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Abstract: Thin-walled structures, when used for high-speed railways, can effectively mitigate the
irreversible destruction when a malfunction occurs. Nested thin-walled tubes, as energy-absorbing
structures, possess excellent specific energy absorption (SEA) and crushing force efficiency (CFE). This
paper conducts multi-objective optimization by focusing on a square corrugation nested structure
with a double octagon inner wall, namely SCOD, to ameliorate the crashworthiness of the nested
structure. The finite element model of the SCOD is constructed and validated by test data. A
set of experimental design points with good spatial distribution are obtained using the optimal
Latin hypercube (LHC) method. The polynomial response surface (PRS) method was applied to
establish the fitting relationship between design variables and optimization objectives, and validation
is accomplished. The DCNSGA-III algorithm is employed for optimization, resulting in a Pareto
alternative solution set with good population diversity and convergence. In addition, to observe the
optimized performance, a set of optimal solutions considering a single objective value is derived, and
a comprehensive optimal solution is obtained by applying the minimum distance selection method
(TMDSM). Finally, the proposed optimized system is analyzed and validated. According to the
alternative reference solutions, the initial peak force (IPCF) reduces by 53.75% and CFE increases by
8.7%. This paper provides some reference for the optimization design in practical engineering.

Keywords: optimization; parameter reduction; MABAC; multi-criteria decision-making; energy
absorbing devices; train

1. Introduction

Rail vehicle safety is a continuous and crucial problem that concerns people with
the development of railway technology. For the protection of rail vehicle safety, scientists
currently focus on two main aspects, namely active safety protection and passive safety
protection, to conduct research [1–3].

For the aspect of active safety protection, track life prediction and fault diagnosis
can effectively and timely maintain railways, thereby preventing railway accidents [4,5].
In the study of Ngamkhanong et al., the prediction model was established by Artificial
Neural Networks (ANNs) to estimate the buckling temperature of complex tracks [6]. A
risk analysis method based on fault tree analysis (FTA) was developed by Dindar et al.,
and this model provides an idea for predicting the risk of railway derailment [7]. In
addition, measures such as brake control and warning systems can also improve the active
safety protection performance of trains [8–10]. However, it is necessary to investigate
passive safety protection, which can mitigate collision force and damage suffered during
secondary accidents.

For the aspect of passive safety protection, installing guardrails [11], anti-climbing
devices [12], couplers [13], and energy-absorbing devices [14,15] can effectively enhance
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the crashworthiness of the train. Thin-walled energy absorption tubes as energy-absorbing
devices are extensively applied to the transportation industry due to extraordinary crash-
worthiness characteristics [16–18]. The thin-walled tubes which are equipped in the front
impact zone will first suffer crushing; the reasonable structural design of thin-walled struc-
tures can make the crushing process more stable and controllable, thereby protecting the
safety of passengers in the survival space. The corrugation configuration was proposed, and
researchers confirmed that corrugation tubes have good potential for crashworthiness [19].
Experimental studies have shown that the maximum plastic moment at the corrugation
groove can first guide the occurrence of collapse to diminish the peak force [20,21], and
corrugation tubes with appropriate amplitude possess ordered progressive mode which
contributes to more uniform load fluctuations [22]. Adding rib plates into thin-walled tubes
can generate a stable folding pattern and increase the number of corner elements [23,24].
Wang et al. found that the interaction between the foam blocks and the reinforced rib can
ameliorate the crash resistance performance [25]. In addition, rib plates can affect signifi-
cantly the energy absorption capacity and deformation mode [23,26]. Another method is to
set up multi-layer structures or subunits within thin-walled tubes [27,28]. The deformation
mode usually develops toward a better mode due to the mutual constraints between the
inner and outer layers [29,30]. Zhu et al. found that the number of nested layers should not
be excessive; otherwise, the comprehensive crushing performance will decrease [31]. Tran
et al. indicated that the deformation mode is more controllable due to the resistance effect
of the outer tube [32]. The research of Yang et al. showed that the increase in ripple and
number of layers will form a more stable and plastic hinge [33]. In addition, optimizing
structural parameters based on structural design to obtain the most reasonable parameter
scheme is crucial for improving vehicle crashworthiness.

For the aspect of structural parameter optimization, non-dominated sorting genetic
algorithm II (NSGA-II) became one of the frequently used optimization methods in various
fields due to its convenience and adaptability [21,33,34]. However, as the number of opti-
mization objectives increases, low-dimensional multi-objective optimization algorithms
similar to NSGA-II will lose effectiveness, and the NSGA-III algorithm used to solve high-
dimensional problems can be applied [3]. In addition, other optimization methods, such
as multi-objective particle swarm optimization (MOPSO) and Artificial Neural Networks
(ANN), are commonly used for crashworthiness structural optimization. Albak adopted
MOPSO to conduct multi-objective optimization for optimal structures selected by the
decision-making method [35]. Qiu et al. utilized the MOPSO algorithm to optimize the
front rail and multi-cell tube to enhance the crashworthiness of the vehicle [36]. Pirmo-
hammad et al. conducted bi-objective optimization based on the shape of the cross-section
by using the ANN algorithm and selected the optimal structure according to the rank
results of the technique for ordering preferences by similarity to the ideal solution (TOPSIS)
method [37]. However, the general evolutionary algorithm ignores the diversity of the
population while pursuing the constraint of satisfaction, resulting in the population being
too concentrated in a feasible or infeasible region. Jiao et al. developed a DCNSGA-III by
combining dynamic-constrained many-objective optimization problems (CMaOPs) and
NSGA-III [38]. This method can enable the population to span large and infeasible regions,
and the proposed environment selection operator can select higher-quality solutions. In
addition, few researchers have applied this approach to multi-optimization for energy-
absorbing structures. Therefore, this paper intends to combine DCNSGA-III to obtain more
convergent and diverse non-dominated solutions.

