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Abstract: In order to improve the utilization rate of coal generation and reduce carbon emissions
from coal-fired boilers, the operation parameters of power plant boilers should be matched with the
actual burning coal. Due to the complex and high-risk blending process of multiple coal types, the
actual application of coal types inconsistent with expectations may lead to low combustion efficiency
of boilers, cause disturbances to the normal operation of thermal power units, increased energy
waste and carbon emissions, and even lead to serious explosion accidents. Therefore, the online
identification of coal types for thermal power units is of great significance. To obtain the precise
type of coal online, in the present work, a data-driven coal identification method is proposed based
on convolutional networks that do not necessitate additional hardware detection equipment and
are easy to implement. Experimental results indicate that the proposed method exhibits superior
performance in comparison to traditional methods, thus ultimately improving the performance of
thermal power plant.

Keywords: coal identification; convolutional networks; thermal power plant

1. Introduction

Recently, thermal power generation plays an important role in electric energy supply.
In order to reduce costs and improve boiler efficiency, coal blending technology is widely
used in thermal power plants (TPP), using different types of coal in specific proportions
for combustion [1,2]. Coal blending technology refers to the process of burning coal in
a boiler for power generation by blending several types of coal with different characteristics
in a predetermined proportion. Considering that original coal structure has a significant
effect on burnout, and abnormal changes in coal species can affect the low load stability
and combustion capacity of boilers, improper blending or changes in coal types may
result in a decrease in efficiency and, in severe cases, safety accidents [3–5]. Hence, online
identification of coal is important to improve the efficiency of power plants.

In recent years, online coal identification has received extensive attention from both in-
dustry and academia. Chemical analysis-based, image-based, and machine-learning-based
methods are widely used for coal identification. The chemical analysis-based method is re-
liable and relatively accurate. However, this method requires stringent analysis techniques
for elemental content, and it is easily affected by foreign chemical substances. The image-
based method primarily focuses on coal’s shape, texture, and color, and it has gained
considerable attention in recent years. For example, in 2019, Chengzhao Liu et al. [6].
proposed a coal quality recognition method based on electric coal images, which detects
coal quality indexes more accurately using color and texture features. Huiling Meng [7]
proposed an image analysis method for analyzing power coal quality, which accelerated
the model recognition speed. Moreover, Yuanyuan Pu et al. [8] proposed a method in 2021,
which combines image processing and convolutional neural network (CNN) to perform
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binary classification of coal and gangue. However, such methods are primarily used for the
identification of pulverized coal before combustion and are easily influenced by light and
imaging, which makes the identification of coal types challenging.

The online coal identification is a classification recognition problem. Machine learning
methods, such as support vector machine (SVM), Naive Bayes, decision tree, and CNN,
have been adopted to address this issue [9,10]. Andrew Ng and Michael Jordan [11]
compared plain Bayesian and logistic regression methods, reflecting the advantages of plain
Bayesian in small data volumes. However, as the era of big data emerged, the classification
effectiveness of the Bayesian method began to diminish, leading to the development
of improved methods, such as the weighted Bayesian classifier method proposed by
Hanchuan Peng et al. [12]. Later, other improved methods such as semi-parsimonious
Bayes classifier and Gaussian parsimonious Bayes classifier [13] were developed to achieve
better classification results. The decision tree approach was first proposed by Quinlan
J R [14], and later, in 1993, the shortcomings of the previous method were addressed in
the literature [15], which addressed the shortcomings of previous methods, such as the
ability to handle missing values. Over time, the accuracy of decision trees has gradually
improved [16,17]. Alex Krizhevsky et al. [18]. were the first to apply CNN for image
classification and classify 1.2 million images into 1000 categories with a low error rate.
Xiangyu Zhang et al. [19]. improved a deeper level CNN visual geometry group (VGG) in
2015, which has been widely used in the field of target detection. Kaiming He et al. [20].
introduced residual computation in neural networks in 2015, which have addressed, to
a certain extent, the gradient disappearance phenomenon that can easily occur in deep
neural networks. Google subsequently proposed InceptionNet [21] and MobileNet [22],
which further improved the classification accuracy of CNNs.

