of features
increased from 20 to 30.

This study compares and contrasts machine learning (ML) techniques for DDoS attack
detection and classification. In this experiment, unsupervised data filtering using the PCA
technique is used to extract key features and lighten the load on the classifiers [15]. To
successfully detect DDoS attacks, four supervised classification methods are used. The
10-fold cross-validation procedure is then used to validate the results and determine how
resilient the suggested approach is. The BOT-IOT dataset was utilized. Naive bayes,
J48, random forest, and PCA were the algorithms employed. According to experimental
findings, the random forest classification algorithm outperforms the others, with a 99.99%
accuracy rate.

The goal of this study was to categorize DDoS attacks as distinct from regular attacks.
The CICDDoS2019 dataset was used to train and test classification models [16]. It includes
several DDoS assaults, including NTP, DNS, LDAP, and others. To perform binary classifi-
cation, the categorical labels were encoded into integer format, where one represents benign
and zero denotes malevolent. After indexing the string values, the data were standardized
to get rid of any misclassification using the CICIDS-2019 data set. Random forest, KNN,
decision tree, and ANN were the algorithms employed. The artificial neural network model
had the best performance. The decision tree model had the worst performance, with a false
negative rate that was significantly higher than that of the other three models. With an
accuracy of 99.95%, it was noticed that the ANN model performed better than the other
classifier models.

The goal of this research is to accelerate detection while maintaining a respectable
degree of detection [17]. The pre-processing of the IoT-Bot dataset and the classification of
the several attack types included are both covered in this paper’s approach. The author
compared the outcomes of random forest, k nearest neighbor, support vector machine
(SVM), and logistic regression classifiers from the cuML package using GPU-accelerated
versions. The author also included explanations of pre-processing procedures taken to
prepare data for training. The ioT-BoT-BoT dataset is the one that was used. The algorithms
SVM, logistic regression, and KNN were employed. DDoS detection was quickest using
the random forest model. The collected findings indicate that the best-trained model’s
accuracy and recall are, respectively, 0.999 and 0.997.

The purpose of this study is to suggest a novel architecture made up of two parts:
DoS/DDoS detection and DoS/DDoS mitigation [18]. This research suggested an archi-
tecture that is made for the Internet of Things and is intended to detect and mitigate
DoS/DDoS assaults. The DoS/DDoS detection offers fine-granularity detection since it
distinguishes between DoS and DDoS attacks and the attack’s packet type. The author used
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the appropriate mitigating countermeasure based on the prediction attack outcome. The
author employed a multi-class classifier that incorporates the looking-back concept and
is tested on the BOT-IOT dataset to identify DoS/DDoS assaults. Decision tree, random
forest, KNN, MLP, RNN, and LSTM were among the algorithms utilized. The evaluation’s
positive findings include the looking-back-enabled random forest’s 99.81% accuracy.

This work aims to classify and forecast types of DDoS attacks using machine learning [19].
The choice of a dataset for use is made in the first phase. The choice of tools and language
comes in the second phase. The third stage uses data pre-processing methods to deal with
the dataset’s irrelevant data. The fourth phase is the labeling and extraction of features.
To transform symbolic data into numerical data, encoding is used. The data is separated
into a train and test set for the model in the fifth stage. To increase model effectiveness,
however, the trained model also undergoes model optimization in terms of kernel scaling
and kernel hyperparameter adjustment. The UNWS-NB-15 dataset was utilized. XGBoost
and random forest were the algorithms employed. Random forest has an accuracy rate
of 89%, compared to 90% for XGBoost.

This study suggests a modified long short-term memory deep-learning-method-based
IDS for detecting DoS attacks in IoT networks [20]. To evaluate the model, benchmark
datasets CICIDS-2017 and NSL-KDS were employed. The datasets underwent normaliza-
tion, dimensionality reduction, and encoding in three pre-processing steps. The suggested
RLSTM model detected DoS assaults on the CICIDS-2017 dataset with 99.22% accuracy.
Furthermore, it achieved 99.23% precision, 99.22% recall, and 99.22% f-score rates for de-
tecting DoS attacks on the CICIDS-2017 dataset. Using the NSL-KDD dataset, the model
achieved 98.60% on all performance metrics.

This study compares features from the UNSW-NB-15 and BOT-IOT datasets based
on flow and TCP in order to propose a PB-DID architecture, creating a dataset of packets
from IoT traffic in the process [21]. The work differentiates between non-anomaly, DoS,
and DDoS traffic by addressing issues like imbalance and overfitting. Using DL and LSTM,
it was able to attain a classification accuracy of 96.3%.

The manuscript suggests a lightweight IDS that combines machine learning and deep
learning classifiers with a novel data pre-processing method [22]. Datasets from TON-IOT
by UNSW and BOT-IOT were used for the tests and analysis. Both datasets are used to
create DDoS attack instances. For binary and multiple-class classifications of attack labels,
two separate experiments are run on each dataset, one for all attacks and the other just for
DDoS attacks in both datasets. In the trials carried out on the BOT-IOT dataset they used
the SMOTE approach and variants for class balancing.

In all this research it can observed that multiple datasets related to DDoS attacks
are used, such as CICDDoS, BOT-IOT, UNWS-NB, etc., and most of the ML and DL
algorithms are giving good results for the models. It is observed that random forest,
logistic regression, and naïve bayes algorithms give really good results for DDoS attacks
in IoT. According to previous work, the existing models are complex and not as reliable
in detecting DDoS attacks when compared to the proposed model. The research has
performed data standardization along with feature selection to retrieve the 15 best features
out of 45 features from both datasets over which training and testing were performed.
Hence, this approach makes the model a lightweight model. The SMOTE technique was
used to cross out overfitting and resample the imbalanced data. Five-fold cross-validation
was performed for multiple class classification to improve accuracy. Five ML algorithms,
namely logistic regression, random forest, ANN, naïve bayes, and KNN, were used to
train and test the model (Table 1). Considering this above-mentioned methodology, it can
be stated that this research is very much justified and effective in detecting DDoS attacks
efficiently in IoT devices, and it managed to achieve higher accuracy than all other existing
models. One of the most important factors that is required while detecting attacks in IoT
devices, which is present in this model and is not present in any other state of the model, is
training and prediction time for all algorithms.
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Table 1. Literature survey.

Ref Year Objectives Dataset Algorithms Limitations Results

[4] 2020

To detect and categorize hostile
network traffic inside an IoT network,

a cutting-edge, DL-based DDoS detection
system is proposed in this research to
defend the IoT network against new

DDoS assaults.

CICDDoS2019 Cu-enabled
LSTM

A small number
of folds were
employed for

cross-validation to
achieve accuracy.

The classifier claimed
a detection accuracy of
above 99.6% for DDoS

threats in the multi-
class classification.

[5] 2020
The purpose of this research is to suggest
a methodology for identifying unusual

DDoS attacks.
Mirai

LSVM, neural
networks,

decision tree

The linear SVM
algorithm
performed

very poorly.

According to the
experimental findings,

a merge of random
forest and decision tree

was able to detect
attacks with an

accuracy of 99.7%.

[6] 2020

The purpose of this research is to offer
an IDS for the detection of DDoS attacks

that combines deep learning with
multi-objective optimization.

CISIDS2017

MLP, SVM,
bayes and

random forest,
genetic

algorithm
(NSGA-II-aJG)

MLP is the worst
model for detecting

DDoS attacks.

The proposed approach
(NSGA-II-aJG)

has attained an F1 score
value of 99.36% and an

accuracy of 99.03%.