In summary, a nested structure is proposed inspired by the three elements: corrugation,
rib plate, and multi-layer structure. In addition, the octagonal wall can absorb more
membrane energy with the multi-corner advantage according to previous researchers. The
study of Li et al. indicates that square tubes have better deformation resistance potential
compared to circular tubes [39]. In this paper, a square corrugation nested tube with
a double octagon inner structure (SCOD) is proposed. Distinguishing from previous
studies, this research mainly includes three aspects: (1) proposing a novel nested energy-
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absorbing tube, namely SCOD; (2) developing a multi-objective optimization procedure
combining DCNSGA-III algorithm with TMDSM to obtain alternative solutions with better
performance; and (3) verifying the effectiveness of the optimization approach proposed
and making an evaluation of it.

In this paper, the pattern of organization is described as follows. Section 2 introduces
the primordial parameters and finite element modeling of SCOD. Section 3 reveals the
methodology and optimization framework. In Section 4, the results of optimization are
obtained. In Section 5, discussions and analyses were conducted on the optimization plan.
Finally, Section 6 summarizes the entire work.

2. The Nested Structure with a Double Octagonal Inner Wall
2.1. The Geometric Parameter of the SCOD Tube

The square corrugation nested tube with a double octagonal inner wall (SCOD) is
shown in Figure 1. The SCOD can be divided into four sections, including the outer
corrugation wall, the mid-octagon wall, the inner octagon wall, and rib plates. The four
different colored lines correspond to the four thickness parameters of the sections.
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Figure 1. The parameter and structural configuration of SCOD: (a) the sketch for thickness parameters;
(b) the sketch for dimension of middle wall.

The design of the outer corrugation wall is based on a square shape with a side length
of 40 mm. The corrugation on the four side lines is a cosine curve which can be represented
in the Cartesian coordinate system as follows:

y = Acos
(
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where L0 denotes the length of the side; the parameter A denotes the amplitude of the
cosine curve. The initial thickness t of all sections is designed to be 1 mm. To ensure
adequate compression distance, the height of the nested tubes is set to 100 mm [40].

Two octagonal sub-thin-walled structures, namely the mid-wall and inner wall, are
embedded within the corrugated outer wall. The mid-wall is circumscribed from a circular
shape with a diameter of 22

√
2 mm; The inner wall is circumscribed from a circular shape

with a diameter of 10
√

2 mm. For the design of the size of octagonal sub-thin-walled
structures, we refer readers to the study of Albak [35].

2.2. The Establish of the FE Model

The finite element (FE) method has been proven to have sufficient precision and is
often utilized for the crashworthiness analysis of tubes [41]. In this paper, the characteristic
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is analyzed by using the nonlinear explicit FE analysis program LS_DYNA. The simulation
model of SCOD is shown in Figure 2.
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Figure 2. The simulation model of SCOD.

From Figure 2, the simulation construction of SCOD can be divided into three compo-
nents: motional plate, SCOD tube, and stationary plate. To save computational costs, the
moving plate imposes a load at a constant speed of 3 m/s [39]. The fixed plate is restricted
to six degrees of freedom, and the SCOD tube is placed in the fixed plate. When the moving
plate moves at a constant speed, the fixed plate limits the longitudinal displacement of the
SCOD in the longitudinal direction to ensure successful crushing. To guarantee that the
tube is not crushed and that the endergonic particularity of the model can be observed, the
tube is compressed by 60% of its original length, and loading is stopped.

The Belytschko–Tsay shell element with one center integration point and five through-
thickness integration points is employed to establish the FE model of SCOD. The con-
vergence analysis of mesh is obtained in Figure 3. As shown in the analysis results,
the variation of MCF has a slight change with the increase in mesh size, but the solv-
ing time is greatly reduced. To ensure sufficient accuracy and computational efficiency,
we decided to adopt the mesh with the size of 1 mm × 1 mm to construct numerical
models. Because the plate hardly deforms during the collision which can be regarded
as a rigid body, both of the plates are simulated with MAT_RIGID (Mat_20), and all
nodes will maintain a constant relative displacement in this condition. The SCOD tubes
are simulated with MAT_PIECEWISE_LINEAR_PLASTICITY (Mat_24) which is a model
that reflects the elastic–plastic mechanical properties of materials. This type of material
has an arbitrary stress–strain curve, and any strain rate dependence can be defined. In
addition, the strain rate can be explained by the Cowper-Symonds model. The “AU-
TOMATIC_NODE_TO_SURFACE” is applied to define the contact between SCOD and
the plate, and the dynamic and static friction coefficients are both 0.3. And the “AUTO-
MATIC_SINGLE_SURFACE” contact algorithm is employed to define the self-contact of
the SCOD to avoid the occurrence of a pressure breakdown phenomenon. The dynamic
and static friction coefficients of self-contact are both 0.3 as well. The material of the SCOD
tube is aluminum alloy AA6061O, and the constitutive model and material characterization
are shown in Table 1.
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Table 1. Material properties of AA6061O.