With the improvement of computational precision, the time cost and memory usage
have also increased. Yu Xue et al. [23] addressed the issue of excessive memory con-
sumption during training by proposing a partial channel connection based on channel
attention for differentiable neural architecture search (ADARTS) in 2023, which enhanced
the efficiency of the search process and optimized memory usage. In the same year, Yu
Xue et al. [24] proposed a multi-objective evolutionary algorithm with a probability stack
(MOEA-PS), which effectively reduces the time cost. Additionally, Zicheng Cai et al. [25]
introduced a novel and efficient channel attention mechanism termed EPC-DARTS, which
allocates weights based on channel importance and selectively employs channels with
higher weights. This approach has contributed to mitigating the aforementioned issues to
a certain extent.

CNN, as a deep learning network, provides significant advantages compared with
traditional neural networks. Given its multiple convolutional layers, it can automatically ex-
tract data features, avoiding the time-consuming and inefficient manual feature extraction
process. In traditional neural networks, overfitting can easily occur because of the excessive
number of parameters, which negatively affects network performance. By contrast, CNNs
can mitigate overfitting to a certain extent by leveraging the weight-sharing feature. In ad-
dition, the robustness of CNNs is effective in combating noise interference. Data-driven
classification recognition has been primarily applied for image processing and text-to-
speech recognition; however, it has not been applied to coal species recognition. In real
power plant scenarios, massive amounts of high-dimensional data are often generated,
accompanied by noise interference, which makes it challenging to complete the coal identi-
fication task using traditional or manual methods. Dongjun Li et al. [26] proposed a deep
learning framework for coal and gangue detection based on image recognition. Qiang
Liu et al. [27] presented an enhanced YOLOv4 algorithm for coal and gangue recognition
using deep learning, showing better performance than YOLOv3. Ziqi Lv et al. [28] pro-
posed a cascade network with a detector and a discriminator, enhancing coal and gangue
detection under complex conditions by designing a multi-channel feature fusion layer and
optimizing the CNN in the discriminator. The aforementioned existing methodologies are
designed to address coal quality recognition by constructing classification models based on
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coal powder images. However, to the best of our knowledge, there is currently a dearth of
research focused on utilizing combustion process data, specifically derived from sensor
measurements, to perform online coal species identification.

To deal with the aforementioned problems, this paper proposes a data-driven al-
gorithm for coal identification based on one-dimensional convolution, leveraging the
advantages of the CNN algorithm in the field of classification and recognition. The pro-
posed method collects process data from coal-fired boilers and feeds the pre-process data
into a CNN model to construct a coal classification model. During online application,
the process data are preprocessed first and then input into the CNN model, and the coal
type is identified on the basis of model output. Industrial data-based verification demon-
strates that the proposed method achieves high recognition accuracy, which can be easily
implemented in the field.

The remainder of this paper is organized as follows. Section 2 provides a description
of the target boiler used in this work. Preliminaries regarding Maximum information
coefficient (MIC) and CNN are provided in Section 3. Section 4 presents the proposed
modeling method. Section 5 discusses experiments and results obtained using real world
data. Finally, conclusions are provided in Section 6.

2. The Profile of the Thermal Power Plant

This study is focused on a 1030 MW ultra-supercritical coal-fired power generation
unit, which is a Spiral Wound Universal Pressure boiler (SWUP) featuring balanced ven-
tilation, ultra-supercritical parameters, one reheating, and a spiral furnace. The unit is
equipped with a solid slag discharge method and an open layout. A medium-speed coal
mill, a positive pressure direct blowing cold primary air pulverizing system, front and
rear wall opposing combustion mode, and low NOx dual-adjustable swirl burners and low
NOx nozzles are employed in the system. The furnace chamber has a cross-sectional width
of 33,128.7 mm, a depth of 16,308.7 mm, and a height of 64,500 mm. Boiler pulverization
and the boiler system are crucial parts of a power plant, directly affecting power generation
efficiency and energy utilization (Figure 1).

Coal

Conveyer Belt 
Scale

Coal 
Hopper

Coal 
Feeder

Coal Mill
Coal Mill

Steam

Turbine Generator

Transformer
Transmission 

Lines

Condenser

Sea Water
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Figure 1. Process flow diagram of thermal power plant.

The thermal power unit comprises various components, including a coal feeder, coal
mill, coal-fired boiler, air supply, steam piping, turbine, generator, and auxiliary equipment.



