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Abstract: During an injection molding process, different parts of the molded material are subjected
to various thermal–mechanical stresses, such as variable pressures, temperatures, and shear stresses.
These variations form different pressure–temperature paths on the pressure–volume–temperature
diagram. If these paths cannot converge at a specific target volume value during ejection, it often leads
to different levels of shrinkage and associated warping, which pose a significant challenge for molders
during mold trials and part quality control. The situation is particularly complicated when molding
crystalline polymers because the degree of crystallinity depends on the processing conditions and
may vary across different locations. In this study, we propose an innovative and practical approach
to improving part shrinkage when molding crystalline polymers. For the first time, we utilized melt
temperature profile monitoring rather than the previous mold temperature measurement to detect the
crystallization process and determine the time taken to complete the crystallization at different melt
and mold temperatures. In addition, we used response surface methodology to build a crystallization
time prediction model. The feasibility of the prediction model was verified by determining the
warpage of parts molded at various cooling times. Based on this model, we varied the packing
pressure, packing time, and melt temperatures to determine the correlation with part shrinkage.
Through regression analysis, the time-averaged solidification pressure values can accurately control
part shrinkage. Two prediction models provide reasonable accuracy and efficiency for part shrinkage
control, as demonstrated by subsequent verification experiments.

Keywords: crystalline polymer; enthalpy change; completion time of crystallization; response surface
methodology; time-averaged solidification pressure; part shrinkage; regression analysis

1. Introduction

Injection molding is a widely used process for mass production of plastic parts ow-
ing to its advantages, such as net shaping of complex geometry parts, allowing the use
of various materials, and rapid production times. However, part quality can be influ-
enced by numerous factors, such as material properties, mold design, part geometry, and
processing conditions [1–4]. During the injection molding process, different parts of the
molded material are subjected to various thermal–mechanical stresses due to disparities
in pressure, temperature, shear stress, and other factors. These variations form different
pressure–temperature paths on the pressure–volume–temperature (PVT) diagram. If these
paths cannot converge or meet at a common, specific volume value during ejection, they
can lead to uneven shrinkage and warping [2–4]. Achieving high dimensional accuracy
and defect-free parts is a challenge for molders in their daily operations since they rely
heavily on their molding expertise to conduct mold trials. Although computer-aided en-
gineering simulations conducted in various commercial software programs can assist in
identifying more suitable processing conditions, issues such as path differences in pressure

Appl. Sci. 2023, 13, 9884. https://doi.org/10.3390/app13179884 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179884
https://doi.org/10.3390/app13179884
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9367-6031
https://doi.org/10.3390/app13179884
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179884?type=check_update&version=1


