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Abstract: This paper proposes a method called Grouped Contrastive Learning of self-supervised
Sentence Representation (GCLSR), which can learn an effective and meaningful representation
of sentences. Previous works maximize the similarity between two vectors to be the objective
of contrastive learning, suffering from the high-dimensionality of the vectors. In addition, most
previous works have adopted discrete data augmentation to obtain positive samples and have directly
employed a contrastive framework from computer vision to perform contrastive training, which
could hamper contrastive training because text data are discrete and sparse compared with image
data. To solve these issues, we design a novel framework of contrastive learning, i.e., GCLSR, which
divides the high-dimensional feature vector into several groups and respectively computes the groups’
contrastive losses to make use of more local information, eventually obtaining a more fine-grained
sentence representation. In addition, in GCLSR, we design a new self-attention mechanism and both
a continuous and a partial-word vector augmentation (PWVA). For the discrete and sparse text data,
the use of self-attention could help the model focus on the informative words by measuring the
importance of every word in a sentence. By using the PWVA, GCLSR can obtain high-quality positive
samples used for contrastive learning. Experimental results demonstrate that our proposed GCLSR
achieves an encouraging result on the challenging datasets of the semantic textual similarity (STS)
task and transfer task.

Keywords: contrastive learning; self-attention; data augmentation; grouped representation;
unsupervised learning

1. Introduction

Representation learning of sentences involves learning a meaningful representation for
a sentence. Most downstream tasks in natural language processing (NLP) are implemented
with sentence representation [1–5].

Recently, researchers have achieved great advances in sentence representation based on
contrastive learning with pre-trained language models [6–10]. On the one hand, the large-
scale pre-trained language models (PLMs), typified by BERT [11], are trained with unlabeled
data, improving the state-of-the-art results in most downstream tasks. Therefore, PLMs are
applied to various real scenarios, such as text generation [8], name entity recognition [12],
question answering [13], and translation [13]. On the other hand, unsupervised repre-
sentation learning based on contrastive learning advances the development of computer
vision [14–17]. Therefore, many researchers combine PLMs with contrastive learning to con-
duct sentence representation tasks [18,19]. For example, Wu et al. [20] adopt back-translate
as the data augmentation method to produce positive samples used for contrastive learning
and PLMs as the backbone to obtain semantic feature of sentences, achieving a promising
result for sentence representation. Gao et al. [21] respectively take the standard dropout
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mask of the transformer and cosine similarity as the data augmentation method and as the
contrastive objective function to conduct the contrastive training, producing a meaningful
sentence representation.

However, there are issues with implementing contrastive learning in sentence repre-
sentation: (a) An appropriate data augmentation method is needed to produce positive
samples used for contrastive learning. In contrastive training, the semantic similarity
between the positive example pair should be narrow. Therefore, improper data augmenta-
tion may change the semantic information of sentences, resulting in difficulties advancing
performance. (b) The information of text data are sparse and discrete. Unlike image data,
the information between the adjacent pixels is continuous, while the information of text
data is discrete, indicating that the model could not learn the distinguishing features by
contrastive learning. (c) Similarity computing between high-dimensional vectors could
lose the local information of vectors. Generally, the objective of contrastive learning is to
minimize the similarity of high-dimensional vectors, which could not make use of local
information of vectors well and could affect performance.

To solve the issues above, we propose Grouped Contrastive Learning of self-supervised
Sentence Representation (GCLSR). GCLSR adopts continuous data and partial data aug-
mentation to obtain high-quality positive samples used for contrastive learning. Due to
the discrete and sparse text data, GCLSR designs a self-attention mechanism to focus
on informative words by measuring the importance of every word in a sentence. To ad-
dress high-dimensional feature vectors, GCLSR proposes grouped contrastive learning to
disentangle more local information of feature vectors.

The contributions of this paper are summarized as follows:

• We propose a new data augmentation method called partial-word vector augmentation
(PWVA) to obtain positive samples used for contrastive learning. PWVA performs
data augmentation on partial word vectors of the word embedding space of a sentence.
In this way, the positive sample pairs can retain more original semantic information,
which could enhance and facilitate contrastive learning.

• We design a new computation method of self-attention to help the model focus on
the informative words of a sentence. Experimental results show that the use of self-
attention can enhance the representation of discrete and sparse text data.

• We design a new paradigm of contrastive learning called the Grouped Contrastive
Learning of self-supervised Sentence Representation (GCLSR), which can make use of
more local information of high-dimensional feature vectors.

• We evaluate GCLSR on different datasets. Experimental results demonstrate that our
proposed GCLSR achieves a promising result on sentence representation. Additionally,
we further investigate effectiveness of the GCLSR through an ablation study and
explore possible implementation schemes based on our method.

The rest of this paper is organized as follows: The related works on representation
learning based on contrastive learning, text data augmentation, and self-attention are
introduced in Section 2. Our proposed GCLSR is presented in Section 3. Sections 4 and 5
respectively evaluate and investigate GCLSR. Conclusions and future work are presented
in Section 6.

2. Related Work
2.1. Representation Learning Based on Contrastive Learning

Contrastive learning obtains promising results in representation learning [14,17,22].
Generally, a Siamese network is used to construct the contrastive framework and conduct
contrastive training [14].