[7] 2020
The purpose of this article is to offer
cutting-edge cyber security solutions

for IoT devices and apps for smart cities.

BASHLITE
and Mirai

botnet datasets

Logistic
regression,

NB, KNN, DT,
RF, RSVM,
linear SVM

The SVM model
is computationally

expensive and
takes a long time.

SVM models, coupled
with KNN and RF
models, provided

accuracy results of 100%.
KNN and RF models
together provided an

accuracy of 99%.

[8] 2020
This study focuses on IoT DDoS
defense strategies and proposes

FlowGuard to detect IoT DDoS attacks.
CICDDoS2019 LSTM, CNN

Detects unidentified
malicious flows
based on traffic
variations only.

The proposed model
using LSTM acquired
an accuracy of 98.9%

and with CNN it
obtained 99.9%.

[9] 2021
The goal of this research was to

concentrate on identifying DDoS attacks
launched via IoT-bot-infected devices.

CICIDS-19,
BOT-IOT

Logistic
regression

There are chances
of failing to detect
the botnet attacks.

The suggested two-fold
technique exhibits

98.89% accuracy, 99.01%
precision, 98.74% recall,
and a 98.87% F1 score.

[10] 2021
To build a DDoS attack protection

system for IoT devices using WEKA
tools and ML techniques.

CICDDoS2019 KNN, SVM,
NB, DT, RF

Validation of
implemented

structures is critical.

In the evaluation that
was presented, the DT

and RF algorithms
generated the best

results, with accuracy
results of 99%

and 99%, respectively.

[11] 2021 To guarantee security from DoS and DDoS
attacks using ML and DL techniques. BOT-IOT Random forest,

decision trees

Many more
algorithms can be

used to experiment.

The best attack
classification accuracy

for deep learning
and machine

learning algorithms,
respectively,

are 99.5% and 99.9%.

[12] 2021

The purpose of this research is to offer a
novel machine learning technique for the
detection and mitigation of botnet-based

DDoS attacks on IoT networks.

BOT-IOT Naïve bayes
The imbalance
dataset is used

to train.

Three algorithms’
performance

was compared,
and a 99.4% accurate
naïve bayes model

was found.

[13] 2021
To present a feature engineering and
machine learning framework for the

IoT-CIDDS dataset to detect DDoS attacks.
IoT-CIDDS

Logistic
regression,

SVM, decision
tree, MLP,

random forest

Much higher
accuracy can be

depicted with this
proposed model.

The evaluation’s
findings showed that

random forest
outperformed all other
classifiers, having the
best detection rate, the
fewest false positives,

and the fastest
calculation time

(98.8% accuracy).
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Table 1. Cont.

Ref Year Objectives Dataset Algorithms Limitations Results

[14] 2021

To provide a hybrid methodology
for feature selection using feature selection

methods applied to machine
learning classifiers.

CICDDDoS2019
KNN, random
forest, decision
tree, XGBoost

XGB is not an ideal
algorithm as it has

20 to 30 features
and accuracy

reduced from 98%
to 64%.

The results show that
XGBoost and ANOVA

together achieve
98.374% accuracy for

15 attributes.

[15] 2021
This study compares and contrasts

machine learning (ML) techniques for
DDoS attack detection and classification.

BOT-IOT
Naive bayes,
J48, random
forest, PCA

J48 is the worst
performing model.

The random forest
classification algorithm
outperforms the others,

with a 99.99%
accuracy rate.

[16] 2022 The goal of this study was to categorize
DDoS attacks from regular attacks. CICDDoS2019

Random forest,
KNN, decision

tree, ANN

The DT model
performed the

worst with a high
false negative rate.

With an accuracy of
99.95%, it is noticed that

the ANN model
performs better than the
other classifier models.

[17] 2022
The goal of this research is to accelerate

detection while maintaining a respectable
degree of detection.

IoT-BoT
SVM, logistic

regression,
KNN

GPU technology
is used, which

reduces training
and prediction time.

The collected findings
indicate that the

best-trained model’s
accuracy and recall are,

respectively, 99.9%
and 99.7%.

[18] 2022

This research suggests an architecture that
is made for the Internet of Things and is

intended to detect and mitigate
DoS/DDoS assaults.

BOT-IOT

Decision tree,
random forest,

KNN, MLP,
RNN, LSTM

The KNN model
exhibits a

significant decrease
at every

looking-back step.

The evaluation’s
positive findings

include
looking-back-enabled

random forest’s
99.81% accuracy.

[19] 2022
This work aims to classify and

forecast types of DDoS attacks using
machine learning.

UNWS-NB-15 Random forest,
XGBoost

Higher accuracy
can be obtained

with a better
proposed model.

Random forest has an
accuracy rate of 89%

compared to 90%
for XGBoost.

[20] 2022

This study suggests a modified
long short-term memory

deep-learning-method-based IDS for
detecting DoS attacks in IoT networks.

CICIDS-2017,
NSL-KDS

Refined LSTM
and MLP

MLP models
did not perform

well with the
CICIDS-2017

dataset.

This model achieved
99.23% precision,
99.22% recall, and

99.22% f-score rates
for detecting DoS

attacks on the
CICIDS-2017 dataset.
Using the NSL-KDD
dataset, the model

achieved 98.60% for all
performance metrics.

[21] 2022

This study compares features from the
UNSW-NB-15 and BOT-IOT datasets based

on flow and TCP in order to propose a
PB-DID architecture, creating a dataset of

packets from IoT traffic in the process.

UNSW-NB15,
BOT-IOT LSTM The model is

very heavy.

Using DL and LSTM,
the researchers were

able to attain a
classification accuracy

of 96.3%.

[22] 2022

The research suggests a lightweight IDS
that combines machine learning and deep

learning classifiers with a novel data
pre-processing method.

BOT-IOT,
TON-IOT

Linear SVM,
LR, naïve bayes,

LSTM, ANN

State-of-the-art
model not provided

for validating the
proposed model.

The LSTM model
performed the best in

both BOT-IOT and
TON-IOT for binary and
multiple classifications,

with 99% and 95%
accuracy, respectively.

3. Proposed Lightweight Model for Intrusion Detection

Each proposed machine learning algorithm in this study can be implemented as a
classifier in the proposed model. In this research, a lightweight intrusion detection model
is built by combining classifiers from ML. In broad binary classification, machine learning
techniques and DL algorithms are directly in competition. IDSs get many different types
of data frames. An IDS collects data systematically from various sources from systems
using standard logging techniques such as code, packets, memory discs, and functions. A
network, the host, or any similar activity can be detected by an IDS. An incursion, whether
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it is dynamic or static, can be found in a network when an IDS is utilized. The model
presented below indicates a few fundamental and crucial steps that an intrusion detection
system should perform. It runs through each cycle of the technique until DDoS attack
traffic is identified and separated from ordinary traffic. Since distinguishing legitimate
traffic from infected traffic is the first and most crucial step of an intrusion detection system,
the design of the IDS model is addressed in detail in Figure 2.
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3.1. ToN-IoT Dataset

The network ToN-IoT dataset is a comprehensive collection of mixed data from various
sources within the Internet of Things (IoT) and the Industrial Internet of Things (IIoT). It
includes diverse data such as telemetry from connected devices, system logs from Windows
and Linux, and network traffic information. The dataset is designed to evaluate the accuracy
and efficiency of cybersecurity applications based on artificial intelligence. It simulates a
realistic network environment by connecting virtual machines, cloud layers, blurred edges,
and physical systems.