Properties Values

Density ρ = 2700 kg/m3

Young’s modulus E = 69.79 GPa
Yield stress σy = 54 MPa

Ultimate stress σu = 163.46 MPa
Poisson’s ratio υ = 0.33

2.3. The Verification of the FE Model
2.3.1. The Experiment Test Based on SC

From Figure 1, it can be easily seen that the SCOD is formed based on the primary
cosine outline; therefore, in this study, the square corrugation square tube, namely SC, will
be utilized to check the exactitude of the FE simulation. The SC used for verification has
a normal side length with 40 mm and an amplitude with 3 mm, which is the same as the
geometric parameters of SCOD. The SC was compressed under quasi-static compression
by using the test machine MTS Landmark, and the loading speed was set as 2 mm/min.
The quasi-static compression test is shown in Figure 4.
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Figure 4. The schematic diagram of experiment and finite element simulation: (a) the test tube is
placed in the test machine; (b) the test and FE model tubes; (c) FE Simulation of SC.

The tubes used to test and FE simulation have the same height and thickness, which
are 40 mm and 100 mm, respectively. Furthermore, the test and numerical tube have
identical material properties. To ensure the consistency of experimental conditions, SC was
compressed to 60% of the initial distance in both the testing machine and the finite element
numerical simulation. In addition, the collapse modes and force–displacement of SC under
an experiment test and FE simulation are compared in Figure 5.
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Figure 5. The force–displacement curves and collapse modes of SC under experiment test and
FE simulation.

From Figure 5, the tendency of force change over time of SC under test and numerical
simulation coincide in principle, and the deformation modes are accordant. In addition,
the crashworthiness indexes obtained by experiment and FE modeling are displayed in
Table 2.

Table 2. The comparative result between the experiment test and FE modeling.

Tube IPCF (kN) MCF (kN) EA (kJ) SEA (kJ/kg)

SC
Test 18.34 5.70 0.34 6.14
FE 17.95 5.60 0.34 6.08

Error 2.17% 1.78% 1.19% 0.98%

From Table 2, the IPCF of the test and FE model are 18.34 kN and 17.95 kN, respectively,
which are in reasonable agreement. It is obvious that the error between the test and FE
modeling is less than 2.5%, which also indicates that the FE numerical simulation has
adequate accuracy.

2.3.2. The Mathematical Model Based on SCOD

Based on the Simplified Super Folding Element (SSFE) theory, a mathematical model is
proposed to predict the mean crushing force (MCF) of SCOD [42–44]. During the collision,
the energy balance equation of SCOD can be obtained as shown in Equation (2):

Fm2Hk = Eb + Em (2)

where Fm is MCF; Eb and Em are the bending energy and membrane energy, which are
primary forms of energy dissipation; 2H represents the wavelengths of the fold; and k is
the effective compression factor, which is 0.7 in this paper [45].

A. The prediction of Eb.

The bending energy can be calculated as follows [46]:

Eb = 2πM0Lc (3)

where Lc is the perimeter of the cross-section, and M0 is the full plastic bending moment
per unit length, which can be obtained as Equation (4):

M0 =
1
4

σ0t2 (4)
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where t is the thickness of the wall and σ0 is the flow stress of the structural material:

σ0 = 0.92σu (5)

B. The prediction of Em.

According to SSFE, the SCOD can be divided into several constituent elements in order
to analyze theoretically the Em,, and then the constituent elements will be simplified [40,46].
The constituent elements of SCOD are defined as five types, including the shell corner
element, T-shape element, Y-shape element, 3-plane corner element, and criss-cross element.
The specific situation is shown in Figure 6.
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As shown as Figure 6, the shell corner element can be simplified as a plane corner
element (180◦) [47]:

Ecorner element
m =

4M0H2

t
tan(θ/2)

(tan(θ/2) + 0.05/tan(θ/2))/1.1
=

4.4M0H2

t
(6)

where θ = 180◦.
The T-shape element is equivalent to the three-plane corner element (30◦) [35], which

can be obtained by Equation (7):

ET−shape element
m =

4M0H2

t

(
tan(α)

(tan(α) + 0.05/tan(α))/1.1
+ 2tan

(α

2

))
=

5.31M0H2

t
(7)

The Y-shape element can be regarded as the three-plane corner element with the
α = 90◦ [47,48], which can be obtained by Equation (8):

EY−shpae element
m =

4M0H2

t

(
tan(α)

(tan(α) + 0.05/tan(α))/1.1
+ 2tan

(α

2

))
=

12.4M0H2

t
(8)

The Em of the criss-cross element is [42]:

Ecriss−cross
m =

16M0H2

t
(9)

As mentioned above, the total membrane energy can be summarized as:

ESCOD
m = Nc_e·

4.4M0H2

t
+ NT−se ·

5.31M0H2

t
+ NY−se ·

12.4M0H2

t
+ 8

12.4M0H2

t
+ 8

16M0H2

t
(10)

C. The prediction of MCF.
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By uniting Equations (2), (3) and (10), the predicted MCF of the SCOD can be expressed as:

FSCOD
m =

2πM0Lc + ESCOD
m

2H
(11)

In addition, parameter H can be calculated by:

H =
∂Fm

∂H
(12)

By calculating Formulas (11) and (12), Fm
SCOD can be solved, and the results predicted

by the mathematical model are compared with the FE model, as shown in Table 3.

Table 3. The comparison of SCOD between theoretical prediction and FE model.

Name Method MCF Value (kN) Error

SCOD
FE 50.00

2.24%TH 51.12

In terms of Table 3, the relative error between the FE model and the mathematical
model is 2.24%, which indicates that FE modeling satisfies the accuracy requirements and
can be employed in further study.