In the computer vision domain, contrastive learning achieves significant improvement
in the representation of image. SimCLR [14] uses an encoder and projection head as the
contrastive framework, which advances the state-of-the-art results for image representation.
BYOL [17] designs a momentum encoder to avoid collapsing on contrastive training, which
obtains an encouraging result. SimSiam [16] uses BYOL’s contrastive framework, but it
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changes the way that a network’s parameters are updated. Surprisingly, stop-gradient
not only solves the issue of the model’s collapse but also obtains comparable results in
STS tasks.

Contrastive learning achieves promising results for image representation. Therefore,
researchers have started to adopt contrastive learning to obtain high-quality sentence rep-
resentation. CERT [23] augments a sentence by back-translation and performs contrastive
training using the contrastive framework of MoCo. CMV-BERT [24] adopts different
tokenizers to conduct sentence augmentation and performs contrastive training on the
framework of the SimSiam. ConSERT [25] performs data augmentation (such as token
shuffling, adversarial attack, cutoff, and dropout) on word vectors of BERT to obtain posi-
tive samples and achieve encouraging results. More details about contrastive learning in
sentence representation are shown in Table 1.

Table 1. Some contrastive learning methods in sentence representation. P: the computing of loss
just includes positive samples. P + N: the computing of loss includes positive and negative samples,

i.e., ` = −log
exp(sim(zi, zj)/τ)

∑2N
k=1 exp(sim(zi, zk)/τ)

(k 6= i), where zi, zj, and zk are the positive samples, while

zk represents the negative samples. τ is a temperature parameter. sim(·) denotes the similarity.
Discrete/continuous and full: data augmentation is discrete/continuous and performed on every
word of a sentence.

Model Backbone Data Augmentation Loss Framework

CERT [23] Pre-trained BERT Back-translation (Discrete and Full) P + N Based on MoCo
CMV-BERT [24] ALBERT (3 layers) Multi-tokenizers (Discrete and Full) P Based on SimSiam
CLEAR [20] Transformer Substitution (Discrete and Full) P + N Based on SimCLR
ConSERT [25] Pre-trained BERT Dropout (Continuous and Full) P + N Based on SimCLR
SimCSE [21] Pre-trained BERT Dropout (Continuous and Full) P + N Based on SimCLR

While great success has been achieved by contrastive learning in sentence representa-
tion, deficiencies still exist in the aforementioned methods, hampering the improvement of
performance. The details are shown below: (1) Most methods directly utilize the framework
of computer vision as the pipeline for contrastive learning. Therefore, it could hamper
contrastive training because text data are discrete and sparse compared to image data.
(2) The well-performing pre-trained models (such as BERT) are adopted as the backbone
network of contrastive learning. Consequently, they cannot evaluate the performance
of a lightweight model on sentence representation using contrastive learning. After all,
the pre-trained model works well in NLP tasks. (3) Improper data augmentation could
change the original semantics of a sentence. Most methods use discrete data augmentation
to produce positive samples to perform contrastive training, which could deteriorate the
original semantics. Different from the aforementioned methods, we design a dedicated
contrastive learning framework for sentence representation, namely, GCLSR. To obtain
high-quality positive samples, GCLSR uses partial-word vector augmentation, a contin-
uous form of data augmentation, which can maintain more of the original semantics of
sentences. Further, GCLSR uses a lightweight model TextCNN to explore the effectiveness
of contrastive learning on sentence representation.

2.2. Text Data Augmentation

Data augmentation is an effective strategy to improve performance and steadiness of
training. Wei et al. [26] proposed a popular data augmentation method called EDA for text
classification and achieved promising results. Wang et al. [27] use k-nearest neighbor word
vectors as the positive samples. Guo et al. [28] obtain positive sample pairs by performing
a linear interpolation between word vectors.

While many data augmentation methods obtain encouraging results in NLP, there is no
dedicated one for contrastive training. Generally, the positive samples used for contrastive
training are produced by data augmentation. Therefore, the above-mentioned approaches
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could not be directly employed to generate positive samples. The explanations for this
are listed as follows: (1) A high semantic similarity should be reserved between positive
samples. On the contrary, the contrastive model could be collapsing easily. (2) A data
augmentation method could be implemented on partial data to produce positive samples.
In this way, more original semantics could be preserved between positive samples, which
could help the model learn to distinguish features easily. (3) The augmentation of text is
as continuous as possible. Most methods above, such as EDA and back-translation, are
discrete, which may make the contrastive training unsteady and hurt the generalization of
model. Different from the existing data augmentation methods, our proposed PWVA is
a continuous data augmentation strategy. PWVA conducts data augmentation for partial
words of a sentence in the word embedding space, which can preserve more original
semantics between positive samples and facilitate the contrastive training.

2.3. Self-Attention in Language Model

Great progress has been made in the development of attention since Bahdanau
et al. [29] adopted attention to enhance the performance of NLP tasks. Devlin et al. [11]
designed an encoder with attention in order to process sentences and achieved great per-
formance on the various tasks of NLP. However, it needs additional operations (such as
position-wise feed-forward networks and layer normalization ) to ensure steady training,
resulting in difficulties in application to a practical, lightweight computational platform.
Different from the method proposed by Devlin [11], we design a self-attention mechanism
with low computing consumption to compute the importance of words in a sentence with-
out any additional operations. In addition, to help the lightweight model measure the
importance of a word for a sentence, we rewrite the computing process of sef-attention
slightly. In this way, the use of self-attention in contrastive learning can help the model
focus on the informative words of a sentence. The details of our proposed method for
self-attention are shown in Section 3.