The dataset comprises both legitimate and offensive events, encompassing network
systems, operating systems, and IoT services. It is represented in CSV format and includes
461,043 records with 45 different features. These features provide information about various
aspects such as timestamps, IP addresses, ports, protocols, service details, duration, byte
counts, connection states, DNS queries, SSL information, HTTP details, anomalies, and
labels, indicating the type of behavior or attack.

In summary, the ToN-IoT dataset is a diverse and extensive collection of data from IoT
and IIoT sources, allowing researchers to analyze and develop cybersecurity applications
based on artificial intelligence. It provides a realistic representation of network environ-
ments and contains labeled data for different types of attacks, enabling the evaluation and
development of effective cybersecurity measures.

3.2. BoT-IoT Dataset

The BoT-IoT dataset was created in the Cyber Range Lab of UNSW Canberra by
designing a realistic network environment. This environment includes both normal and
botnet traffic. The dataset is available in multiple file formats, such as pcap, argus, and CSV.
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The files are categorized based on attack types and subcategories to facilitate the labeling
process. The dataset covers various attack categories, including DDoS, DoS, OS and service
scan, keylogging, and data exfiltration. DDoS and DoS attacks are further organized based
on the protocol used. A 5% sample was extracted using MySQL queries to make the dataset
more manageable.

This paper specifically uses the extracted 5%, which consists of four files totaling
approximately 1.07 GB in size. It contains around 3 million records with 46 different
features for training and testing. The features in the dataset include information such
as packet sequence ID, timestamps, flags, protocols, source and destination addresses,
packet and byte counts, connection states, durations, statistical values, and various network
metrics. Additionally, the dataset provides attributes related to attack labels, categories,
and subcategories.

In summary, the BoT-IoT dataset is a comprehensive collection of network traffic data
created in a realistic environment. It contains a subset of records from various attack cate-
gories and subcategories, enabling researchers to train and test cybersecurity models. The
dataset’s features cover a wide range of network-related attributes, facilitating the analysis
and development of effective defense mechanisms against different types of attacks.

3.3. Data Pre-Processing
3.3.1. Handling Missing Values

The first essential step when it comes to data pre-processing is managing the missing
values in a dataset. Generally, when it comes to data pre-processing, statistical terms like
standard deviation, mean, range, etc., are used to replace missing values. The clean versions
of the TON-IOT and BOT-IOT datasets—without any missing values—were used for this
study because of the datasets’ low percentage of missing values. Attributes like timestamps
and IP addresses have been removed as these features can lead to overfitting. The model
might learn patterns specific to those IPs or particular times, which do not generalize well
to new, unseen data. This can lead to poor performance when the model is applied to
data from different time frames or different IP addresses. In many cases, attributes like
IP addresses may not provide meaningful information for the task at hand. Including
irrelevant features can introduce noise and reduce the predictive performance of the model.

3.3.2. Handling Categorical Data

Machine learning classifiers can face difficulties when working with datasets that
contain attributes with a wide range of string values. Fortunately, Python provides several
libraries, such as “sklearn”, which offer useful tools for handling such scenarios. One
specific sub-library within scikit-learn, called “sklearn.preprocessing”, can be employed
to address these challenges by utilizing label coding. This approach involves managing
categorical data and transforming string values into numerical representations based on the
classes present in that particular feature. Scikit-learn is a reliable Python tool that offers func-
tionality for tasks like one-hot encoding, binarization, and digitization of categorical data.
In this suggested model, the label encoding technique from the “sklearn.preprocessing”
tool is applied to achieve the desired transformation.

3.3.3. Data Standardization

A few of the features in the TON-IOT and BOT-IOT datasets are not in a model-
friendly format. The source and destination IP addresses are among the components of the
IP address format. Following label encoding, the values must be properly normalized. To
normalize the input data for the suggested model, Standard Scalar is used. Identifying the
attributes to standardize the IP addresses in the dataset is essential before beginning the
standardization process.

In order to locate the appropriate output that will improve the results, a correlation
matrix, as shown in Figure 3, is developed in accordance with the TON-IOT dataset.
The “conn_state” attribute has been shown to be the ideal attribute to standardize with
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IP addresses. Similarly, in the BOT-IOT dataset, the correlation matrix is created and
it is observed that the “proto_number” attribute is the best to standardize, along with
IP addresses.
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3.4. Feature Selection

To assess the suggested model in the paper without encountering overfitting, impor-
tant characteristics from the input dataset were added. However, selecting a large number
of features for a traditional ML classifier increases the risk of overfitting. To address this,
a novel feature selection approach called ExtraTreeClassifier was developed to include
key features in the model development. Twenty critical features were selected from both
datasets, and the remaining features were discarded. The ExtraTreeClassifier algorithm is
significant for detecting DDoS attacks due to its ability to handle high-dimensional data
with both categorical and numerical features without requiring feature scaling. It effectively
addresses imbalanced datasets, which is crucial in DDoS attack detection where attack
instances are typically fewer than normal instances.

The algorithm’s computational efficiency makes it suitable for real-time or high-speed
network environments, enabling prompt detection of DDoS attacks. It excels at capturing
complex non-linear relationships between features and enabling accurate identification
of DDoS attack patterns amidst normal traffic. The algorithm’s resistance to overfitting
minimizes false positives and negatives in detecting DDoS attacks. With the capacity
to handle large feature sets, the ExtraTreeClassifier enables comprehensive analysis of
datasets with numerous network traffic attributes, enhancing the effectiveness of DDoS
attack detection. Its ensemble nature and randomness in feature selection make it robust
against noisy or irrelevant features, thereby improving overall performance and reliability.

Easy implementation and integration into existing network security systems make
the ExtraTreeClassifier convenient for deployment in real-world scenarios, facilitating
the utilization of DDoS attack detection. By evaluating the qualities based on their Gini
importance from least to most important, the top K attributes are chosen by the user. The
relevance of the top 15 features, as shown in Figure 4, from the TON-IOT and BOT-IOT
datasets is compared using ExtraTreeClassifier from the sklearn.ensemble module.
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3.5. Data Modeling

The data modeling process begins by dividing the data frame into segments. In the
suggested model, the classification model is trained on 80% of the data frame and evaluated
model on the remaining 20%. To accomplish this, the model imports the “train_test_split”
function from “sklearn.model_selection” with a 20% testing rate. After splitting the data
into training and testing samples, they are provided to the classifier for training and
evaluation. A SMOTE technique is implemented to oversample the attack class.

SMOTE is a significant technique for detecting DDoS attacks due to its ability to
address class imbalance. Solving this imbalance problem on these 2 datasets can avoid
overfitting the model. It generates synthetic samples of the minority class (DDoS attacks),
effectively balancing the dataset and improving training and classification performance.

SMOTE mitigates bias towards the majority class, enabling accurate detection of DDoS
attack patterns. By oversampling the minority class, it enhances the classifier’s ability
to identify and distinguish DDoS attacks from normal traffic, reducing the risk of false
negatives. It improves the classifier’s generalization ability by providing diverse samples,
enabling effective handling of unseen attack patterns. It is compatible with various machine
learning algorithms and reduces the need for collecting real-world attack instances. Its
effectiveness in improving DDoS attack detection has been demonstrated in numerous
studies; it enhances network security and mitigates potential damages caused by such
attacks. Furthermore, a 5-fold split is employed only for the multiple-class classification to
enhance accuracy during the assessment of the model.