Appl. Sci. 2023, 13, 9867 4 of 16

Raw coal is delivered to a raw coal hopper via a coal conveying belt, weighed by using
a weighing belt, and then passed through the coal feeder to the coal mill, where it is
ground into suitable pulverized coal. Given the huge amount of pulverized coal and
the difficulty in keeping the grinding degree consistent, unqualified pulverized coal is
returned to the mill for further grinding to ensure moderate diameter of the pulverized
coal particles, while magazines that cannot be ground are collected in the stone coal
hopper. In preventing coal powder leakage, the pulverizing system is equipped with
a sealed air system, consisting of centrifugal fans that supply air to the rotary separator
and other equipment after pressurization. Then, the treated pulverized coal is introduced
into the boiler for combustion via the powder pipe. The main equipment of the boiler
system includes a burner, boiler, turbine, generator, condenser, and auxiliary equipment.
The burner converts the chemical energy of the pulverized coal into heat energy through
combustion, generating a large amount of steam in the boiler. The steam pushes the turbine,
converting heat energy into mechanical energy, which drives the generator to produce
electricity. Thus, based on the processed data of the coal-fired boiler, the online identification
of coal type, timely detection of abnormal changes in coal quality, and timely adjustment of
boiler optimization control parameters are important to improve the efficiency of coal-fired
power generation.

3. Preliminaries
3.1. Maximum Information Coefficient (MIC)

The MIC was proposed by Reshef et al. [29] based on information entropy to analyze
the degree of linear and nonlinear dependencies among different features, which can be
used for redundant feature rejection. MIC has been widely used for the extraction of linear
and nonlinear feature variables.

The advantages of MIC are as follows:

(1) Universality: applicable to all types of data, regardless of data distribution issues.
(2) Autonomy: automatically mines the relationship among different features.
(3) Robustness: strong anti-interference ability, not affected by outliers and missing values.
(4) Interpretability: MIC results are in the range of [0, 1], allowing the strength of the

correlation to be visualized.

The MIC primarily aims to discretize two features in space and divide them into
several intervals to calculate the joint probability and determine the correlation.

Given a dataset: Consider two discrete random variables X = {x1, x2, ..., xn} and
Y = {y1, y2, ..., yn}, where n is the number of samples. The mutual information of X and Y
can be calculated by using the following equations:

The formula for calculating mutual information is as follows :

I(x; y) =
∫

p(x, y)log2
p(x; y)

p(x)p(y)
dxdy (1)

The calculation formula for MIC is as follows:

mic(x; y) = max
a∗b<B(n)

I(x; y)
log2 min(a, b)

(2)

where a and b are the number of intervals partitioned in space; B(n) is the interval partition
coefficient with the value of B(n) = n0.6, and n is the amount of data. The MIC calculation
process is shown in Algorithm 1.
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Algorithm 1 Feature Selection through Maximum Information Coefficient.
Input: A data matrix D
Output: Selected k features D̂i = (d̂i1, d̂i2...d̂in), i = 1,2,. . . , k;
// One of the random feature in D
1:x = Dk = (dk1, dk2...dkn), k = 1,2,. . . , n;
// Another random feature in D
2:y = Dl = (dl1, dl2...dln), l = 1,2,. . . , n;
Step 1: Compute I(x; y) according to Equation (3)
Step 2: Compute mic(x; y) according to Equation (4)
Step 3: Sort the result mic(x; y) in descending order
Step 4: Select the best k features as the output result.
D̂i = (d̂i1, d̂i2...d̂in), i = 1,2,. . . , k;

3.2. One-Dimensional Convolution Network

Convolutional neural networks are important algorithms for deep learning [30,31],
which are widely used in areas such as image processing and natural language processing.
They can extract features from input data and classify them into different categories.
The input data are preprocessed and then fed into multiple convolutional layers in which
features are extracted. The data are then compressed through pooling layers to reduce
computational complexity during down sampling. Finally, the features are combined
nonlinearly in the fully connected layer, and the output layer produces the category to
which they belong. Structure diagram of the one-dimensional convolution network is
shown in Figure 2.
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Figure 2. Structure diagram of the one-dimensional convolution network.