3. Methodology

As discussed above, contrastive learning can be conducted by mainly obtaining posi-
tive samples and designing a contrastive framework. In this paper, we propose a Grouped
Contrastive Learning of self-supervised Sentence Representation (GCLSR). Figure 1 illus-
trates the overall architecture and training pipeline of GCLSR. As shown in Figure 1, GCLSR
contains three parts: partial-word vector augmentation (introduced in Section 3.1), self-
attention (introduced in Section 3.2), and the GCLSR network (introduced in Section 3.3).
The upper right plot includes the details of the GCLSR network. The lower right plot is the
visualization of PWVA (introduced in Section 3.1).

3.1. Partial Word Vector Augmentation

As discussed above, performing data augmentation in contrastive learning is done in
order to obtain positive samples. However, most existing methods are discrete and per-
formed on full words of a sentence, which could deteriorate original semantic information
for discrete and sparse text data. Therefore, we design a continuous and partial-word vector
augmentation (PWVA) for contrastive learning. Furthermore, a word vector is a vector with
fixed dimensionality, and every element in a word vector is a real value. Therefore, a word
vector can be treated as a 1D discrete signal. In this way, word vectors can be processed
by strategies of digital signal processing. Our proposed PWVA is based on this insight in
order to implement data augmentation. To be exact, PWVA is conducted by two probability
choices. Let W = {wi ∈ Rd}N

i=1 be the N word vectors with d dimensionality. The first
probability choice of PWVA is represented by:

waug = ρ(Agwn(wi), Arzs(wi), Ai f f t(wi), Arbn(wi); p1, p2, p3, p4), (1)
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where ρ(·) is a function aiming to choose data augmentation strategies from Random
Zero Setting (RZS), Inverse Fast Fourier Transformation (IFFT), Gaussian White Noise
(GWN), and Random Background Noise (RBN) by the probabilities p1, p2, p3, and p4,
respectively. The waug denotes the augmented word vectors. The second choice of PWVA
can be expressed below:

wpwva = $(waug, wi; p), (2)

where $ is a function to select the final PWVA output wpwva from waug and wi, with proba-
bility p. The visualization of PWVA is shown in the lower right plot of Figure 1. In addition,
four data augmentation strategies employed in Equation (1) are explained below.
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Figure 1. The GCLSR architecture.

• Gaussian White Noise (GWN)
In order to improve the robustness of our model, we introduce Gaussian white noise
(as illustrated in Figure 2a) into the word vectors. This approach is inspired by the
work of Uchaikin et al. [30]. Gaussian white noise can be mathematically represented
as follows:

Agwn(wi) = wi + λ · N (0, 1), (3)

where λ represents the trade-off parameter, while N (0, 1) refers to the standard
normal distribution.

• Random Zero Setting (RZS)
To mitigate data dependence and enhance generalization ability, we employ a tech-
nique called random zero setting Arzs(wi) = Dropout(wi) (as illustrated in Figure 2b).
This technique enables us to randomly assign zero values to certain word vector
components.

• Inverse Fast Fourier Transformation (IFFT)
To extract features in the frequency domain, we utilize word vectors and subsequently
apply the inverse fast Fourier transform (IFFT) as illustrated in Figure 2c to convert
them into the time domain. The word vectors undergo slight modifications after
undergoing the IFFT process, thereby enhancing the resilience of the data boundary.
The mathematical representation of the IFFT can be expressed as follows:

Ai f f t(wi) = Real(IFFT(FFT(wi))), (4)

where Real(·) denotes the real part.
• Random Background Noise (RBN)

Random background noise cannot be learned by a model, as stated in the research
conducted by [31]. Therefore, to enhance training stability, we introduce random
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background noise into the word vectors, as depicted in Figure 2d. The formulation for
random background noise (RBN) is given below:

Arbn(wi) = wi + uni f orm(0, 0.1), (5)

where uni f orm(·) is the uniform distribution.

(a) (b)

(c) (d)

Figure 2. Four word vector augmentation methods of the PWVA. Note that we perform data
augmentation on word vectors of a sentence rather than on the original sentence. (a) Gaussian White
Noise: Amplitudes of noise added to the word vectors follow the standard normal distribution.
(b) Random Zero Setting: The data corresponding to the black curve are set to zero. (c) Inverse
Fast Fourier Transformation:Differences from the data boundary can be observed in the right zoom
window. (d) Random Background Noise: Amplitudes of noise added to the word vectors follow a
uniform distribution.