3.6. Anomaly Detection by a Classifier

Anomaly detection by classifier is a technique used to detect DDoS attacks in IoT
devices by categorizing network traffic as normal (Class 0) or attack (Class 1). The classifier
is trained on labeled data, encompassing normal traffic patterns and known DDoS attack
patterns. This enables the classifier to identify anomalous behaviors associated with
attacks. It leverages features extracted from network traffic, such as packet sizes, flow
rates, and communication patterns, to differentiate between normal and attack instances.
The classifier’s performance is evaluated using metrics like accuracy, precision, recall, and
F1 score to measure its effectiveness in minimizing false positives and false negatives.
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Anomaly detection by classifier complements signature-based methods by identifying
previously unseen or zero-day attacks that lack known patterns. It strengthens network
security in IoT devices by providing an additional layer of defense against DDoS attacks,
ensuring a timely response and preserving the availability and performance of IoT services.

4. Results and Discussion

This paper has implemented its experiment with the help of Google Colab for working
on the TON-IOT dataset and Jupyter Notebook for working on the BOT-IOT dataset. Two
Python programming tools were used for this experiment as Google Colab gives limited
data usage capacity to run the experiment, which is not sufficient to run the BOT-IOT
dataset as well. Hence, the Jupyter Notebook was used. This experiment is run on Intel(R)
Core (TM) i7-9750H CPU @ 2.60 GHz, 2592 Mhz, six core(s), twelve logical processor(s)
with 16 GB RAM, and NVIDIA GeForce GTX 1660 Ti with Max-Q Design 4 GB graphic
card. It was very easy to import the network dataset of TON-IOT as it had limited records
(461,043 records) compared to the BOT-IOT dataset, which had four parts and had to be
concatenated together to create a 3-million-record dataset. Initially, both of the datasets
were experimented on with only 20 features and still gave excellent results compared to
the state-of-the-art models, but it was observed that even with 15 features the model was
able to compute excellent results that prove how efficient the proposed model is, with the
help of feature selection and resampling methods.

The TON-IOT and BOT-IOT datasets were used to model the dataset using five ma-
chine learning algorithms for DDoS attacks and regular traffic examples. When compared to
attack traffic flow, normal instances are seen to occur less frequently in the TON-IOT dataset
than in BOT-IOT. Therefore, it is necessary to balance the data frame’s attack class and
normal traffic class. Hence, the SMOTE technique was implemented, which was discussed
in the previous section. Initially, in TON-IOT, Class 0 had 239,945 records and Class 1 had
16,055 records, but after resampling Class 0 and Class 1 both had 239,945 records. Similarly,
in BOT-IOT, Class 0 had 1,541,298 records and Class 1 had only 382 records, but after
resampling Class 0 and Class 1 had 1,541,298 records. The proposed model is compared
with other existing models (Table 2).

Table 2. Comparison of existing data pre-processing techniques and proposed procedures.

Paper Year Handling Missing
Values

Handling Categorical
Data Standardization Feature Selection

[23] 2022 Minkowski Dist. - - SMOTE
[24] 2021 Imputation One Hot Encoding Min-Max Scalar Chi-Square Test
[22] 2022 - Label Encoding Standard Scalar ExtraTreeClassifier

Proposed
Model 2023 - One Hot,

Label Encoding
Standard Scalar,
Min-Max Scalar ExtraTreeClassifier

Each time, a collection of five algorithms is employed to decide how to classify and
predict the data frames. The following machine algorithms are applied in each situation:
logistic regression, naive bayes, artificial neural network, random forest, and k nearest
neighbor (Table 3). The research’s objective is to evaluate and contrast the performance of
various categorization and prediction algorithms. The results of all the tests mentioned
above are shown in a table that also includes an area under the curve score, a receiver
operating characteristic (ROC) curve, and a confusion matrix with Class 0 (normal) and
Class 1 (attack), along with the time taken to train and predict the data, categorizing
two cases each for both BOT-IOT and TON-IOT datasets.

• Case 1: multiple-class classification using 15 features of TON-IOT with SMOTE;
• Case 2: binary classification using 15 features of TON-IOT with SMOTE;
• Case 3: multiple-class classification using 15 features of BOT-IOT with SMOTE;
• Case 4: binary classification using 15 features of BOT-IOT with SMOTE.
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Table 3. Hyperparameter table for all algorithms used in the paper.

Classifier Hyperparameter Parameter Value

ExtraTreeClassifier ExtraTreeClassifier

criterion Gini

max_depth None

min_weight_fraction_leaf 0.0

max_leaf_nodes None

min_impurity_decrease 0.0

bootstrap False

oob_score False

n_jobs None

random_state None

verbose 0

warm_start False

class_weight None

ccp_alpha 0.0

max_samples None

SMOTE SMOTE

sampling_strategy ‘auto’

random_state 60

n_jobs None

Logistic
Regression

LogisticRegression

dual False

fit_intercept False

intercept_scaling 1

class_weight None

random_state 42

max_iter 100

multi_class ‘auto’

verbose 0

warm_start False

n_jobs None

l1_ratio None

Random Forest Random Forest Classifier

max_depth None

min_weight_fraction_leaf 0.0

max_leaf_nodes None

min_impurity_decrease 0.0

bootstrap False

oob_score False

n_jobs None

random_state 50

verbose 0

warm_start False

class_weight None

ccp_alpha 0.0

max_samples None
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Table 3. Cont.

Classifier Hyperparameter Parameter Value

Naïve Bayes GaussianNB random_state 0

Artificial Neural
Network

model = Sequential()
model.add(Dense(32, input_dim = 15,
activation = ‘relu’))
model.add(Dense(16, activation = ‘relu’))
model.add(Dense(2, activation = ‘softmax’))
model.compile(loss = ‘categorical_crossentropy’,
optimizer = ‘adam’, metrics = [‘accuracy’])

model.add(Dense(input_dim=,
acitivation=)) (32, 15, ‘relu’)

model.add(Dense(activation=)) (16, ‘relu’)

model.add(Dense(activation=)) (2, ‘softmax’)

model.compile(loss=,
optimizer=, metrics=)

‘categorical_crossentropy’,
‘adam’, [‘accuracy’]

K Nearest
Neighbour KneighborsClassifier

n_neighbors 10

weights ‘uniform’

algorithm ‘auto’

metric ‘minkowski’

metrix_params None

n_jobs None

The precision-, recall-, F1-score-, and accuracy-containing performance matrices are
used to assess the performance of all five methods.

4.1. Logistic Regression

A supervised machine learning approach used for classification tasks is logistic re-
gression. It is a linear model that converts the input data into a likelihood of belonging to
a particular class using a logistic function. The logistic function, also called the sigmoid
function, produces values between zero and one on the basis of an s-shaped curve. The
approach learns the ideal weights for the input characteristics that minimize the error
between the predicted probability and the true labels in order to train a logistic regression
model. A method known as maximum likelihood estimate is used for this. By running the
input features through the logistic function and categorizing the data based on the resulting
probability, the model may be trained to make predictions on new data. The confusion
matrix is given below for TONIOT and BOTIOT, representing binary and multiple-class
classification for each (Case 1 to Case 4) for 15 features (Table 4).

Table 4. Confusion matrix for TONIOT (Case 1 and Case 2), BOTIOT (Case 3 and Case 4), and LR
(15 features).