In each convolutional layer, the output is related to the input, convolutional kernel
size, feature map, and bias of the previous layer. The output of the convolutional layer l is
formulated as follows:

xl
j = f ( ∑

i∈Mj

xl−1
i kl

ij + bl
j) (3)

where xl−1
j is the input of the layer l; Mj is the feature map; kl

ij is the convolutional kernel

size, and bl
j is the bias term of the layer.
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In the pooling layer, a large number of data features are down sampled after convo-
lution to reduce the amount of data in the next layer while preserving the features and
preventing model overfitting. This process can be formulated as follows:

Outputl = f (bo + wo fv) (4)

where bo and wo are the deviation vectors and weight matrix, respectively.

4. Methodology
4.1. Variable Selection Strategy

Processed data contains numerous variables, and their direct use in building CNN
models not only prolongs the network training time but also increases noise because of
many redundant variables, thereby decreasing model accuracy. Therefore, preprocessing
the original process variables to extract important features for classification recognition is
necessary before building CNN classification recognition models. In this paper, variable
screening aims to measure the strength of correlation among different variables by calculat-
ing the MIC between each selected variable and other variables and eliminating redundant
variables based on the MIC metric. The specific steps of the proposed MIC-based variable
screening are as follows:

(1) Calculation of MIC values: MIC values are computed to measure the correlation
among different variables, which belong to a non-parametric method that can adjust
data size and dimensionality adaptively. This method is highly adaptable to different
data sets, and each pair of variables can be calculated to determine the correlation
strength relationship.

(2) Sorting of MIC values: The MIC values calculated for each variable are sorted from
largest to smallest, with the ranking indicating the strength of the correlation between
the characteristic variables and the response variables. A value closer to 1 indicates
a stronger correlation, whereas a value closer to 0 indicates a weaker correlation.

(3) Variable selection: The variables with a strong correlation with the remaining variables
are selected from the ranked MIC values for elimination, and the remaining variables
are retained as feature variables for subsequent modeling.

4.2. Construction of the Model for Coal Identification

After eliminating redundant features, the feature extraction capability of CNN is
utilized to achieve the coal identification task of coal type data from coal-fired boilers in
TPPs. The redundant features of CNN learning, which may affect model accuracy, are
effectively addressed. The model workflow is illustrated in Figure 3. The pseudo code of
the algorithm is shown in Algorithm 2. The details are as follows:

(1) Data acquisition: The experimental data used in this study are related to the actual
application of coal in a coal-fired boiler in a TPP, consisting of a total of 288,000 data.

(2) Data pre-processing: Directly collected data from TPPs often contain missing and
duplicated data caused by the industrial environment and process flow, making them
unsuitable for direct use. Therefore, data cleaning is performed to remove or correct
missing data, normalize data to reduce the computational load, and improve data
labeling to meet the supervised learning conditions of 1D-CNN.

(3) Data set partitioning: The processed data are divided into training and test sets.
(4) MIC-CNN model construction: The input data are fed into the model for train-

ing and testing, and model accuracy is validated using the validation set. In ad-
dition, the model is compared with back propagation (BP) neural network and
1D-CNN methods.
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Figure 3. Flowchart of the proposed method.

Algorithm 2 Coal identification algorithm based on MIC-CNN.
Input: A data matrix D = (D1, D2...Dn)
Output: An array R; // Classification Result
// Complete data preprocessing
Step 1:Def function (data preprocessing):

Return Data cleaning, Normalization, Match Label;
// Complete data partition
Step 2: Def function (data partition):

Training Set: 70%, Testing Set: 30%
Return Training Set, Testing Set;

// Complete modeling
Step 3: Def function (MIC): // feature selection

Select best k features D̂i = (d̂i1, d̂i2...d̂in), i = 1,2,. . . , k;
Return Dnew = (D′1, D′2...D′n); // New data

Step 4: Def function (CNN):
Pooling Layer, Dropout Layer, Full Connected Layer, Output Layer

Initialization, Set Epochs, Set BatchSize
Calculation Error E
If E < e:
Return R;
Else:
Calculate again;
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4.3. Performance Measurement Criteria

The loss function is used to assess the discrepancy between the predicted and actual
values during model training. In classification tasks, various loss functions, including
entropy, cross-entropy, K-L divergence, dice loss [32], and focal loss [33], are typically
utilized. In this experiment, cross-entropy is utilized to evaluate the prediction accuracy of
the model. The computation of cross-entropy is performed as follows:

L = − 1
N ∑

i

M

∑
j=1

yij log(pij) (5)

where M represents the total number of categories, which takes the value of either 0 or 1,
based on whether it corresponds to the true category, and pij represents the probability that
the current sample i belongs to category j.