In summary, continuous and PWVA can enhance and facilitate contrastive learning.
The characteristic of “continuous” PWVA can ensure that there is no semantic gap in word
vectors, while the “partial” can retain more original semantics of word vectors. In this
way, a model can readily acquire a richer set of discriminative features by assimilating the
disparities between the initial word vectors and their respective augmented counterparts.
In contrast, all existing methods obtain distinguishing features between augmented data,
resulting in difficulties in contrastive training. This insight is the main contribution of
PWVA. In addition, as shown in the lower right plot of Figure 1, we present a visualization
of the PWVA process. Specifically, we apply data augmentation twice to the word vector
space using PWVA to obtain two sets of positive sample pairs, AUG1 and AUG2. In AUG1
and AUG2, the orange boxes represent the augmented word vectors, while the yellow



Appl. Sci. 2023, 13, 9873 7 of 17

boxes indicate that the word vectors have not been augmented. As a result, there are four
possible combinations, B1, B2, B3, and B4, between AUG1 and AUG2. B1 represents the
scenario where the word vector W1 in AUG1 is augmented, while W1 in AUG2 remains
unchanged. The term “partial” indicates that some word vectors in both AUG1 and AUG2
are not augmented, thus preserving more of their original semantics for contrastive learning.
The results of the ablation study are presented in Section 5.

3.2. Self-Attention of the Word Vectors

We perform PWVA to obtain high-quality positive samples. However, for a lightweight
model, it could not effectively capture the importance of a word in a sentence. Therefore,
we design a self-attention mechanism to capture the importance of words and facilitate
contrastive training. Self-attention is applied to many scenarios and achieves great success.
Inspired by the work of [11], we design a dedicated self-attention method to help the
model focus on informative word vectors from the discrete and sparse text data. Note
that the word vectors are produced by the pre-trained word2vec [32] before carrying out
data augmentation. Hence, the word vectors already include some semantic information.
Furthermore, the self-attention added to the word vectors can make the model focus on the
features useful for distinguishing semantic information. The details are shown in Figure 3.
Note that our method of self-attention is different from BERT’s. The main differences are
as follows: (1) We fill the value 1× 10−9 after computing the scores for padding tokens.
(2) We first compute the importance of the words to a sentence, and then multiply it by the
original word vector. More details are shown in Algorithm 1. To verify the effectiveness
of our method, we conduct an experiment to compare the performance on an STS task
with the state-of-the-art models proposed by [11]. We observe that our proposed method
increases the average Spearman’s correlation from 62.97 to 66.75 (+3.78) with the same
time complexity O(n2). In addition, we visualize the process of our proposed self-attention
method. As shown in Figure 3, let N = be the number of words in a sentence. MASK
and si,j = xi ∗ xj are the mask matrix (the value of which equals 0 if the word is the
padding token) and attention of the word xi to xj in a sentence, respectively. Specially,
S = ∑N

j=1 si,j (i = 1, 2, · · · , N) can represent the importance of the word xi to a sentence.
We can observe from Figure 3 that the first few words with a larger value of “importance”
are the word “comic”, “relief”, “performances”, and “immaculate”, which can help the
model watch for the crucial information in a sentence.

word1 word2 word3 word5word4 word6

The         performances are           immaculate    providing         comic             relief

word7

mask=1 mask=1 mask=1mask=1 mask=1 mask=1 mask=1 ..…. mask=0

wordN…….

The          performances are          immaculate    providing         comic             relief

..…

𝑆1 =0.22 𝑆2=0.75 𝑆3=0.55 𝑆4=0.77 𝑆5=0.57 =1.01 𝑆7=0.86 …… 𝑆𝑁=2× 10
−8 

𝑗=1

𝑁

𝑠6,𝑗

𝑠6,1 𝑠6,2 𝑠6,3 𝑠6,4 𝑠6,5 𝑠6,6 𝑠6,7 𝑠6,𝑁

Figure 3. The self-attention of word vectors.
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Algorithm 1: Self-attention of Word Vectors
Input: S: a sentence with N word vectors and dimensionality dk
Output: attention of word vector
initialization: Q← K← V←W
#compute the mask matrix
for w in S do

if w is padding then
mask← 0;

else
mask← 1;

end
end
#compute the words’ importance

sim←Q·KT√
dk

;

for w, m in (sim, mask) do
if m==0 then

w← 1× 10−9;
end
s← w;

end
scores←∑N

j=1 si,j;
return scores· V

3.3. Grouped Contrastive Learning

By conducting PWVA and self-attention, the construction of positive samples is fin-
ished. Next, we introduce grouped contrastive learning to obtain sentence representation.
Generally, the pipelines of contrastive learning are that one first performs data augmen-
tation to produce positive samples, then obtains the features computed by the backbone,
and finally computes the contrastive loss [16]. Unfortunately, computing a contrastive loss
between high-dimensional vectors could not make use of the local information of vectors
well. To solve this issue, we propose the GCLSR to mitigate the aforementioned drawback
during contrastive training. As shown in Figure 1, the GCLSR consists of two branches.
The first branch includes the backbone, projector [14], and predictor [17], while the other is
the backbone and projector. In particular, in order to make use of local information about
features, we first divide the features of the projector and predictor into M groups with
D dimensionality. The grouped features of the projector and predictor can be denoted as
FeaPro = {Proi ∈ RD}M

i=1 and FeaPre = {Prei ∈ RD}M
i=1, respectively. Finally, we use the

negative mean of the cosine similarity as the contrastive loss [17]:

` = −Mean(
M

∑
i=1

(
Prei · Proi
‖Prei · Proi‖2

)), (6)

where ‖ · ‖ is l2-norm. In addition, we adopt the symmetrical loss to improve performance:

`sym = −1
2

Mean(
M

∑
i=1

(
Prei · Proi
‖Prei · Proi‖2

+
Proi · Prei
‖Prei · Proi‖2

). (7)