Case 1 (All Attacks) Case 2 (DDoS Attacks)

True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 59,922 0 Class 0 (Normal) 60,015 0
Class 1 (Attack) 0 32,287 Class 1 (Attack) 0 3985

Case 3 (All Attacks) Case 4 (DDoS Attacks)
True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 733,605 0 Class 0 (Normal) 385,324 0
Class 1 (Attack) 0 100 Class 1 (Attack) 0 97

In Case 1, which corresponds to multiple-class classification for the TON-IOT dataset,
it is observed that the FN value is higher than the FP value, and therefore there are chances
that normal traffic can be detected as an attack. However, the TP and TN values compensate
for the FP and FN values, giving a fairly decent accuracy. Similarly, in Case 3 with the
BOT-IOT dataset for multiple-class classification with a higher number of records than
TON-IOT, there is a fairly high margin with TP and TN values when compared to FP and
FN values and hence it gives much higher accuracy. In Cases 1 and 4, with TON-IOT and
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BOT-IOT datasets for binary classification, both FP and FN values are zero, and therefore
tend to receive the maximum accuracy. The subsequent ROC curves are given for BOT-IOT
and TON-IOT, with 15 features for multiple-class and binary classifications (Figure 5). It is
observed that Figure 5b,d, which correspond to the binary classification for TON-IOT and
BOT-IOT, respectively, have steep ROC curves that touch the top left corner, which makes
these two cases very good models. However, in Figure 5a with the TON-IOT dataset for
multiple-class classification, it is observed that the curve is closer to the diagonal, hence
making it a rather poor model compared to Figure 5c. For Figure 5c, with the BOT-IOT
dataset for multiple-class classification, it observed that the curve is rather more distant
from the diagonal, and therefore it is a better model with greater accuracy. Similarly, the
AUC scores are variable with respect to their ROC curves as observed below.
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Logistic regression’s simplicity, interpretability, and efficiency are its key benefits. It
can also manage jobs involving binary and multiple classes of classification. However,
when the input data cannot be separated linearly or when the connection between the
input characteristics and the output variable is non-linear, logistic regression may not work
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well. Overall, the algorithm of logistic regression is helpful for classification problems in
machine learning, especially when the data are linearly separable and the link between the
input characteristics and the output variable is straightforward.

y′ = bx + a (1)

4.2. Random Forest

A supervised machine learning technique called random forest is used for both classi-
fication and regression tasks. It is a member of the family of ensemble learning algorithms
that combine a number of ineffective learners to produce a more robust model. A random
forest is a group of decision trees, where each tree is trained on a random subset of the
training data and a random subset of features is considered for splitting at each node of the
tree. This lessens overfitting and improves the generalization capabilities of the model.

The confusion matrix is given below for TON-IOT and BOT-IOT, representing binary
and multiple-class classification for each (Case 1 to Case 4) for 15 features (Table 5). It is
observed that in all cases the FP and FN values are zero, therefore, maximum accuracies
will be achieved and this determines that the model is robust. The subsequent ROC
curves are given for BOT-IOT and TON-IOT with 15 features for multiple-class and binary
classifications. When the steepness of the ROC curve reaches the top-left corner then it
is considered an excellent model, hence in this case all of them are very good models
(Figure 6). The AUC scores provide a summary measure of the model’s discriminatory
power, so a higher AUC indicates a more effective DDoS attack detection model.

Table 5. Confusion matrix for TON-IOT (Case 1 and Case 2), BOTIOT (Case 3 and Case 4), and RF
(15 features).

Case 1 (All Attacks) Case 2 (DDoS Attacks)

True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 49,613 10,506 Class 0 (Normal) 60,055 0
Class 1 (Attack) 11,451 48,430 Class 1 (Attack) 0 3945

Case 3 (All Attacks) Case 4 (DDoS Attacks)
True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 262,924 31,101 Class 0 (Normal) 385,326 0
Class 1 (Attack) 16,015 277,926 Class 1 (Attack) 0 26
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Hence, all the models are proven effective in this case with the random forest algorithm.
With a random forest model, a prediction is made by passing input data through each
decision tree in the forest, and the forecast that receives the most votes across all the trees is
chosen as the result. Random forest’s key benefits include its high accuracy, resistance to
noise and outliers, and capacity for handling big datasets with plenty of characteristics.

In order to choose features or comprehend the data, it can also offer estimates of
feature relevance. The number of trees and the maximum depth of each tree are two hyper-
parameters that may need to be adjusted because random forest can be computationally
expensive. Additionally, it could struggle with unbalanced datasets and with data that
have a lot of dimensions.

4.3. Naïve Bayes

A supervised machine learning method called naïve bayes is utilized for categorization
problems. It is founded on the Bayes theorem, according to which the likelihood of a
hypothesis—in this case, a class label—given the evidence (the input features) is inversely
proportional to the likelihood of the evidence given the hypothesis, multiplied by the prior
probability of the hypothesis. Given the class label, naïve bayes assumes that the input
features are independent of one another. The approach learns the prior probability of each
class label as well as the conditional probability of each input feature given each class label.
A method known as maximum likelihood estimate is used for this.

P( A|B) = P(B|A) ∗ P(A)

P(B)
(2)

The confusion matrix is given for TONIOT and BOTIOT, representing binary and
multiple-class classification for each (Case 1 to Case 4) for 15 features (Table 6). In Case 1,
which corresponds to multiple-class classification for the TON-IOT dataset, it is observed
that the FP value is higher than the FN value, and hence there are chances that normal traffic
can be detected as an attack. However, the TP and TN values do not really compensate for
the FP and FN values as the margin between them is fairly small, so the accuracy would
result in being minimal compared to other models and does prove to be not effective.

Similarly, in Case 3 with the BOT-IOT dataset for multi-class classification with a
higher number of records than TON-IOT, there is a fairly high margin for TP and TN values
compared to FP and FN values and hence it gives much higher accuracy. In cases 1 and 4,
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with TON-IOT and BOT-IOT datasets for binary classification, both FP and FN values are
zero, and therefore tend to obtain the maximum accuracy. It is observed that Figure 7b,d cor-
respond to the binary classification for TON-IOT and BOT-IOT, respectively, and the steep
ROC curve touches the top left corner, which makes these two cases very good models.

Table 6. Confusion matrix for TON-IOT (Case 1 and Case 2), BOTIOT (Case 3 and Case 4), and NB
(15 features).

Case 1 (All Attacks) Case 2 (DDoS Attacks)

True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 34,056 25,997 Class 0 (Normal) 60,059 0
Class 1 (Attack) 96 32,060 Class 1 (Attack) 0 3941

Case 3 (All Attacks) Case 4 (DDoS Attacks)
True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 733,624 0 Class 0 (Normal) 385,300 0
Class 1 (Attack) 0 81 Class 1 (Attack) 0 121
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In Figure 7a with the TON-IOT dataset for multiple-class classification, it is observed
that the curve is closer to the diagonal, hence making it a very poor model compared to
Figure 7c with BOT-IOT dataset for multiple-class classification. For Figure 7c, it is observed
that the curve is almost touching the top left corner, and hence it is very much a better
model with greater accuracy. Similarly, the AUC scores are variable with respect to their
ROC curves as observed below.

By computing the posterior probabilities of each class label given the input features
and selecting the class label with the highest probability as the prediction, the model may
be used to make predictions on new data after it has been trained. Naïve bayes’ key benefits
are its ease of use, effectiveness, and capacity for high-dimensional data handling.

4.4. Artificial Neural Network (ANN)

A form of machine learning technique called artificial neural networks (ANN) is
based on the structure and operation of the human brain. A number of tasks, including
classification, regression, and prediction, are carried out using ANNs. An ANN is made up
of layers of interconnected processing nodes called neurons at the highest level. The output
layer generates the final prediction or output after receiving input data from the input layer.
There may be one or more hidden layers that carry out intermediary computations between
the input and output layers.

Each neuron in an ANN receives input values, processes them, and generates an
output. A neuron computes by adding a bias term, multiplying the input values by weights,
and then passing the output through an activation function. The parameters’ weights and
biases are acquired by training, and the activation function chooses the neuron’s output
depending on the weighted sum of its inputs.