5. Case Study
5.1. Data Description

The data utilized in this experiment are derived from an industrial collection at a coal-
fired TPP, particularly from a coal-fired boiler, yielding a total of 288,000 data points. These
data were collected in 2020, which can be used to address coal identification challenges that
have arisen from 2020 until present. The raw data comprise 47 variables and originates from
sensor collections at the TPP. The original data were sampled once per second, but given its
large volume, downsampling was used to reduce the sampling rate to once every 50 s. All
process variables are shown in Table A1.

In this study, the data sets were generated with a 7:3 ratio between the training set
and the test set. The training set comprises 201,600 data points, which are used to build
and train the model. Meanwhile, the test set, consisting of 86,400 data points, is used to
evaluate the accuracy and generalization ability of the trained model. All the approaches
mentioned in this work are conducted in PyCharm (Community Edition 2022.2.4).

5.2. Data Pre-Processing

Coal combustion and the technology used in TPPs are intricate, leading to the presence
of “dirty data” in actual coal data collection, such as missing or redundant information.
Eliminating these invalid data can enhance the accuracy of the coal identification model
and prevent data interference.

The coal data contains numerous feature vectors, each with a distinct evaluation
index and singular samples with significant differences from other feature vectors. Such
issues can be resolved by restricting data normalization within the range of [0, 1]. Data
normalization is calculated as follows:

X =
x− xmin

xmax − xmin
(6)

The coal type data utilized in this study were collected through 47 sensors situated at
various locations. This approach recorded numerous individual features of the coal type
signal, providing a significant advantage for using a CNN model.

Considering data characteristics, supervised learning is necessary when using 1D-
CNN. Hence, labeling the coal type signals is essential. The corresponding labels for the
coal type dataset are presented in Table 1.
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Table 1. Coal type dataset.

Number of Samples Coal Type Label
Training Set/Test Set

40,320/17,280 Coal type1 0
40,320/17,280 Coal type2 1
40,320/17,280 Coal type3 2
40,320/17,280 Coal type4 3
40,320/17,280 Coal type5 4

5.3. Model Performance Analysis

A total of 288,000 data points were collected from TPPs and classified into five cate-
gories. The resulting 47-dimensional matrix was obtained by processing the data based
on the number of features (47) and sampling frequency (50 s/time). Given the presence
of redundant variables, which can interfere with model accuracy and increase model op-
eration time, feature selection was performed using MIC. Each of the 47 features was
individually computed to derive the corresponding MIC value against the remaining fea-
tures (mic, mic ∈ [0, 1]), where a value close to 1 indicates a stronger correlation among the
features, indicating the need for feature elimination. The top k features with the strongest
correlation were removed by sorting the MIC values in descending order, and 30 features
were retained with a k value of 17, which was determined through trial and error to yield
the best results.

In order to establish robustness and optimal performance of the proposed approach,
a hyperparameter tuning process was conducted using a trial and error method. The hy-
perparameters, including batch size, dropout rate, and learning rate, were systematically
adjusted to identify the configuration that yields the best results. Batch size, a critical
hyperparameter influencing the convergence and generalization of the model, was fine-
tuned through a series of experiments. Starting with a conservative value, we gradually
increased the batch size while monitoring the training dynamics performance. This process
allowed us to determine an optimal batch size that strikes a balance between computa-
tional efficiency and model convergence. The value of dropout is typically in the range
of 0.2 to 0.5. If the dropout rate is too small (e.g., 0.1 or lower), it might not have a strong
regularizing effect. Conversely, if the dropout rate is too large (e.g., 0.7 or higher), it may
hinder the network’s ability to learn and generalize effectively. After conducting multiple
tests, the appropriate value for Dropout can be determined. Furthermore, the parameter
of learning rate, which impacts convergence speed and model stability, was rigorously
tested. We employed a learning rate schedule, gradually reducing the learning rate dur-
ing the training epochs and evaluating its impact on training dynamics, ensuring stable
convergence without the risk of divergence.

Three comparative algorithms are utilized to compare and validate the effectiveness
of the proposed method in this study.