Appl. Sci. 2023, 13, 9884 2 of 19

and temperature and molding-induced molecular orientation remain. These issues cause
anisotropic properties and uneven shrinkage, which are difficult to solve. Previous research
has focused on shrinkage issues based on PVT relationships [3–10]. The influence of factors
such as cavity pressure, mold temperature, filling-to-packing switchover, and other factors
on shrinkage has also been reported [11–14]. Generally, the melt temperature, mold tem-
perature, packing pressure, and packing time, including the profiled packing pressure and
multistage packing, are critical factors that significantly influence the final part shrinkage.
For crystalline polymers, the PVT relationship diagram is even more complicated because
of phase changes (Figure 1a) [15].
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Figure 1. Schematic of (a) a PVT diagram for a crystalline polymer and assumed PT path; (b) the 
change in the PVT curve due to the degree of crystallization in a semi-crystalline polymer. 
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Controlling the extent of molded part shrinkage in crystalline polymers is particularly
difficult because the processing conditions also affect the degree of crystallinity (DOC) [16–19],
which plays a significant role in determining part shrinkage. To avoid the ambiguity of DOC-
induced uncertainties for shrinkage or PVT behavior (Figure 1b), the solidification process
during crystallization is often monitored [17–20]. Previous studies have reported methods for
detecting crystallization. Because of the limitations of contact-type temperature sensors, the
detection of crystallization or the associated enthalpy transformation [21–23] must be combined
with a temperature profile simulation within the melt. Usually, this involves assuming the
crystallization kinetics [23] and verifying the temperature profile at the cavity surface where the
temperature is measured. To solve this limitation, we proposed an infrared-type temperature
sensor manufactured by Futaba. The infrared sensor, whose validity was verified in earlier
studies [24,25], can detect the temperature inside the melt (Figure 2), particularly the melt
temperature in the center of the cavity gap, where the maximum temperature occurs [26]. By
analyzing the variation in the measured melt temperature profile, the enthalpy transformation
process and the start and end of crystallization can be determined. The cooling rate decreases
during the crystallization process because of the release of latent heat. Upon the completion of
crystallization, the cooling rate increases and reverts to the original variation trend. Thus, the
crystallization completion time can be identified from the slope of the temperature variation
curve. The minimum value, indicating the end of crystallization, can be observed on the
measured temperature profile. Crystallization and DOC are not only influenced by solidi-
fication characteristics but also by packing parameters. In this study, we used the enthalpy
transformation detection method to determine the crystallization time at various melt and
mold temperatures under the appropriate packing parameters. First, a prediction model for the
crystallization time was built using response surface methodology (RSM) [27,28]. The applica-
bility of the crystallization completion model was assessed by analyzing the warpage of the
parts molded at various cooling times. When the post-filling time (i.e., the packing plus cooling
time) was larger than the crystallization time, the part warpage remained relatively constant,
indicating that incomplete crystallization did not significantly contribute to the warpage. Once
crystallization completion is confirmed, molding conditions can be adjusted and optimized
accordingly. The influence of packing-based parameters on part shrinkage, including packing
pressure and time at various melt temperatures, was then analyzed using regression analysis.
A prediction model for part shrinkage variation and time-averaged packing pressure was
constructed. Both models were verified via experiments to test the accuracy of the predictions.
The verified prediction models can serve as useful guidelines for improving and optimizing
molded part shrinkage. For further understanding of processing conditions on part qualities
based on the morphology view point, one can refer to the study by Pantani et al. [29].
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sors (Futaba EPSSZT, Amplifier EPT-001) were installed on the sides of the cavity, and 
three pressure sensors (PRIAMUS 6001A, Amplifier 5050A) were embedded on the oppo-
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temperature, which is usually present in the center of the cavity gap. A three-dimensional 
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2. Experimental Procedure
2.1. Equipment

The experiments were performed using 150-ton-capacity FCS HT-150-SV injection
molding machines. This machine uses a servoelectric system to achieve a high-accuracy
injection dose and high-precision injection speed simultaneously.

A water-based mold temperature controller, BYW-1220FS, produced by CENS in Tai-
wan, was used. The maximum water temperature that can be reached with this equipment
is 120 ◦C.

The molded specimen was a flat plate with 3 mm thickness, 100 mm length, and 80 mm
width. The thickness of the fan gate was 2.4 mm (Figure 3a). Three temperature sensors
(Futaba EPSSZT, Amplifier EPT-001) were installed on the sides of the cavity, and three
pressure sensors (PRIAMUS 6001A, Amplifier 5050A) were embedded on the opposite core
side. The corresponding locations along the melt flow direction are depicted in Figure 3b.
The Futaba infrared temperature sensor usually detects the maximum melt temperature,
which is usually present in the center of the cavity gap. A three-dimensional laser scanner
(SICK, Ranger 3–30) was used to measure the part height, from which the warpage at
seven specified locations can be obtained (Figure 3b). The shrinkage can be determined by
comparing the measured part length with the designed cavity length (Figure 3c).
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2.2. Molding Materials Used

Polypropylene (PP-7533), produced by LCY, was used for the experiments. The
suggested molding temperature range was between 190 ◦C and 270 ◦C, and the mold
temperature was between 20 ◦C and 50 ◦C.