In order to reduce the error between the projected output and the actual output, the
ANN modifies the weights and biases during training. The confusion matrix is given below
for TON-IOT and BOT-IOT, representing binary and multiple-class classification for each
(Case 1 to Case 4) for 15 features (Table 7). It is observed that in Case 1 and Case 3, the FP
value is zero and the FN value is one, so this makes the model less robust for multiple-class
classification compared to Case 2 and Case 4, with FP and FN values as zero. Therefore, it
obtains the maximum accuracy.

Table 7. Confusion matrix for TON-IOT (Case 1 and Case 2), BOTIOT (Case 3 and Case 4), and ANN
(15 features).

Case 1 (All Attacks) Case 2 (DDoS Attacks)

True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 60,119 0 Class 0 (Normal) 59,988 0
Class 1 (Attack) 1 59,880 Class 1 (Attack) 0 4012

Case 3 (All Attacks) Case 4 (DDoS Attacks)
True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 292,999 0 Class 0 (Normal) 142,529 11,245
Class 1 (Attack) 1 293,888 Class 1 (Attack) 4804 149,682

The subsequent ROC curves are given for BOT-IOT and TON-IOT with 15 features for
multiple-class and binary classifications. When the steepness of the ROC curve reaches the
top left corner then it is considered an excellent model, hence, in this case Figure 8b,d touch
the top left corner. However, Figure 8a,c are almost touching the top left, making them a
little less effective as models but still optimal. The AUC scores provide a summary measure
of the model’s discriminatory power; a higher AUC indicates a more effective DDoS attack
detection model. Hence, Figure 8a,c give 0.99, but Figure 8b,d give 1.00 as the AUC score.

ANN is significant for detecting DDoS attacks in IoT devices due to its ability to
analyze complex patterns and handle high-dimensional, heterogeneous data. It learns
and adapts to evolving attack patterns, ensuring accurate detection of emerging DDoS
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techniques in IoT environments. ANN’s parallel processing enables real-time detection,
mitigating potential damages and maintaining IoT service availability.
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Combining ANN with other techniques improves detection accuracy and reduces
false positives. By reducing reliance on signature-based approaches, ANN enables the
detection of zero-day attacks and novel vectors. It can be implemented on IoT devices or
in the cloud, facilitating distributed detection and response mechanisms. Overall, ANN
provides a robust and adaptable approach, enhancing the resilience and security of IoT
networks against DDoS attacks.

Y = w1Xl + w2X2 + b (3)

4.5. K Nearest Neighbor

The supervised machine learning method k nearest neighbor (KNN) is used for
classification and regression tasks. Since it is non-parametric, it does not assume anything
about the distribution of the data at its core. In its most basic form, KNN predicts the class



Appl. Sci. 2023, 13, 9937 23 of 31

or value of a test point by locating the k nearest neighbors to it in the training data and
using their characteristics to determine that test point’s characteristics. Euclidean distance
is a widely used distance metric that may be used to determine the separation between two
places. KNN predicts a test point’s class for classification tasks based on the majority class
of the k’s closest neighbors. For regression tasks, KNN predicts the value of a test point
based on the average value of the k nearest neighbors. The value of k is a hyperparameter
that can be chosen by the user. While a bigger value of k can result in smoother choice
boundaries but may be less sensitive to local patterns in the data, a smaller value of k
can result in more complex decision boundaries and may be more susceptible to noise in
the data.

(x, y) =

√
n

∑
i=1

(xi − yi)
2 (4)

The confusion matrix is given below for TON-IOT and BOT-IOT representing binary
and multiple-class classification for each (Case 1 to Case 4) for 15 features (Table 8). It is
observed that in all cases the FP and FN values are zero. Therefore, maximum accuracies
will be achieved and this determines that the proposed model is robust. The subsequent
ROC curves are given for BOT-IOT and TON-IOT with 15 features for multiple-class and
binary classifications. When the steepness of the ROC curve reaches the top left corner then
it is considered an excellent model, hence, in this case all of them are very good models
(Figure 9). AUC scores provide a summary measure of the model’s discriminatory power;
a higher AUC indicates a more effective DDoS attack detection model. Hence, all of the
models are proven effective in this case, with KNN. KNN is a significant algorithm for
detecting DDoS attacks in IoT devices.

Table 8. Confusion matrix for TON-IOT (Case 1 and Case 2), BOTIOT (Case 3 and Case 4), and KNN
(15 features).

Case 1 (All Attacks) Case 2 (DDoS Attacks)

True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 59,925 0 Class 0 (Normal) 60,055 0
Class 1 (Attack) 0 32,284 Class 1 (Attack) 0 3945

Case 3 (All Attacks) Case 4 (DDoS attacks)
True/Predict Class 0 (Normal) Class 1 (Attack) True/Predict Class 0 (Normal) Class 1 (Attack)

Class 0 (Normal) 733,603 1 Class 0 (Normal) 385,326 0
Class 1 (Attack) 0 101 Class 1 (Attack) 0 95

KNN offers an intuitive approach to identifying anomalous patterns in IoT network
traffic based on the similarity principle. By measuring distances between data points,
KNN can classify traffic as normal or malicious, making it effective in detecting DDoS
attacks by identifying deviations from normal patterns. KNN can be trained using labeled
datasets, improving detection accuracy over time. Its versatility allows integration with
other algorithms, enhancing overall detection performance. In summary, KNN provides an
effective and interpretable approach for detecting DDoS attacks in IoT devices, enhancing
security and mitigating potential disruptions caused by malicious activities.
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4.6. Evaluation Using Metrics

Many performance metrics are used to evaluate ML- and DL-based IDSs. The re-
search aims to compare the performance when feature selection is used and when it is not.
Accuracy is the key measure of evaluation.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Other metrics include recall, precision, F1 score, training time, prediction time, and
total time. F1 score takes both FP and FN into account, unlike recall and precision.

Recall =
TP

TP + FN
(6)
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Precision =
TP

TP + FP
(7)

F1 Score =
2 ∗ Recall ∗ Precision

Recall + Precision
(8)

Discussing the evaluation metrics used for the proposed model, precision is a crucial
metric in detecting DDoS attacks in IoT devices, as it measures the accuracy of identifying
true positives among instances labelled as attacks. It reflects the system’s ability to minimize
false positives, which occur when normal traffic is wrongly classified as DDoS attacks. High
precision indicates a low rate of false positives, ensuring that legitimate IoT services are not
disrupted by unnecessary alarms or resource allocation. Balancing precision with other
performance metrics is essential for an effective detection system that accurately identifies
DDoS attacks while minimizing false positives. Overall, precision plays a significant role in
securing IoT networks against DDoS attacks by accurately identifying true positives and
reducing false positives.

Recall, also known as sensitivity or true positive rate, is crucial for detecting DDoS
attacks in IoT devices. It quantifies the system’s capability to correctly identify actual
DDoS attacks from all the instances that are truly positive. In other words, recall indicates
the system’s effectiveness in minimizing false negatives, which occur when DDoS attacks
go undetected or are misclassified as normal traffic. A high recall rate signifies a low
occurrence of false negatives, ensuring that a significant number of DDoS attacks are
accurately identified and reducing the risk of leaving malicious activities undetected. In
summary, recall plays a critical role in DDoS attack detection for IoT devices by measuring
the system’s ability to capture actual attacks. Achieving a high recall rate reduces false
negatives and enables comprehensive detection, enabling prompt mitigation of attacks.
This is a system that safeguards IoT networks against DDoS threats.