2.4. The Sensitivity Analysis of SCOD

To investigate the effect of structural parameters of SCOD on energy-absorbing perfor-
mance, the sensitivity analyses are conducted in this section, which is shown in Figures 7 and 8.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 23 
 

By calculating Formulas (11) and (12), FmSCOD can be solved, and the results predicted 
by the mathematical model are compared with the FE model, as shown in Table 3. 

Table 3. The comparison of SCOD between theoretical prediction and FE model. 

Name Method MCF Value (kN) Error 

SCOD 
FE 50.00 

2.24% TH 51.12 

In terms of Table 3, the relative error between the FE model and the mathematical 
model is 2.24%, which indicates that FE modeling satisfies the accuracy requirements and 
can be employed in further study. 

2.4. The Sensitivity Analysis of SCOD 
To investigate the effect of structural parameters of SCOD on energy-absorbing per-

formance, the sensitivity analyses are conducted in this section, which is shown in Figures 
7 and 8. 

   

Figure 7. The sensitivity analyses of thickness t on crashworthiness: (a) effect of t on IPCF; (b) effect 
of t on SEA; (c) effect of t on CFE. 

 
Figure 8. The sensitivity analysis of Dmid on crashworthiness. 

According to Figure 7, with the increase in thickness tint, tmid, tout, and trib, the three 
crashworthiness indicators, namely IPCF, SEA, and CFE, all show an upward trend. It can 
be concluded that the wall thickness of the SCOD and IPCF basically exhibit a linear func-
tion relationship. Among the four parameters related to thickness, tout has the greatest 
impact on peak force, while tint has the smallest impact. For the sensitivity on SEA, as the 
thickness of the outer wall increases, the values will sacrifice slowly. In addition, when the 
thickness varies within the range of 1.5~2.0 mm, CFE exhibits the most drastic change. 

As shown in Figure 8, IPCF always rises monotonically. When Dmid changes within 
the range of 25~35 mm, both the SEA and CFE values first increase and then decrease, and 
the peak appears around Dmid = 30 mm. 

Figure 7. The sensitivity analyses of thickness t on crashworthiness: (a) effect of t on IPCF; (b) effect
of t on SEA; (c) effect of t on CFE.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 23 
 

By calculating Formulas (11) and (12), FmSCOD can be solved, and the results predicted 
by the mathematical model are compared with the FE model, as shown in Table 3. 

Table 3. The comparison of SCOD between theoretical prediction and FE model. 

Name Method MCF Value (kN) Error 

SCOD 
FE 50.00 

2.24% TH 51.12 

In terms of Table 3, the relative error between the FE model and the mathematical 
model is 2.24%, which indicates that FE modeling satisfies the accuracy requirements and 
can be employed in further study. 

2.4. The Sensitivity Analysis of SCOD 
To investigate the effect of structural parameters of SCOD on energy-absorbing per-

formance, the sensitivity analyses are conducted in this section, which is shown in Figures 
7 and 8. 

   

Figure 7. The sensitivity analyses of thickness t on crashworthiness: (a) effect of t on IPCF; (b) effect 
of t on SEA; (c) effect of t on CFE. 

 
Figure 8. The sensitivity analysis of Dmid on crashworthiness. 

According to Figure 7, with the increase in thickness tint, tmid, tout, and trib, the three 
crashworthiness indicators, namely IPCF, SEA, and CFE, all show an upward trend. It can 
be concluded that the wall thickness of the SCOD and IPCF basically exhibit a linear func-
tion relationship. Among the four parameters related to thickness, tout has the greatest 
impact on peak force, while tint has the smallest impact. For the sensitivity on SEA, as the 
thickness of the outer wall increases, the values will sacrifice slowly. In addition, when the 
thickness varies within the range of 1.5~2.0 mm, CFE exhibits the most drastic change. 

As shown in Figure 8, IPCF always rises monotonically. When Dmid changes within 
the range of 25~35 mm, both the SEA and CFE values first increase and then decrease, and 
the peak appears around Dmid = 30 mm. 

Figure 8. The sensitivity analysis of Dmid on crashworthiness.



Appl. Sci. 2023, 13, 9750 9 of 23

According to Figure 7, with the increase in thickness tint, tmid, tout, and trib, the three
crashworthiness indicators, namely IPCF, SEA, and CFE, all show an upward trend. It
can be concluded that the wall thickness of the SCOD and IPCF basically exhibit a linear
function relationship. Among the four parameters related to thickness, tout has the greatest
impact on peak force, while tint has the smallest impact. For the sensitivity on SEA, as the
thickness of the outer wall increases, the values will sacrifice slowly. In addition, when the
thickness varies within the range of 1.5~2.0 mm, CFE exhibits the most drastic change.

As shown in Figure 8, IPCF always rises monotonically. When Dmid changes within
the range of 25~35 mm, both the SEA and CFE values first increase and then decrease, and
the peak appears around Dmid = 30 mm.