2.3. Verification and Prediction Model for the Complete Crystallization Time

Injection molding was performed using the processing conditions listed in Table 1. For
each molding condition, five samples were molded. The injection speed, packing pressure,
and packing time were determined using preliminary molding trials to avoid unnecessary
influence on the crystallization process. The cooling time was set to a duration that ensured
complete crystallization. The fixed molding parameters are shown in Table 1. The tempera-
ture profile was monitored during each set of experiments. Three melt temperature stages
can be identified from the temperature profile shown in Figure 4. The melt temperature
drops quickly in the initial stage. In the second stage, crystallization (or a phase change)
occurs at a fixed temperature and is associated with heat release. In the third stage, the
melt temperature decreases slowly (Figure 4). Once crystallization is complete, the melt
temperature decreases at a specific rate, constituting the third stage of the temperature
profile. The completion of crystallization and the crystallization time can be determined
from the time at which the minimum slope of melt temperature variation occurs and/or
the end of the temperature plateau. To avoid ambiguity, the crystallization completion time
was identified as the time when the minimum cooling rate occurs. A schematic illustrating
this is shown in Figure 5a,b. To establish an initial prediction model for the crystallization
time, RSM [25,26] was used based on the results obtained from thirteen sets of experiments.
This model is based on a second-order polynomial and is as follows:

tcrys. = A + B × Tmold + C × Tmelt + D × Tmold
2 + E × Tmelt

2 + F × Tmelt × Tmold (1)

where tcrys denotes the crystallization completion time, Tmelt is the melt temperature, and
Tmold is the mold temperature. A residual analysis was conducted to make the necessary
adjustments to the model.

Table 1. Experimental parameters for crystallization detection.

Varying Process Parameters

RSM Group Mold Temp. (◦C) Melt Temp. (◦C)

A1 40 200
A2 60 200
A3 40 270
A4 60 270
A5 40 235
A6 60 235
A7 50 200
A8 50 270
A9 50 235
A10 50 235
A11 50 235
A12 50 235
A13 50 235

Fixed process parameters
Injection speed (mm/s) 20

Velocity/pressure switch position (mm) 4
Packing pressure (bar) 800

Packing time (s) 9
Cooling time (s) 45
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2.4. Correlating Crystallization Completion with the Extent of Part Warpage

For the designed experiments, cooling times shorter and longer than the observed
crystallization completion time were used to correlate the crystallization completion with
the extent of the part warpage. The experimental conditions and results are listed in Table 2.
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Table 2. Molding experimental parameters to determine part warpage with varying cooling times.

Fixed Process Parameters

Injection speed (mm/s) 20
Velocity/pressure switch position (mm) 4

Packing pressure (bar) 800
Packing time (s) 9

Melt temperature (◦C) 235
Mold temperature (◦C) 50

Cooling time (s) 5, 7.5, 10, 12.5, 15, 17.5, 22.5, 30

2.5. Influence of Time-Averaged Cavity Pressure on Part Warpage

For the second phase of injection molding experiments, a full-factorial experiment
design was used to vary the melt temperature, packing pressure, and packing time, and
the process conditions are shown in Table 3. The contribution of each parameter and the
influence of cross-interactions were analyzed. The time-averaged cavity pressure was
first calculated from the pressure profile integral using the following equation, and a case
illustration is shown in Figure 6. Figure 6 depicts the pressure evolution during various
stages of the injection phase. The pressure starts to rise when the melt front arrives at the
sensor location. Once the melt is filled with the cavity, pressure quickly rises to the target
packing pressure and holds this value for some time (depending on packing time) in the
packing phase. After the end of the packing process, the pressure continues to drop until it
reaches atmospheric pressure or when the part is ejected. Once the mold cavity is filled,
melt crystallization starts (t1). When crystallization is over (t2), the melt is assumed to be
solidified, and packing becomes noneffective. The time-averaged packing pressure, PSavg,
is defined as

PSavg =
1

∆t

∫ t2

t1

p(t)dt (2)

where t1 and t2 represent the packing starting and crystallization completion time, respec-
tively. ∆t is the time interval between t1 and t2. The mean pressure value was then averaged
at three measured locations (near the gate, designated as NG; in the middle, designated
as MID; and far away from the gate, designated as FG) and correlated with the measured
part shrinkage.