4. Experiments

We systematically assess the efficacy of our novel approach, denoted as GCLSR, across
seven distinct tasks focused on semantic textual similarity (STS). Moreover, we rigorously
examine its performance on an additional set of seven transfer tasks. Worth highlighting is
our deliberate choice of a lightweight model—TextCNN—as the foundational architecture.
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This decision allows us to meticulously probe the potential of contrastive learning in enhanc-
ing sentence representations. It is pertinent to underscore that our intention is not to draw
comparisons to the prevailing state-of-the-art benchmarks. Furthermore, it is essential to
emphasize that both the STS experiments and the transfer tasks are conducted under a fully
unsupervised setting. Notably, during the training phase, no STS datasets—comprising
training, validation, or test sets—are employed. This approach ensures the integrity of our
experimental setup and validates the intrinsic strength of our proposed methodology.

4.1. Implementation Settings

Unless explicitly stated otherwise, we adhere to the ensuing configuration for the
pre-training phase of our contrastive self-supervised methodology:

• Backbone. We use TextCNN [33] as the default backbone. Specifically, the filter region
size is [1,1,1,6,15,20]. The number of filters is 300. Note that we do not use a fully-
connected (FC) layer or dropout at the end of the backbone, because this makes the
results worse.

• Projector. The projection layers include three FC layers. Every output of an FC layer
has a batch normalization [34] and ReLU, except for the last FC layer. The dimension
of the hidden and output layers is 4096.

• Predictor. The prediction layers have two FC layers. The hidden layers have a batch
normalization (BN) and ReLU, while the output layers do not have BN and ReLU.
The hidden and output layers are both endowed with dimensions of 1024 and 4096,
respectively, resulting in a bottleneck architecture that substantially enhances the
model’s robustness [16].

• Optimizer. The SGD is used for the optimizer. The learning rate (LR) is base_lr ∗
BatchSize/128 (the base_lr is 0.03). The LR has a cosine decay schedule [35]. The weight
decay is 0.001. We also use the warm-up (5 epochs). Additionally, the momentum is
0.9 before warm-up epochs and 0.8 after warm-up epochs, which makes the model
more robust (more details are shown in Section 5).

4.2. Semantic Textual Similarity Task

The goal of the semantic textual similarity task (STS) is to evaluate the similarity
between two sentences by directly computing the cosine distance [36]. Then, the cosine
distance correlates with a labeled similarity score (from 0 to 5) by Pearson or Spearman cor-
relations to obtain a matching score. In this way, the matching score can reflect the semantic
similarity between two sentences. We train our self-supervised GCLSR model with pre-
trained word2vec on 104 sampled sentences randomly drawn from English Wikipedia [21].
The stop epochs are 20, and the best checkpoint on validation datasets is used for test-
ing. Finally, we use the SentEval toolkit [36] to measure our proposed method on 7 STS
tasks, i.e., STS 2012–2016 [37–41], STS Benchmark [42], and SICK-Relatedness [43]. In these
datasets, sentence pairs are from news articles, news conversations, forum discussions,
headlines, and image and video descriptions. Following [16], (a) we employ Spearman
correlation as the only metric to evaluate the quality of sentence representation in STS
tasks. Ref. [16] argues that Spearman correlation better suits the needs of evaluation; (b)
no additional networks are applied on top of sentence representation. Put differently, we
directly calculate the Spearman correlation using cosine similarities; (c) given that STS data
of every year include several sub-datasets, we concatenate all sub-datasets to calculate
the Spearman correlation. The operation “concatenate”, incorporating different subsets, is
more proper compared with other methods in practical applications.

The results of the evaluation are shown in Table 2. We observe that all variations we
proposed work well and are better than word2vec embeddings (on average). Specifically, we
improve the average Spearman correlation from 44.16 to 66.75 compared with word2vec em-
beddings (on average), the pre-trained language model BERT (from 56.57 to 66.75), RoBERT
(from 56.57 to 66.75), and CLEAR (from 61.8 to 66.75). Furthermore, our proposed data aug-
mentation PWVA outperforms the compared methods of EDA and back-translation on STS
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tasks using the proposed contrastive learning framework GCLSRbase. The application of
self-attention (GCLSRbase+PWVA+self-att.) and grouping (GCLSRbase+PWVA+self-att.+GP)
can also improve the performance. The experimental results show that our proposed
method GCLSRbase+PWVA+self-att.+GP can also achieve a better result compared with
GCLSRbase+EDA+self-att.+GP and with GCLSRbase+TransL.+self-att.+GP. In addition, we
note a significant distinction wherein strong performance in the STS tasks does not inher-
ently translate into improved results in the transfer tasks. Consequently, it is prudent to
primarily consider the outcomes from the STS evaluations for the purpose of comparison.

Table 2. The evaluation of sentence representation in STS tasks. All results are computed with the
Spearman correlation. *: results from [21]; **: results from [20]; the remaining results are evaluated by
us. GCLSRbase means that the model only consists of a backbone, projector, and predictor. The model
receives the same two word vectors as the input, i.e., no data augmentation is used. EDA is a text
data augmentation method proposed by [26]. TransL denotes the data augmentation back-translation.
Self-att and GP denote the self-attention mechanism and feature grouping, respectively.