The F1 score is a very important metric for evaluating the performance of a DDoS
attack detection system in IoT devices. It combines precision and recall, providing a
balanced assessment of the system’s ability to accurately identify DDoS attacks and capture
the majority of actual attacks. The F1 score is particularly useful when dealing with
class imbalance between normal traffic and DDoS attacks. A high F1 score indicates
a robust and reliable detection system that achieves a balance between precision and
recall, minimizing false alarms and undetected attacks. Overall, the F1 score is critical
for evaluating the effectiveness of DDoS attack detection in IoT devices, ensuring a well-
rounded approach that minimizes both false positives and false negatives, thereby securing
IoT networks effectively.

Accuracy is a crucial metric for assessing the performance of DDoS attack detection in
IoT devices. It measures the system’s correctness by evaluating the proportion of correctly
classified instances, including true positives and true negatives. A high accuracy rate
indicates the system’s effectiveness in distinguishing between DDoS attacks and normal
traffic, reducing false positives and false negatives. It demonstrates the system’s ability
to make accurate decisions and maintain IoT service availability. In summary, accuracy
is a valuable metric for evaluating DDoS attack detection in IoT devices as it provides an
overall measure of correct classification. A high accuracy rate reflects the system’s ability
to identify both DDoS attacks and normal traffic accurately.

From the discussion based on the relevance of these evaluation metrics, when the
naïve bayes algorithm under the TON-IOT dataset is taken into consideration for mul-
tiple class classification, it is observed that there is a significant difference between the
normal and attack traffic metrics, which gives a significant reduction in accuracy value.
Similarly, for logistic regression for both TON-IOT and BOT-IOT datasets under multi-
ple class classification, there is a very minimal difference between the normal and attack
traffic metrics.

Based on the results (Table 9), the TON-IOT dataset with the 15 best features for
multiple-class classification shows poor results for naïve bayes, with an accuracy of 77%.
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With respect to time, ANN gives the best results. It detects an attack with 99% accuracy,
with training time of 10.23 ms and prediction time of 16.456 ms. However, taking accuracy
into consideration, random forest is the best model for multiple-class classification with a
result of 100%, with training and prediction time of 56.404 ms and 0.795 ms, respectively.
Meanwhile, under the same dataset with 15 features for binary classification, all models
give the same accuracy of 100%. However, with respect to time, naïve bayes is considered
the best, with training and prediction time of 0.3554 ms and 0.0334 ms, respectively, with
100% binary classification accuracy.

Table 9. Evaluation using metrics for TON-IOT (15 features).

Accuracy Class Precision Recall F1 Score Training
Time (ms)

Predict
Time (ms)

Case 1: TON-IOT
with All Attacks

Logistic Regression 82%
0 0.81 0.83 0.82

8.3514 0.03191 0.82 0.81 0.81

Random Forest 100%
0 1.00 1.00 1.00

56.404 0.7951 1.00 1.00 1.00

Naïve Bayes 77%
0 0.75 0.81 0.78

0.2776 0.033851 0.79 0.73 0.76

ANN 99%
0 0.99 0.99 0.99

10.23 16.4561 0.99 0.99 0.99

KNN 98%
0 0.99 0.97 0.98

2.208 26.9231 0.95 0.99 0.97

Case 2: TON-IOT
with DDoS

Logistic Regression 100%
0 1.00 1.00 1.00

18.882 0.01861 1.00 1.00 1.00

Random Forest 100%
0 1.00 1.00 1.00

14.3046 0.31731 1.00 1.00 1.00

Naïve Bayes 100%
0 1.00 1.00 1.00

0.3554 0.03341 1.00 1.00 1.00

ANN 100%
0 1.00 1.00 1.00

52.1 2.91 1.00 1.00 1.00

KNN 100%
0 1.00 1.00 1.00

0.15322 176.451 1.00 1.00 1.00

The BOT-IOT dataset with the 15 best features for multiple-class classification gives
100% accuracy for all the models except for ANN and logistic regression, with 99% and 92%
accuracy, respectively. Clearly logistic regression is the least preferred model with respect
to time, however, it is an efficient model with respect to time, with training and prediction
times of 350.867 ms and 0.0334 ms, respectively. Here, once again naïve bayes is considered
the best among the five algorithms with respect to time and accuracy together (Table 10). It
takes 2.9326 ms to train and 0.3043 ms to predict an attack with 100% accuracy. Moreover,
under the same dataset with 15 features for binary classification, all the models get the
same accuracy of 100%, except ANN with 95%. Here again naïve bayes is considered the
best with respect to time of completion. It takes 1.5244 ms to train and 0.1685 ms to predict
an attack with 100% accuracy.

When this research is compared with previously existing state-of the-art models, the
proposed model receives an accuracy of 100% with just 15 features compared to other
previous existing models, with NB and RF being the best models. Most importantly, the
research has implemented time as an important factor in detecting DDoS attacks. The
model is proven to be efficient and optimal compared to other previously existing models
in multiple aspects (Table 11).

According to research [25], training time and prediction time are implemented in a
TON-IOT telemetry dataset, where the training is performed on each set of IoT devices as
well as overall binary and multi-class classification. The best model, CART, has given 6 s
training and testing time, whereas the proposed model has given <1 s training and testing
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time combined. This research has proven to be much more effective in terms of accuracy
and the time factor for detecting the DDoS attacks in IoT devices.

Table 10. Evaluation using metrics for BOT-IOT (15 features).

Accuracy Class Precision Recall F1 Score Training
Time (ms)

Predict
Time (ms)

Case 1: BOT-IOT
with All Attacks

Logistic Regression 92%
0 0.94 0.90 0.92

5.765 0.10461 0.90 0.95 0.92

Random Forest 100%
0 1.00 1.00 1.00

651.873 2.91251 1.00 1.00 1.00

Naïve Bayes 100%
0 1.00 1.00 1.00

2.9326 0.30431 1.00 0.99 0.99

ANN 99%
0 0.99 0.99 0.99

569.412 59.4321 0.99 0.99 0.99

KNN 100%
0 1.00 1.00 1.00

1.64415 3325.771 1.00 1.00 1.00

Case 2: BOT-IOT
with DDoS

Logistic Regression 100%
0 1.00 1.00 1.00

16.912 0.045881 1.00 1.00 1.00

Random Forest 100%
0 1.00 1.00 1.00

194.65 1.64781 1.00 1.00 1.00

Naïve Bayes 100%
0 1.00 1.00 1.00

1.5244 0.16851 1.00 1.00 1.00

ANN 95%
0 0.97 0.93 0.95

350.867 34.5671 0.93 0.97 0.95

KNN 100%
0 1.00 1.00 1.00

0.77648 940.1761 1.00 1.00 1.00

Table 11. Comparison between existing state-of-art models and the proposed model.

Citation Year BOT-
IOT

TON-
IOT Model Binary

Classification
Multiple-Class
Classification

Feat.
Selection

No. of
Features K-Fold Acc.