(1) 1D-CNN model: 1D-CNN encompasses a convolutional layer, pooling layer, fully con-
nected layer, and classification output layer. In this experiment, three convolutional
layers are used, and each convolutional layer executes two convolutional calculations.
The pooling layer adopts maximum pooling after each convolutional layer. Dropout
is implemented before the fully connected layer, with a value of Dropout = 0.3,
Epochs = 2, Batchsize = 400. The optimizer used in this study is Adam, with a learn-
ing rate set at 1× 10−4. The original power plant data are preprocessed and split into
training and test sets in a 7:3 ratio. Following this step, the features are non-linearly
combined using the fully connected layer, and the coal categories are obtained through
the classification output layer. The results of model training and testing are recorded.

(2) MIC-CNN model: During the establishment of the MIC-CNN coal identification
model, the data are initially subjected to feature selection using MIC, followed by
data pre-processing and division into a training set and a test set at a ratio of 7:3.
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Subsequently, the 1D-CNN model is trained to accomplish the coal identification task
and evaluated for accuracy and generalization ability on the test set. The resulting
training and test results of the model are documented.

(3) BP neural network model: In building a multilayer perceptron for coal classification,
an input layer with 47 nodes, an output layer with five nodes, 32 hidden layers,
Relu as the activation function, and Softmax classifier as the output layer are used to
output the classification results. The accuracy and training test results of the model
are recorded.

This paper compares the experimental results of the three aforementioned methods.
Table 2 presents a comparison of the classification performance of MIC-CNN, CNN, and BP.

When utilizing the BP neural network for feature extraction and classification of
coal types (Figures 4 and 5), the network can extract coal type features despite the
heterogeneity of the data volume and the presence of redundant and highly correlated
features. However, the classification effect is not ideal, as the recognition accuracy of
coal type 5 is poor. The model can correctly identify five types of coal species, with an
overall test set accuracy of 68.65%. In terms of memory usage and training time, the BP
neural network occupies 2237.6 MB of memory during training and takes 202.02 s to
complete the training process.

When passing the data through 1D-CNN for coal species recognition (Figures 6 and 7),
features are extracted through four convolutional layers. Despite some high-dimensional
invalid features, coal species recognition can still be achieved on the basis of the feature
extraction ability of the model and sharing of convolutional kernels. During the recog-
nition of five types of coal, the recognition accuracy of coal types 1–4 is significantly
higher, and the recognition accuracy of coal type 5 is greatly improved, with an accuracy
of 78.38% in its test set, which is nearly 10% higher than the accuracy achieved by the
traditional BP neural network. In terms of memory usage and training time, the 1D-
CNN occupies 2413.7 MB of memory during training and takes 188.58 s to complete the
training process.
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Table 2. Classification performance.

Accuracy BP 1D-CNN MIC-CNN

Training set 78.17% 88.54% 98.23%
Test set 68.65% 78.38% 94.02%
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In enhancing the accuracy of the model, considering the strong inter-correlation among
features in actual industrial data, the MIC-CNN method has been adopted. Initially, the fea-
tures with strong correlations are removed by using the MIC method, while retaining the
independent features. The streamlined data, consisting of 30 features after MIC screening,
are then fed into the 1D-CNN network. This process significantly reduces the interference of
redundant features (Figures 8 and 9). The recognition accuracy of coal types in the test set
processed by MIC-CNN reaches 94.02%, which is nearly 16% higher than the classification
accuracy of 1D-CNN, indicating the efficacy of the proposed approach in achieving better
coal species recognition. In terms of memory usage and training time, the MIC-CNN occupies
2217.5 MB of memory during training and takes 179.95 s to complete the training process.
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6. Discussion