Model STS12 STS13 STS14 STS15 STS16 STS-B SICK-R Avg.

Word2vec embeddings(avg.) 33.75 43.20 36.95 55.23 54.85 36.24 48.90 44.16
BERTbase(first-last avg.) * 39.70 59.38 49.67 66.03 66.19 53.87 62.06 56.70
RoBERTbase(first-last avg.) * 40.88 58.74 49.07 65.63 61.48 58.55 61.63 56.57
CLEAR ** 49.00 48.90 57.40 63.60 65.60 75.60 72.50 61.80
BERTbase-flow * 58.40 67.10 60.85 75.16 71.22 68.66 64.47 66.55
BERTbase-whitening * 57.83 66.90 60.90 75.08 71.31 68.24 63.73 66.28

GCLSRbase 57.47 68.70 64.03 72.84 67.90 65.64 59.55 65.16
GCLSRbase+EDA 57.33 68.09 63.65 72.01 66.63 65.34 59.71 64.68
GCLSRbase+TransL 60.53 66.09 63.50 72.83 67.39 66.09 59.78 65.17
GCLSRbase+PWVA 58.92 67.94 64.41 73.54 68.72 66.16 59.85 65.65
GCLSRbase+PWVA+self-att. 57.62 71.00 65.83 75.51 69.81 67.41 59.41 66.66
GCLSRbase+EDA+self-att.+GP 58.13 68.85 64.14 73.40 66.92 65.31 59.61 65.19
GCLSRbase+TransL.+self-att.+GP 58.80 68.00 64.70 73.74 68.50 67.24 59.67 65.81
GCLSRbase+PWVA+self-att.+GP 57.81 71.01 65.83 75.62 70.01 67.58 59.34 66.75

4.3. Transfer Task

Transfer task is used to evaluate the performance of downstream tasks using sentence
representation [36]. Generally, a classifier is added on the top layer of a sentence repre-
sentation model to evaluate the performance of the transfer task. Note that the classifier
(consisting of linear layers) can be trained, while the sentence representation model needs
to be frozen. Our proposed method underwent rigorous testing across a spectrum of tasks,
including MR [44], CR [45], SUBJ [46], MPQA [47], SST-2 [48], TREC [49], and MRPC [50].
The pre-trained stage is the same as for STS tasks. The evaluation results are shown in
Table 3. We find that the overall tendency of results is the same as STS tasks. However,
there are two abnormalities that need to be explained. (1) The pre-trained model BERTbase
obtains a better result compared with our proposed model on transfer tasks. Firstly, we
only chose 104 sentences from the wiki to perform the pre-training. Secondly, the number
of parameters of our model is far less than BERTbase. Therefore, we take a short time to per-
form pre-training (about 1 h on 1 Tesla v100 GPU). (2) The application of self-attention and
grouping harms the performance slightly compared with GCLSRbase+PWVA. A possible
explanation is that the implementation of PWVA is on word vectors, which could change
the original semantic information of vectors. In addition, we do not perform joint training
with tasks, which means the model could not digest the learned contrastive features.
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Table 3. The results of transfer tasks. All results are computed with the Spearman correlation.
*: results from [21]; the remaining results are evaluated by us.

Model MR CR SUBJ MPQA SST-2 TREC MRPC Avg.

Word2vec embeddings(avg.) 75.91 77.56 89.31 87.18 80.89 77.40 72.17 80.06
BERTbase(first-last avg.) * 78.66 86.25 94.37 88.66 84.40 92.80 69.54 84.94

GCLSRbase 76.78 79.02 90.21 88.35 81.77 83.00 73.28 81.77
GCLSRbase+EDA 76.56 79.55 90.54 88.54 81.66 84.40 72.99 82.03
GCLSRbase+TransL 76.61 79.52 90.41 88.74 81.27 84.00 73.04 81.94
GCLSRbase+PWVA 76.76 80.08 90.66 88.59 81.60 85.20 73.57 83.35
GCLSRbase+PWVA+self-att. 76.97 78.81 90.98 88.36 80.51 84.60 73.74 82.00
GCLSRbase+EDA+self-att.+GP 76.90 79.58 90.57 88.50 81.82 85.60 72.75 82.25
GCLSRbase+TransL.+self-att.+GP 76.98 79.32 90.41 88.54 81.16 84.00 73.28 81.96
GCLSRbase+PWVA+self-att.+GP 77.69 79.87 90.89 88.99 81.44 83.80 73.39 82.30

5. Further Investigation of GCLSR

We design a novel contrastive learning paradigm, namely, GCLSR, that consists of
three crucial components, i.e., (a) data augmentation, (b) self-attention, and (c) grouped
contrastive learning, to study the performance of contrastive learning on sentence rep-
resentation. Experimental results show that our proposed GCLSR achieves a promising
result. However, some experimental settings of GCLSR influence the performance of sen-
tence representation, such as warm-up, weight decay, etc. Therefore, we conduct ablation
experiments to analyze them further. All experiments are conducted in STS 2012–2015.

5.1. Effect of Batch Size

Given that a large batch size could impact the performance shown in previous works [14],
we conduct an ablation experiment to study it. Table 4 shows the comparison results of batch
sizes from 64 to 4096. We use the same linear scaling rule—base_lr ∗ Batch_size ∗ 128 (the
base_lr is 0.3)—for all experiments.