3. The Methodology of Multi-Objective Optimization
3.1. The Surrogate Model
3.1.1. Design of Experiments (DoE)

Establishing a surrogate model is regarded as an efficient method to handle complex
multi-objective optimization problems (MOOPs), which can save cost and calculation
time, and it has been applied extensively in the multi-objective optimization of endergonic
tubes [49,50]. The DoE method is a primary and indispensable step to establish an accurate
surrogate model, which is also an approach to reflect integral design space by training
minimum points [51]. According to existing studies, the DoE generally consists of a Latin
hypercube design (LHD) [48], optimal LHD [52], full factorial design, orthogonal arrays,
central composite design, and Modified Extensible Lattice Sequence (MELS) [28]. During
optimization, the optimal LHD approach is adopted to conduct DoE. This method not only
reserves excellent projective properties but also ameliorates the space-filling properties by
combining novel indexes combining the Kullback–Leibler information [53,54]. It has been
concluded that the optimal LHC method maintains robustness as the criteria vary and is
adequate to the requirement of changes in design parameters [55].

3.1.2. The Establish of Surrogate Model

The MOOP of crashworthiness requires extensive FE simulation or experiments. To
conserve costs, proxy models are developed and used to express the response correlation
between design variables and optimization goals regarded [56,57]. The commonly used ap-
proaches to establish a surrogate model include the polynomial response surface (PRS) [58],
kriging [51] and radial basis function (RBF) [21]. As a useful method, the PRS has been
proven to be credible and efficient when dealing with small group issues with noise data
and a non-massive DoE sample scale [55]. Therefore, the PRS establishes a surrogate model
in this paper. The core idea of the PRS is fabricating nonlinear polynomials by fitting
simple points to express approximately objective responses in the entire design space. The
polynomial usually is expressed as follows:

y(x) = αT · f (x) = ∑M
j=1 αj· f j(x) (13)

where αj (j = 1, 2, . . ., M) in vector α represents the j-th unknown coefficient of the j-th basis
function fj(x). M represents the quantity of basis functions; c represents the coefficients of
each basis function by using the multiple regression method of least squares.

In addition to satisfying the requirements of the polynomial degree, four criteria for
evaluating the precision of the fitting results, maximum value (MAX), mean relative error
(MRE), root mean square error (RMSE) and the square value (R2) are proposed [52]. The
formula for the four indicators is depicted as follows:

MAX =
max(|y1 − ŷ1|, |y2 − ŷ2|, . . . , |yn − ŷn|)√

1
n−1 ∑n

i=1(yi − ŷi)
(14)
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MRE =
∑n

i=1|yi − ŷi|

n×
√

1
n−1 ∑n

i=1(yi − ŷi)
(15)

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (16)

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (17)

3.2. The DCNSGA-III Algorithm

According to Jiao et al. [38], the DCNSGA-III method is proposed, which is created by
employing reference-point-based NSGA-III to resolve constrained multi-objective optimiza-
tion problems (CMaOPs). The NSGA-III method is advantageous to handle constraints and
optimize objectives concurrently, which can make a CMaOP dynamic [59]. The DCNSGA-
III method performs great competitiveness compared with other sophisticated CMaOEAs
and is competent for solving CMaOPs. The general process of DCNSGA-III is described
as follows.

A. Generate CMaOP framework.

The DCNSGA-III, which integrates widely used NSGA-III and a problem conversion
means, is applied to resolve CMaOP. Algorithm 1 displays the trunk of how the DCNSGA-
III solves the CMaOP.

Algorithm 1: The DCNSGA-III to solve the framework of CMaOP

1 Search incipient population P0;
2 Form the incipient relaxed constrained margin δ = δ(0), and make the iteration state t = 0;
3 while the termination requirement is not satisfied do
4 Shrink the boundary: δ = δ(t + 1);
5 Renew population δ-feasibility, t = t + 1;
6 Obtain the offspring population Ot in terms of Algorithm 2;
7 Renew the parent population Pt+1 in terms of Algorithm 3;
8 end
9 return non-dominated solutions.

At the beginning of the framework, the population P0 is generated randomly by
DCNSGA-III from unitary search space X. The non-constraint degree of every solution is
computed subsequently, and the maximal non-constraint degree is regarded as the incipient
constraint bounds δ. Thus, any solution in population P0 is δ-feasible. In subsequent
iterations, the constraint bounds will decrease over the evolution of the population. In
addition, a modified mating and environment selection mechanism is utilized to obtain
highly qualified δ-feasible solutions.

B. Select mating parents.

It is inevitable that δ-infeasible solutions are generated. In this connection, a binary
tournament selection is employed to generate the offspring operator, which picks two
individuals from Pt. To be specific, the tournament selection intends to select an δ-feasible
solution instead of an δ-infeasible solution or an δ-infeasible with a minor non-constraint
level instead of an δ-infeasible with a major non-constraint level so that more δ-feasible
offspring solutions are obtained. Algorithm 2 describes the main procedure of tourna-
ment selection.
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C. Update the parent population

For t generation, the coalition of parent and offspring population is classified into two
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δj(t), j ∈ {1, . . ., q}}. This process is discussed in Algorithm 3.
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Case 1. When |S1 |≥ N, the non-dominated ranking and prime selection based on the
reference point will proceed to choose N solutions from S1, and then, the N solutions will
be appended to Pt + 1.

Case 2. When |S1 |< N, there are still blank elements in Pt + 1, after the solutions S1 are
introduced. The N-S1 rest of the solutions are selected from δ-infeasible set S2. Therefore,
the solutions in S2 are sorted in terms of the non-constraint level, and we append the top
N − |S1 |solutions inside the ranked S2 into Pt + 1.