A linear regression model was constructed to correlate the time-averaged cavity
pressure and measured shrinkage using first-, second-, and third-order functions, as shown
in Equations (3)–(6):

SV =
L0 − L

L0
× 100% (3)

where SV is the measured shrinkage, L0 is the original length of the cavity, and L is the
molded part length. The correlation between the time-averaged solidification pressure,
PSav, and part shrinkage, SV, can be represented by

SV = A1 − B1 × PSavg (4)

SV = A2 − B2 × PSavg + C2 × PSavg2 (5)

SV = A3 − B3 × PSavg + C3 × PSavg2 + D3 × PSavg3 (6)

where Ai, Bi, Ci, and Di (i = 1, 2, 3) are constants to be determined from the relevant data.
The appropriate function was confirmed using residual analysis [27,28].
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Table 3. Experimental design with a combination of processing conditions.

Group Melt Temp. (◦C) Packing Pressure (Bar) Packing Time
(S)

B1 210 900 10
B2 210 900 7
B3 210 900 4
B4 210 600 10
B5 210 600 7
B6 210 600 4
B7 210 300 10
B8 210 300 7
B9 210 300 4
B10 230 900 10
B11 230 900 7
B12 230 900 4
B13 230 600 10
B14 230 600 7
B15 230 600 4
B16 230 300 10
B17 230 300 7
B18 230 300 4
B19 250 900 10
B20 250 900 7
B21 250 900 4
B22 250 600 10
B23 250 600 7
B24 250 600 4
B25 250 300 10
B26 250 300 7
B27 250 300 4
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2.6. Verification Experiments for Prediction Models

Verification experiments were performed to validate the accuracy of the crystallization
time model and the averaged cavity pressure integral model. Two sets of experiments were
performed separately, with the molding conditions listed in Tables 4 and 5.

Table 4. Verification experiment design with various melt temperatures.

Varying Process Parameters

Group Melt Temp. (◦C)

C1 210
C2 230
C3 250

Fixed process parameters
Mold temperature (◦C) 50
Injection speed (mm/s) 20

Velocity/pressure switch position (mm) 4
Packing pressure (bar) 800

Packing time (s) 9
Cooling time (s) 45

Table 5. Verification experiment design with various packing times.

Varying Process Parameters

Group Packing Time (S)

D1 11
D2 9
D3 7
D4 5
D5 3

Fixed process parameters
Mold temperature (◦C) 50
Melt temperature (◦C) 270

Injection speed (mm/s) 20
Velocity/pressure switch position (mm) 4

Packing pressure (bar) 800
Cooling time (s) 45

3. Results and Discussion
3.1. Crystallization Completion Monitoring

Temperature profiles were measured at different melt and mold temperatures in the
middle of the cavity (Figures 7 and 8). The three-stage variation characteristics were clearly
defined, and the melt temperature variations were less sensitive to the cavity location
(Figure 9). Since the plateau of the temperature profiles is not always clear, the slope of the
temperature, i.e., the cooling rate, is derived from the time at which the minimum cooling
rate was identified as the completion time of crystallization (as shown in Figure 5b). It was
assumed that when the crystallization process is over, the balance between heat release
and heat loss from mold cooling no longer exists, leading to faster temperature drops. The
calculated crystallization times for the experiments at various cavity positions are shown
in Table 6.
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Table 6. Results of crystallization completion time at different cavity positions.