(%) Time

[19] 2022 YES - RF YES - - 46 - 99.90 -
[20] 2022 YES - NB YES - PCA 25 - 99.40 -
[21] 2022 YES - LSTM YES - - 46 - 96.30 -

[22] 2022 YES YES ANN,
LSTM YES YES ETC(20) 20 YES 99.00 -

[25] 2020 - YES CART YES - - N/A YES 88.00 YES
Proposed

Model 2023 YES YES NB,
RF YES YES ETC(15) 15 YES 100.00 YES

A stringent validation process was employed to evaluate the effectiveness of the
proposed intrusion detection system for multiple-class classification. Specifically, a five-
fold cross-validation technique was utilized to ensure a robust assessment of the model’s
performance. This method involved partitioning the dataset into five equal subsets or
“folds”. The model was then trained on four of these folds and validated on the remaining
one, iterating this process five times so that each fold served as the validation set once.
By employing five-fold cross-validation, the research ensured that the results were less
susceptible to variations in the data, providing a more reliable and unbiased estimation
of the model’s ability to generalize to unseen data. This approach helped in reducing
overfitting and offered a comprehensive view of how the model performed across different
segments of the dataset, thereby adding rigor and credibility to the findings related to
multiple-class classification of other attacks within lightweight IoT networks.

5. Case Study: Application of IDS in Energy and Utilities IoT

The paper has primarily focused on assessing the effectiveness of the IDS framework
as an IoT network security algorithm. Its suitability has been theoretically validated
through experimentation on the TON-IOT and BOT-IOT datasets, and through comparisons
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with other approaches. This section delves into the practical implementation of the IDS
framework in a real-world application, providing readers with a more comprehensive
understanding of its advantages and impact. Energy and utilities IoT integrate sensors
and devices with user-interactive software to optimize energy distribution. They offer
applications like smart grid monitoring and asset management. While they enhance
efficiency, security is a key concern due to sensitive data. By incorporating an intrusion
detection system (IDS), the energy and utilities IoT network can detect and prevent attacks,
safeguarding devices and infrastructure. This integration ensures data protection, mitigates
risks, and enables secure energy services. This paper provides research conducted in the
energy and utilities IoT sector. The integration of renewable energy and optimization of
energy usage are vital for sustainable energy transitions and combating climate change.

The Internet of Things (IoT) offers numerous applications in the energy sector, includ-
ing energy supply, transmission, distribution, and demand management. By leveraging
IoT, energy efficiency can be improved and the use of renewable energy consumption can
be reduced. This paper presents a review of the existing literature on the application of IoT
in energy systems, with a focus on smart grids [26]. Additionally, it discusses enabling tech-
nologies such as cloud computing and data analysis platforms. The challenges associated
with deploying IoT in the energy sector, including privacy and security concerns, are also
examined along with potential solutions like blockchain technology. This survey serves as
a valuable resource for energy policymakers, energy economists, and managers, providing
them with an understanding of the role of IoT in optimizing energy systems.

This paper explores the commonly utilized technologies, protocols, and architectures
in the energy and utilities sector. Sources can be increased, and it also examines the envi-
ronmental impact, the application of sensors, and it highlights the challenges encountered
in energy and utilities IoT. (Figure 10) This research reveals that energy and utilities IoT
applications typically involve three key components or stages:

• Data acquisition through sensors and energy monitoring devices.
• Connectivity and data transmission across the network.
• Utilization of software for data storage, processing, security, visualization, and analysis.
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In the context of energy and utilities, these components enable the collection of relevant
data, establish seamless communication, and facilitate the effective management and
analysis of energy-related information.
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The IDS aims to enhance network security and should be integrated into the fourth
step of energy and utilities IoT implementation. IoT devices, such as smart meters, sensors,
and monitoring devices, are deployed throughout the energy infrastructure. These devices
collect data related to energy consumption, grid performance, asset health, environmental
conditions, and other utility parameters. They continuously gather and transmit this data
in real time or at regular intervals. The data collected by IoT devices is transmitted to cen-
tralized systems or cloud platforms for storage, analysis, and processing. These platforms
provide the necessary infrastructure for handling the vast amount of data generated by
the IoT devices. Cloud-based solutions offer scalability, data security, and accessibility for
energy and utility companies.

IoT devices in the energy and utilities industry are designed to be connected to a
network infrastructure. They typically utilize wireless communication protocols, such
as cellular networks, Wi-Fi, LANs/WANs, etc., to transmit data to centralized systems
or cloud platforms. This connectivity enables seamless data transmission and remote
monitoring. At each designated node, the collected and transmitted data from every device
should be evaluated by the IDS, similar to the testing process with BOT-IOT and TON-IOT
records. The nodes can be programmed to raise an alarm and discard the data packet
if the IDS identify it as an attack. IoT devices empower corporate companies to actively
manage their energy consumption. Through the utilization of smart building solutions and
IoT-enabled devices, companies can monitor and control energy usage, establish energy
preferences, and receive personalized recommendations. This enables them to optimize
energy efficiency, reduce costs, and contribute to sustainability efforts. By leveraging
IoT technologies, corporate entities can take proactive measures in energy management,
enhancing operational efficiency and environmental responsibility. The IDS is lightweight
and can protect network nodes without disrupting their operations, even with limited
computational power. Its high accuracy ensures reliable results, enabling automated actions
when an alarm is triggered. By conducting real-time attack detection at each node, the IDS
efficiently safeguards energy and utilities IoT networks [26]. One of the primary challenges
faced by the energy IoT sector is ensuring robust security measures. The integration of
IDS can effectively address this challenge and provide energy administrators with the
confidence to embrace proposed IoT frameworks in energy systems. By implementing IDS,
the sector can enhance the security posture of IoT devices and infrastructure, fostering trust
and encouraging widespread adoption. This, in turn, leads to significant advancements in
operational efficiency, grid reliability, and ultimately contributes to the overall improvement
of energy services and public welfare.

6. Conclusions

The study in the paper characterizes lightweight IoT networks as being established
by devices with few computer resources, such as reduced battery life, processing power,
memory, and, more critically, minimal security and protection, which are easily vulnerable
to DDoS attacks and propagating malware. Numerous scholars have studied the notion
that protecting lightweight IoT networks urgently requires improving intrusion detection
systems. This manuscript proposes a compact intrusion detection system that blends
machine learning classifiers with a fresh approach to data pre-processing. The study
provides a number of classifier types to build lightweight intrusion detection systems
that are ideally suited for defense against DDoS attacks in IoT networks. The dataset
from the TON-IOT from UNSW Network and BOT-IOT are used. The dataset is used to
produce DDoS assault samples. Binary and multiple-class classifications of the experiment
for the DDoS attacks and all attacks, respectively, are undertaken in TON-IOT and BOT-
IOT datasets. The attack classes of the TON-IOT and the normal attacks of BOT-IOT are
imbalanced. In this study, multiple iterations of the SMOTE technique are used to balance
classes in the experiments using the TON-IOT and BOT-IOT dataset.

Binary classification and multiple-class classification between DDoS and normal traffic
evaluated the performance of five ML methods (RF, LR, KNN, ANN, NB) based on the
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accuracy, recall, precision, F1 score, training time, prediction time, and total time. The
datasets used are TON-IOT network train/test dataset and BOT-IOT dataset. The per-
formance analysis was done with 15 features of both BOT-IOT and TON-IOT datasets
using ExtraTreeClassifier. A comparison between existing state-of-the-art models and the
proposed model was made. It was observed that, in the TON-IOT dataset for multiple-class
classification for 15 features, random forest is the best algorithm, with 100% accuracy,
whereas in binary classification naïve bayes is the best, with 100%. In the BOT-IOT dataset,
it was observed that for both multiple-class and binary classification naïve bayes obtains
an accuracy of 100%. Comparison was made between the existing state-of-art models and
the proposed model.

The future work for this research is going to be as follows. Firstly, implementing the
same process on a different IoT-related dataset and testing the existing method. Secondly,
implementing deep learning techniques to potentially create better models to detect attacks.
Thirdly, creating a front-end application to detect any attacks that would come across any
IoT devices.
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