D. Non-dominated ranking based on reference point method.

When the case |S1 |≥ N occurs, non-dominated ranking based on a reference point will
proceed as the environmental selection. Figure 9 displays the environmental selection of
DCNSGA-III, which contains two parts: (1) the non-dominated ranking aims to obtain non-
dominated solutions inside the δ-feasible set S1 to approach its PF; (2) the prime selection
based on a reference point aims to retain the population multiplicity through providing a
group of reference points with good spatial distribution characteristics.
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As shown in Figure 9, the first section is that the non-dominated ranking given m + 1
objectives: (f 1(x), . . ., fm(x), cv(x)) is employed to classify into different non-dominated levels
(F1, F2, . . .) and select prime solutions which have higher objective values and lower non-
constraint levels. This approach helps to optimize goals and handle constraints simultaneously.

In the second section, an interception approach is employed to intercept the optimal
N solutions. The optimal k levels are determined, and k denotes the maximum which
satisfies |F1 ∪ F2 ∪. . .∪ Fk |< N. The k + 1 solutions |F1 ∪ F2 ∪. . .∪ Fk ∪ Fk + 1 |− N are
determined in terms of the admixture of solutions and the pre-defined reference points,
which is depicted in Algorithm 4. In addition, the non-constraint objective will not be
referred for the normalization of targets and the associated employment. The phenomenon
is because infeasible solutions which have lower non-constraint levels are selected during
the non-dominated ranking. The purpose of the selection based on a reference point is to
pick solutions that are close to the basis edge so that all reference points maintain the great
distributed feature of solutions. Otherwise, the solution will erratically distribute within
the target space.

E. Evaluate computational complicacy.

It can be observed that the DCNSGA-III method does not requires a very large amount
of calculation. The additional complicacy of computational time is reflected in the non-
dominated ranking in O((m + 1) N2), and m denotes the targets quantity. Since the compli-
cacy of the original NSGA-III is O(mN2), the extra complicacy of the computational time
this approach brings is tolerable.
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3.3. The Minimum Distance Selection Method (TMDSM)

Through the above optimization method, the Pareto optimal front is obtained so that
the designer can consult and make a determination according to the amount of candidate so-
lutions. For all that, sifting the most satisfactory individual solution is essential to evaluate
the final optimization result [60]. The most commonly used methods for determining the
optimal solution include the weight decision-making method and the minimum distance se-
lection method (TMDSM). The former assigns weights to the optimization objectives based
on their relative importance and determines the optimal solution. However, considering
different actual operating conditions and preferences, it is difficult to determine appropriate
weights [61]. In this paper, TMDSM, which searches the “keen point” by calculating the
distance between the ideal solution and each candidate solution, is applied to conduct the
selection of the optimal solution. The formulation below exhibits the principle of TMDSM:

minD =
√

∑K
τ=1( fcτ −min( fτ(x)))2 (18)

where D is the distance between the ideal solution and the “keen point”. And K denotes
the quantity of the objective elements; fcτ represents τ-th objective value corresponding to
the c-th Pareto solution.
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3.4. The Framework of the Optimization Process

In the previous study, the TOPSIS method combining multiple operating conditions
is employed to determine the ideal structures from 20 nested structures proposed in
order to consider comprehensively the preference of experts for various performances. To
obtain the most satisfactory alternative, the DCNSGA-III method is referred to handle the
multi-objective optimization issue. Therefore, the entire process combines the theories of
multi-attribute decision-making (MADM) and multi-objective optimization, which can be
accomplished by the following frame shown in Figure 10.
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As shown in Figure 10, the optimization is roughly divided into three phases:
Phase 1: The final scores of the crashworthiness criteria of each structure proposed

are recorded through numerical simulation. And then, the TOPSIS based on 10 groups of
weight is applied to determine the ideal structure.

Phase 2: The optimization problem is defined, and the optimal LHC is selected to
conduct DoE. The surrogate model is constructed by using PRS and the DCNSGA-III
method is used to acquire the candidate Pareto solution.

Phase 3: The TMDSM is utilized to solve the ideal solution in the set of alternative
solutions. Finally, the results of optimization are verified to assess the exactitude of the
surrogate model and the effect of the optimization model.

4. The Optimization Results of SCOD
4.1. The Determination of the Optimization Problem

To successfully establish an optimization model, it is the priority to determine the
optimization problem [37,62]. In the study of Albak, the thickness of the inner wall, middle
wall, outer wall and ribs of nested tubes are selected as the design variables [35]. However,
to explore the enhancement of the size of the inside structure, the circumscribed diameter
of the middle wall of SCOD, namely Dmid, is quantified, as shown in Figure 1b. Therefore,
the geometric parameters which include the thickness of the inner wall tint, the thickness
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of the middle wall tmid, the thickness of the outer wall tout and the cross-section size of
the middle wall Dmid are determined as design variables. According to previous studies,
the tint, tmid, tout, trib and Dmid generated a high sensitivity impact on the crashworthiness
with the range of 0.5 to 2.0 mm and 25 to 35 mm, respectively. Hence, the same interval is
selected as the range of variation in this study.

In the field of practical engineering, higher SEA and CFE values and lower IPCF
values are the orientation commonly pursued [29,63]. However, the increase in SEA values
typically accompanies an increase in IPCF, and a higher IPCF is not acceptable. In addition,
the CFE represents the performance of energy absorbing, which is also a significant criterion.
Hence, the SEA, CFE and IPCF are taken as optimization objectives. The mathematical
model of the optimization problem can be represented as the following equation:

max(−IPCF, SEA, CFE)

s.t.