Mold Temp.
(◦C)

Melt Temp.
(◦C)

Crystallization Completion Time (S)

NG MID FG Average

40 200 21.01 20.39 19.16 20.18
40 235 23.68 22.82 22.91 23.14
40 270 25.70 24.81 25.26 25.26
50 200 22.22 21.37 21.24 21.61
50 235 24.35 24.15 23.69 24.06
50 270 27.80 25.74 26.16 26.57
60 200 24.77 22.70 23.89 23.78
60 235 26.28 26.95 25.62 26.28
60 270 30.50 28.44 28.09 29.01

3.2. Verifying Crystallization Completion Time from Part Warpage

To further verify the accuracy of the calculated crystallization time, additional exper-
iments were performed with different cooling times (defined as the end of the packing
time to the time at which the part was ejected) and correlated with warpage distribution
along the cavity positions. The results are shown in Figure 10, with a graph illustrating
the relationship between the warpage and cooling time shown in Figure 11. When the
cooling exceeded 15 s, the warpage remained relatively constant, indicating the completion
of crystallization. Conversely, for cooling times below 15 s, crystallization continued to
occur, leading to subsequent shrinkage and the associated post-molding warpage. The
measured crystallization completion time was approximately 24 s (noted with a red border
in Table 6), which is consistent with that value (15 s cooling time plus 9 s packing time,
Table 2).
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3.3. Prediction Model of Crystallization Completion Time

The initial prediction model can then be established as

tcrys. = 13.37 − 0.447 × Tmold + 0.0748 × Tmelt + 6.12 × 10−3 × Tmold2 − 9 × 10−6 × Tmelt2

+4.7 × 10−5 × Tmelt × Tmold
(7)

Following the standard procedure of analysis of variance (ANOVA) and residual evalu-
ation [27,28] using the statistical software Minitab11, https://www.sfi-minitab.com.tw/
product/minitab/features.php (accessed on 30 July 2021), the initial model can be ad-
justed to

tcrys. = 13.2 − 04.32 × Tmold + 0.07308 × Tmelt + 6.08 × 10−3 × Tmold2 (8)

The adjusted R-square improved from 98.08% to 99.08% (a 0.26% improvement), and
the predicted R-square increased from 96.01% to 98.61% with a 2.6% improvement. Details
can be found elsewhere [30]. The response surface for the revised model is shown in
Figure 12a, and the contour line is given in Figure 12b.

3.4. Prediction Model of Part Shrinkage Varying with the Time-Averaged Packing Pressure

Three illustrations were used to demonstrate the correlation between part shrinkage
and melt temperature, packing pressure, and packing time. The influence of melt tempera-
ture on the cavity pressure in the middle of the cavity is shown in Figure 13. A higher melt
temperature allows for easier pressure transfer from the gate to the cavity. Generally, the
higher the melt temperature, the longer the crystallization time and the packing pressure
value, resulting in a higher averaged pressure integral (Table 7). The influence of the pack-
ing pressure and time on the cavity pressure profiles is demonstrated in Figures 14 and 15,
respectively. Notably, higher packing pressure and time lead to higher cavity pressure
and increased pressure duration. As a result, the averaged pressure integral values are
higher. The results of Table 7 indicate that packing pressure affects the pressure integral
most significantly. Packing time also has a secondary impact on the pressure integral, and
its influence increases with packing pressure. The observed results are consistent with
previous results [11].

https://www.sfi-minitab.com.tw/product/minitab/features.php
https://www.sfi-minitab.com.tw/product/minitab/features.php
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Figure 15. Pressure and temperature curves at MID molded under different packing times.

Using Equation (2), the averaged solidification cavity pressure can be calculated based
on the pressure profiles at different locations. The averaged values are listed in the end
column of Table 7. The measured and calculated data of time-averaged pressure and
shrinkage were used to fit the three shrinkage prediction models (Equations (4)–(6)) that
were previously described). After conducting ANOVA and residual analysis using Minitab
software [30,31], the adjusted and non-adjusted coefficients of determination for the three
models are shown in Table 8. Based on this result, a second-order function was chosen, and
the results are as follows:

SV = 1.910 − 0.004115 × PSavg + 6 × 10−6 × PSavg2 (9)

The model-predicted values versus the measured shrinkage are given in Figure 16.
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3.5. Verification Experiments

The results of the verification experiments, with maximum errors of 1.53% and 0.1%,
respectively, are shown in Figures 17 and 18, indicating the appropriateness of both models
for improving part shrinkage by choosing suitable process conditions.
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Table 7. Measured and calculated results of time-averaged pressure.