Table 4. The effect of batch size.

Batch Size/STS STS12 STS13 STS14 STS15 Avg.

64 56.35 72.56 66.59 74.73 67.56
128 56.20 72.77 66.72 75.03 67.68
256 55.94 72.66 66.67 75.22 67.62
512 (ours) 55.79 72.72 66.73 75.40 67.66
1024 55.73 72.44 66.45 75.40 67.51

Table 4 reports the results of batch sizes from 64 to 1024. Different from previous
conclusions, our model is insensitive to batch size. On the contrary, the performance
is worse when the batch size increases to 1024, compared with the batch size of 512.
In addition, a small batch size of 64 also achieves competitive performance. A reasonable
explanation is that the computing of contrastive loss does not include negative examples.

5.2. Effect of Weight Decay

We find that the value of the weight decay influences performance dramatically. We
conjecture that the perturbation of model weight can influence contrastive self-supervised
training. Therefore, we perform an experiment to investigate it. The results are shown in
Table 5.

The experimental results show that improper weight decay could make the model
stop training early, resulting in underfitting and poor performance.
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Table 5. The effect of weight decay.

Weight Decay/STS STS12 STS13 STS14 STS15 Avg.

0.0001 55.04 70.79 65.55 73.36 66.19
0.001 (ours) 55.79 72.72 66.73 75.40 67.66
0.01 55.22 70.48 65.43 74.12 66.31
0.1 54.94 70.26 64.75 72.58 65.63

5.3. Effect of the LR of the Predictor

As mentioned by [16], the predictor with a constant LR (without decay) can obtain
good image representation. Therefore, we design an experiment to verify whether the same
settings can obtain good sentence representation. The results are shown in Table 6.

Table 6. The effect of the LR of the predictor. Decay: the LR of the predictor reduces with a
cosine decay.

LR/STS STS12 STS13 STS14 STS15 Avg.

Decay 54.64 70.58 65.33 72.92 65.87
0.08 55.22 70.17 65.17 73.10 65.92
0.2 56.24 72.22 66.53 75.25 67.56
0.5 56.14 72.59 66.73 75.36 67.71
1 (ours) 55.79 72.72 66.73 75.40 67.66

Experimental results show that a predictor with a constant LR can obtain better
sentence representation compared with a decay LR. Specifically, as shown in Table 6 and
Figure 4, the model will stop training (at the 9th epoch) when the LR of the predictor is
small or reduced by a linear scaling rule. Additionally, the model needs a bigger learning
rate (LR = 1) compared with vision tasks (LR = 0.1) to obtain better results. A possible
explanation is that the predictor can adapt the latest representation. Therefore, it is not
necessary to force the predictor to converge before the model is trained sufficiently [16].
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Figure 4. Comparison experiment results. “All” means that all methods we proposed are used.
“lr0.08” means that the learning rate of the predictor is 0.08. “non-att”: the self-attention we proposed
is not used in whole training. “non-aug”: no data augmentations are applied in training, i.e., the two
channels of network receive the same input. “non-group”: feature grouping is not adopted to make
use of local information of features.
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5.4. Effect of the SGD Momentum

In general, an optimizer with momentum can accelerate training because the update
of the next step is based on the former steps. In other words, the gradient has a certain
initial velocity (the network can remember the direction of gradient descent), which makes
the network get rid of the local optima. In our proposed methods, the momentum is set to
0.9 before the warm-up epochs and 0.8 after the warm-up epochs. More details are shown
in Table 7.

We observe that a small momentum will take more time to train the model and will
not necessarily achieve the best performance. While a large momentum can save training
time, the model can miss the optima resulting from a big step updating in the vicinity of
the optimal point. Therefore, we set the momentum to (0.9, 0.8) to accelerate the training
before warm-up epochs and to slow the updating step after the warm-up epochs, achieving
better performance.

Table 7. The effect of the SGD momentum (Mot). (0.9,0.8) means that the momentum is 0.9 before
warm-up and 0.8 after warm-up.

Momentum/STS STS12 STS13 STS14 STS15 Avg.

0.8 55.47 72.45 66.50 74.84 67.32
0.9 55.27 71.96 66.27 75.18 67.17
0.99 54.76 70.86 65.69 73.93 66.24
(0.9,0.8) (ours) 55.79 72.72 66.73 75.40 67.66

5.5. Effect of the Warm-Up

In the training phase, the LR is linearly scaling, i.e., the LR linearly increases to the
maximum and reduces to the minimum, which can make a model more robust. Given
that the parameters of a model are randomly initialized, it is inappropriate to employ a
large LR in the first few updates of training because the noise of the data may influence the
performance. The comparison results are shown in Table 8.

Table 8. The effect of the warm-up. 1, 2, 3, 4, and 5 represent epochs that the LR starts to reduce.

Warm-Up/STS STS12 STS13 STS14 STS15 Avg.

1 55.62 72.52 66.54 74.75 67.36
2 55.45 72.38 66.42 74.90 67.29
3 55.62 72.54 66.56 75.09 67.45
4 55.64 72.55 66.60 75.07 67.47
5 (ours) 55.79 72.72 66.73 75.40 67.66

Overall, the performances between the different warm-up epochs are comparable.
However, a small warm-up can make the model stop early, especially for data with
much noise.