0.50mm ≤ tint ≤ 0.20mm
0.50mm ≤ tmid ≤ 0.20mm
0.50mm ≤ tout ≤ 0.20mm
0.50mm ≤ trib ≤ 0.20mm

0.50mm ≤ Dmid ≤ 0.20mm

(19)

4.2. The Design of the Experiment (DoE)

In this section, an optimal LHC is used to contact for DoE, which has been proven to
be an effective method for estimating the overall average [64,65]. A total of 60 simple points
are obtained by using the optimal LHC method, and all of the points are established by FE
modeling. The 60 groups of SEA, CFE and IPCF values of DoE are displayed in Table A1.

4.3. The Construction of the Surrogate Model

It has been proven that the polynomial response surface (PRS) method has such bo-
dacious effectiveness and rationality that PRS has been widely applied in multi-objective
optimization design studies of thin-walled structures [36]. In this study, the nonlinear
quintic polynomial is used to perform the fitting relationship between the obtained param-
eter variables of the sample points, i.e., tint, tmid, tout, trib and Dmid, and the optimization
objectives, i.e., IPCF, SEA and CFE. The established RS values, which reflect the corre-
sponding relationship between each two parameter variables and a target value, are shown
in Figures A1–A3. In addition, error analysis is applied to verify the assessment of the
surrogate model in this study. To assure reasonable accuracy, four commonly used key
indicators, including MAX, MRE, RMSE and R2 are computed, which are shown in Table 4.

Table 4. Tolerance and scores of error criteria.

Target MAX MRE RMSE R2

IPCF 0.03326 0.016487 0.01947 0.99579
SEA 0.16793 0.07733 0.08729 0.91303
CFE 0.17481 0.08694 0.10208 0.88035

Tolerance 0.3 0.2 0.2 0.88

As shown in Table 4, all the final scores of the four criteria satisfy the tolerance value
of error. It should be noted that the lower MAX, MRE and RMSE are and the higher R2 is,
the better the fitting effect and the higher the accuracy. In general, the value of R2 should
not be more than 1 and should not be less than 0.88. It can be concluded that the proxy
model has satisfactory exactitude.

4.4. The Pareto Solution of Multi-Objective Optimization

A group of Pareto solutions of multi-objective optimization with better convergence,
diversity and non-constraint degree is obtained by using the DCNSGA-III algorithm. It
should be noticed that SEA and CFE are benefit indicators and IPCF is a cost indicator.
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In engineering practice, the structure with a larger SEA and CFE and smaller IPCF are
preferentially considered. The 3D graphic of Pareto solutions corresponding to objective
values is shown in Figure 11, which delivers the relationships of objective values.
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that as the SEA value increases, the CFE also increases, indicating that while reducing the 
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optimal solution obtained through TMDSM, the other three optimal single performance 
solutions generated by referencing a single target value are also marked in the figure. As 
shown in Figure 11, the optimal solution is consistently located in the lower left quarter 
in each plane. It can be expressed by the fact that the optimal solution searched by 
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reflected in 3D space; (b) the Pareto solutions are reflected in the plane of IPCF-SEA; (c) the Pareto
solutions are reflected in the plane of IPCF-CFE; (d) the Pareto solutions are reflected in the plane
of SEA-CFE.

In Figure 11, the Pareto solutions obtained by the DCNSGA-III algorithm can be
observed in the 3D space and the projections are also marked in planes that reflect the
relationships between every two target values. As the value of IPCF increases, the SEA also
increases. The changes between IPCF and CFE reflect the same trend. It is worth noting that
as the SEA value increases, the CFE also increases, indicating that while reducing the cost
indicator, the benefit indicator will also be sacrificed. In addition to considering the optimal
solution obtained through TMDSM, the other three optimal single performance solutions
generated by referencing a single target value are also marked in the figure. As shown in
Figure 11, the optimal solution is consistently located in the lower left quarter in each plane.
It can be expressed by the fact that the optimal solution searched by TMDSM prefers to
possess smaller IPCF values and the highest possible SEA and CFE values. In addition, the
other three single best performance values are all located at the extreme positions of the
Pareto alternative solution set. It can be seen that the alternative solutions implement the
brightest endergonic performance and highest IPCF, which confirms that this optimization
algorithm achieves satisfactory diversity and convergence of the population. Due to the
conflicting objectives and indicators, it is necessary to balance the relationship between the
three in practical engineering. The set of optimal solutions obtained by the methods used
in this paper only provides some reference significance for engineers.
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5. Discussion
5.1. The Validation of Optimization Results

To verify the solutions selected are reasonable and reliable, it is effective to demonstrate
that the errors between optimization results and the FE model are acceptable. In this section,
the numerical model of the obtained optimal solution is reconstructed according to the
parameter design variables of Pareto solutions. Table 5 exhibits the alternative solution
objective values of Pareto solutions and numerical simulation in order to estimate the
proposed optimization system.

Table 5. Comparison of optimization results and FE model.

tint
(mm)

tmid
(mm)

tout
(mm)

trib
(mm)

Dmid
(mm)

IPCF
(kN)

SEA
(kJ) CFE

Optimal solution
1.990 0.523 0.500 0.500 25.000

29.678 17.238 0.781
FE values 29.050 18.371 0.869

Error — — — — — 2.12% 6.57% 11.20%

As shown in Table 5, the relative error between the optimization results and the numer-
ical simulation is within 12%, and the max error occurs in CFE. The comparison dates show
that the developed optimization model is reasonable and meets the accuracy requirements.