Group Melt Temp.
(◦C)

Packing
Pressure

(Bar)

Packing
Time

(S)
tcrys. (S) PSavg (Bar)

B1 210 900 10 22.31 307.02
B2 210 900 7 21.78 280.52
B3 210 900 4 21.48 150.62
B4 210 600 10 21.67 191.56
B5 210 600 7 21.60 170.77
B6 210 600 4 23.54 119.22
B7 210 300 10 22.43 79.08
B8 210 300 7 22.27 69.14
B9 210 300 4 22.60 58.15

B10 230 900 10 23.74 342.48
B11 230 900 7 23.36 261.16
B12 230 900 4 24.72 119.65
B13 230 600 10 23.49 203.01
B14 230 600 7 23.23 152.35
B15 230 600 4 24.46 99.61
B16 230 300 10 24.74 78.36
B17 230 300 7 24.52 68.74
B18 230 300 4 25.14 50.20
B19 250 900 10 25.21 336.84
B20 250 900 7 24.60 210.53
B21 250 900 4 27.04 108.73
B22 250 600 10 24.89 199.10
B23 250 600 7 25.69 136.91
B24 250 600 4 27.00 77.44
B25 250 300 10 25.89 82.14
B26 250 300 7 26.18 65.96
B27 250 300 4 27.03 46.07

Table 8. Adjusted and non-adjusted coefficients of determination for the three types of functions with
different orders.

Equations Coefficients

Linear equation:
SV = 1.767 − 0.002024 × PSavg

R-sq R-sq (Adj.)

89.36% 89.16%
Quadratic equation:

SV = 1.910 − 0.004115 × PSavg + 6 × 10−6 × P2
Savg

R-sq R-sq (Adj.)

94.00% 93.76%
Cubic equation:

SV = 1.901 − 0.003899 × PSavg + 4 × 10−6 × P2
Savg + 10−10 × P3

Savg

R-sq R-sq (Adj.)

94.00% 93.64%

4. Conclusions

Achieving a target part shrinkage for injection-molded crystalline polymer usually in-
cludes a dilemma for molders due to the uncertainty of crystallinity and process-dependent
variations. If the completion of the crystallization process can be assured, then the opti-
mization of molding conditions to obtain good part qualities becomes easier. In this study,
we proposed a new methodology to detect the enthalpy change of crystalline polymers
by monitoring the melt temperature using an infrared temperature sensor. The end of the
crystallization was identified as the time when the minimum cooling rate of the measured
temperature curve occurred. We then constructed a model to predict the crystallization
completion time based on experiments at various melt and mold temperatures using re-
sponse surface methodology. The validity of the predicted model was further verified by
examining part warpage molded under various cooling times. The warpage variation and
distribution demonstrated that when the cooling time is longer than the crystallization
time, the part warpage stabilizes and the warpage resulting from incomplete crystalliza-
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tion is excluded, indicating the appropriateness of the predicted crystallization times. To
further improve the part shrinkage, we conducted another set of experiments focusing
on the influence of packing pressure and time and the possible associated effects of the
melt temperature. Using regression analysis, we used the experimental results to build a
prediction model that correlates time-averaged cavity pressure with part shrinkage. The
predicted model well fits the experimental data. Both models were further verified with
designed experiments, demonstrating accuracies of 1.53% and 0.1% for the influence of
crystallization time and time-averaged packing pressure on shrinkage, respectively. The
predicted models can easily optimize the molding conditions to improve part shrinkage
and minimize warpage.
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