As shown in Table 2, the MIC-CNN method achieves the best recognition effect for
coal types, with higher classification accuracy and faster computation speed compared
with 1D-CNN and BP neural networks. The MIC method can quickly and accurately
identify the correlation among data features and reduce the interference of redundant
features. When combined with the powerful feature extraction and classification ability
of CNN, the model accuracy can be further improved. The recognition effect of 1D-
CNN follows, which is affected by the presence of redundant features that lower the
classification accuracy and long computation time of the model. The BP neural network
has the poorest recognition effect because of the high requirements of data quality and
features, and it is prone to overfitting when handling large amounts of power plant data.
These experiments demonstrate that data-driven deep learning methods have a good
effect on coal identification, and combining with the MIC feature selection method can
improve the identification accuracy of the deep learning model. This paper provides a
new approach for coal identification in TPPs, which has potential applications. A ded-
icated server is established on-site to host the software components. This server acts
as the central hub for data processing, storage, and distribution, which ensures data
accessibility and maintains a stable connection with the Oracle database. The Oracle
database, provided by Oracle Corporation, is utilized to store and manage the data
generated by the system. The software establishes a connection to the Oracle database
using appropriate credentials, enabling data retrieval and storage. This integration
ensures data consistency, security, and efficient management. The software is configured
to display the data locally, which means that the data processed and retrieved from the
Oracle database is visualized on a user interface accessible within the local environment.
This local display provides real-time insights into the data’s behavior and characteristics.
The software’s functionality extends to the Distributed Control System (DCS) monitoring
interface. Through integration with the DCS, the software enables real-time monitor-
ing and control of the processes. This integration enhances operational efficiency by
allowing operators to monitor the system’s performance and make informed decisions.
The software is deployed using Python programming language, a versatile and widely-
used scripting language. Python’s robust libraries and frameworks facilitate seamless
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communication between various components, making it suitable for interfacing with the
Oracle database, local display, and DCS monitoring.

7. Conclusions

Online coal identification forms the basis of combustion optimization control and plays
an important role in improving boiler efficiency. In the present work, in order to monitor
the changes of coal types effectively, an online coal identification method is proposed based
on 1D-CNN. First, MIC is used to extract important features from the original process
variables. The selected features are then used to construct a 1D-CNN model. Based on MIC,
the proposed method compensates for the influence of feature redundancy and high feature
dimension on CNN model construction, improves the modeling efficiency, and reduces the
influence of noise on CNN’s performance by eliminating redundant features. Industrial
data experiments show that the accuracy of coal identification can reach over 94.02%.
The purpose of online coal identification is to detect changes in coal quality over time so
as to adjust the control parameters of combustion optimization. In the future work, we
will focus on approaches to combine the results of coal identification with combustion
optimization control, as well as utilize intelligent algorithms for automatic parameter
tuning to further enhance boiler combustion efficiency. in order to further improve the
boiler combustion efficiency.
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Appendix A

Table A1. Process variable information.

Number Variables Units

1 2 AB phase voltage of generator stator KV
2 2A The temperature of the lower bearing of the coal mill’s rotary separator DEG C
3 A Motor speed of coal feeder rpm/mi
4 A Instantaneous coal feeding rate for coal feeder t/h
5 A Three-selection output of primary air temperature at the outlet of air preheater DEG C

6–11 A Coal mill motor stator coil temperature 1–6 DEG C
12–15 A Coal mill motor bearing temperature 1–4 DEG C

16 A Current of coal mill A
17–19 A Coal mill air-powder mixture temperature1–3 DEG C
20–21 A Coal mill planetary gearbox input bearing temperature 1–2 DEG C
22–25 A Coal mill planetary gearbox bearing temperature 1–4 DEG C

26 A Feedback on the position of the cold primary air electric adjustment damper of the coal mill %
27 A Differential pressure between the sealing air of the coal mill and the lower part of the grinding bowl kPa
28 A Differential pressure above and below the grinding bowl of the coal mill kPa
29 A Position feedback of electric regulating damper for hot primary air of coal mill %
30 A Lubricating oil return temperature of coal mill DEG C
31 A Coal mill lubricating oil temperature 1 DEG C
32 A Temperature of lubricating oil tank of coal mill DEG C
33 A Lubricating oil pressure of coal mill MPa
34 A Coal mill rotary separator current A
35 A Bearing temperature on the rotary separator of the coal mill DEG C
36 A Coal mill rotary separator speed output rpm/mi
37 A Lower bearing temperature of rotary separator of coal mill DEG C
38 A Primary air pressure of coal mill kPa
39 A Inlet air temperature of forced draft fan DEG C
40 BTU correction command feedback
41 B Three-selection output of primary air temperature at the outlet of air preheater DEG C
42 Generator active power three-selection output MW
43 Three-selection output of primary air volume of coal mill t/h
44 Primary Air Temperature Dual Selection Output of Coal Mill DEG C

45–47 Hot primary air header pressure 1–3 MPa
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