5.6. Effect of the Region Size of TextCNN

The region size is a crucial parameter of TextCNN. Therefore, we design different
region sizes to investigate their impacts. The results are shown in Table 9.

The experimental results show that the performance can be influenced dramatically
by region size. Specifically, region size 1 is crucial for obtaining good results, observed
from region size (1,2,3,4,5,6) and (2,3,4,5,6). A possible explanation is that region size 1
can enhance the representation of every word itself in a sentence without noise from other
words. Furthermore, we can increase the region size to study it. The results show that,
although large region sizes can obtain a better result compared with a small region sizes
(1,1,1,2,3,4) on STS tasks, worse performance is obtained in transfer tasks (a large region size
will reduce by 0.3 percentage points). We argue that a large region size could obtain more
context information, but at the same time, much noise is also added into the representation.
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Table 9. The effect of the region size of TextCNN.

Region Size/STS STS12 STS13 STS14 STS15 Avg.

(1,2,3,4,5,6) 55.36 67.92 63.33 73.55 65.04
(2,3,4,5,6) 53.85 62.36 59.82 70.80 61.71
(1,1,1,2,3,4) 55.52 71.72 65.79 74.90 66.98
(1,1,1,4,5,6) 56.71 71.35 65.53 75.19 67.20
(1,1,1,1,1,1) 57.81 71.01 65.83 75.62 67.57
(1,1,1,6,15,20) (ours) 55.79 72.72 66.73 75.40 67.66
(1,1,1,20,30,40) 57.44 70.82 66.00 75.35 67.40

5.7. Effect of Data Augmentation

Data augmentation could affect the quality of positive samples used for contrastive
learning, which directly influences the performance and robustness of the model. Conse-
quently, we propose two hypotheses for discrete text data: (1) partial data augmentation
could preserve more original semantic information; (2) continuous data augmentation
could guarantee that there is no semantic gap in augmented data. Next, we conduct an
experiment to verify it. The results are shown in Table 10 and Figure 4.

Table 10. The effect of data augmentation. No Aug.: no word vectors are subject to the data
augmentation. Full Aug.: all of the word vectors of a sentence are augmented with our proposed four
data augmentation strategies. Partial Aug.: word vectors are augmented by our proposed PWVA.

Augmentation/STS STS12 STS13 STS14 STS15 Avg.

No Aug. 54.65 70.63 65.39 72.96 65.91
Full Aug. 55.31 70.51 65.81 73.49 66.28
Partial Aug. (ours) 55.79 72.72 66.73 75.40 67.66

As shown in experimental results, the continuous and PWVA improve the perfor-
mance compared with No Aug. (from 65.91 to 67.66) and Full Aug. (from 66.28 to 67.66),
which verifies our two hypotheses about data augmentation used in contrastive learning.
In addition, the model can work well without data augmentation. A possible explanation
is that unrecognizable words’ random initialization can be regarded as a method of data
augmentation, resulting in an improvement in stability and robustness.

5.8. Effect of the Size of Groups

Grouping the features of the projector and predictor can solve the issue of information
loss caused by contrastive loss computing between high-dimensional vectors. Therefore,
we conduct an experiment to study the effect of the size of the feature grouping. The results
are shown in Table 11.

Table 11. The effect of the size of feature grouping. No grouping: feature grouping is not performed.

Grouping Size/STS STS12 STS13 STS14 STS15 Avg.

No grouping 55.77 72.69 66.67 75.33 67.62
4 55.77 72.62 66.61 75.50 67.63
8 55.79 72.63 66.65 75.35 67.61
16 (ours) 55.79 72.72 66.73 75.40 67.66
32 55.73 72.45 66.57 75.39 67.54
128 55.75 72.63 66.59 75.26 67.56

Generally speaking, different grouping sizes can achieve comparable performance on
STS tasks. Although the performance gap between feature grouping and no grouping is
small, as observed in Figure 4, the stability and robustness of the model with feature group-
ing are better compared with no grouping. This verifies that the usage of local information
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by feature grouping can help the model mine more information for contrastive learning to
advance the performance of sentence representation slightly (from 66.66 to 66.75).

6. Conclusions and Future Work

Previous work used large pre-trained language models to perform sentence represen-
tation (such as BERT and RoBERT), but could not evaluate the performance of a lightweight
model on sentence representation using contrastive learning. In this paper, we propose
a lightweight model GCLSR to investigate the effectiveness of contrastive learning for
sentence representation. GCLSR consists of continuous and partial data augmentation
PWVA, self-attention, and grouped contrastive learning. GCLSR can obtain more original
semantics from PWVA to produce high-quality positive samples. Self-attention can help
GCLSR focus on informative words. Grouped contrastive learning can make use of more
local information of features. The experimental results show that our proposed method of
GCLSR can produce a meaningful sentence representation. Additionally, the findings of
PWVA have practical implications. PWVA conducts data augmentation in a partial and
continuous manner in the word embedding space. However, there are some limitations.
For example, our proposed method is evaluated on a lightweight model, i.e., TextCNN,
and achieves promising results, while the effectiveness of it on a large model is uncertain.
In the future, we intend to combine contrastive learning with self-attention further. In ad-
dition, we will use our proposed method on a large pre-trained language model (such as
BERT or GPT) to obtain better results regarding sentence representation.
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