5.2. The Discussion of Optimization Results

In addition, the initial pattern is introduced to compare with the optimal solutions
to evaluate the effectiveness of the optimization system. After optimization, the IPCF
value decreases by 53.36% and the CFE value improves by 8.68% while the SEA value
decreases by 17.88%, which is shown in Figure 12. Although the SEA value has been
greatly weakened, the increase in IPCF value and CFE value has compensated for this. It is
obvious that tremendous room for amelioration exists in IPCF for SCOD. To sum up, the
final result evidences that the optimization method combining the DCNSGA-III algorithm
and TMDSM can be designed for specific projects, making it convenient for engineers to
refer to.
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6. Conclusions

This study conducts multi-objective optimization of multi-layer nested thin-walled
corrugated pipes, namely SCOD, combing the DCNSGA-III algorithm and TMDSM. The
DCNSGA-III algorithm is applied to solve the non-dominated Pareto alternative to the
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design of optimization. The optimal design point is searched by utilizing TMDSM from the
alternatives to determine the definitive combination of structural parameters.

The FE model of the SCOD is established based on the basic parameters, and validation
is completed. Referring to the error of experiment and simulation results, the accuracy of
the FE model is proved as reasonable and effective. In the early stage of optimization work,
the design of experimental points is completed using the optimal LHD method, and then
variables and target values are fitted according to the obtained experimental point data by
utilizing PRS. By computing the four measurements, the surrogate model is validated. An
optimal with comprehensive consideration of multiple objectives is obtained by retrieving
from the Pareto front. The ultimate optimization result indicates that the IPCF reduces
by 53.4% and the CFE increases by 8.7% after optimization. It can be concluded that the
optimization method combining the DCNSGA-III algorithm and TMDSM used is effective.

In the future investigation, we will focus on three aspects: (1) developing further
experiments and providing more adequate test data to support the validation; (2) applying
fuzzy methods and other theories to solve the problem of weight uncertainty to find a more
suitable Pareto solution set; (3) studying the impact of ripple amplitude and number on
structural crashworthiness and optimize for them.
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(f) CFE (tmid and tout) (g) CFE (tmid and trib) (h) CFE (tout and Dmid) (i) CFE (tout and trib) (j) CFE (trib and Dmid) 

Figure A1. Second-order interaction response surface of CFE.
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Table A1. The 60 groups of SEA, CFE and IPCF values of DoE.

No. tint tmid tout trib Dmid IPCF (kN) SEA (kJ) CFE

1 0.653 0.881 0.653 1.593 27.88 58.5868454 21.19321804 0.782614165
2 1.593 1.822 1.492 1.466 25.68 85.91944122 16.15610743 0.628983506
3 1.619 0.907 0.525 0.983 29.75 46.28269959 21.70109438 0.866691667
4 1.034 1.924 0.78 1.212 26.19 67.09941864 24.20304434 0.88419663
5 1.314 1.517 1.085 1.059 35 77.66350555 24.48207631 0.85696551
6 0.551 0.754 1.568 1.085 28.22 77.89289093 23.87391076 0.79700563
7 0.78 0.831 1.39 1.415 34.83 84.99373627 24.65070090 0.81567804
8 1.542 0.983 1.72 1.237 34.66 97.21710205 26.84166619 0.88668316
9 1.517 1.059 0.5 1.847 30.08 65.23165894 23.06232295 0.87299951
10 1.186 1.161 1.237 1.314 30.25 82.10932922 24.60627686 0.82806999
11 1.085 1.288 1.364 0.958 25.17 72.99485016 24.13321877 0.85316121
12 1.492 1.237 1.288 2 27.71 106.20410156 27.67901446 0.86784737
13 1.644 0.5 1.314 1.034 30.93 70.09825897 23.51739861 0.82531042
14 0.881 1.085 0.602 1.568 33.81 62.30578232 22.54512732 0.83663219
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Table A1. Cont.

No. tint tmid tout trib Dmid IPCF (kN) SEA (kJ) CFE

15 1.161 1.212 1.746 1.975 33.14 122.19077301 28.60797149 0.87888028
16 1.695 1.619 0.831 0.754 26.36 56.82844925 21.63289296 0.83891925
17 1.797 0.551 0.932 1.695 27.54 74.16440582 23.61493297 0.82344431
18 1.008 0.602 0.881 0.831 27.03 47.46133041 19.72502649 0.75072193
19 1.136 0.576 1.873 1.542 30.42 102.79691315 25.71772349 0.81509915
20 1.237 0.678 0.805 0.805 34.32 48.95460510 20.17285200 0.76640964
21 1.11 0.525 1.008 1.822 31.27 76.22654724 22.58756087 0.77859680
22 1.898 0.805 1.542 1.797 31.44 107.14806366 27.26390038 0.86083020
23 1.746 1.771 0.703 1.72 27.2 83.47353363 21.78154234 0.73973917
24 1.263 0.78 1.924 0.78 27.37 81.18247223 23.70013979 0.83406470
25 0.932 0.703 1.619 0.678 32.63 66.60689545 22.51851537 0.83245015
26 0.907 1.669 0.729 1.873 29.41 82.81291962 19.56630564 0.665503958
27 1.975 1.034 0.958 0.703 33.64 59.41541672 22.03356569 0.827748697
28 0.958 1.364 0.627 0.602 28.05 41.02738953 18.98192168 0.790898343
29 1.771 0.729 1.161 0.881 25.51 61.07393265 22.47664525 0.83919475
30 1.059 0.627 1.339 1.619 25.85 87.22098541 24.14410145 0.77064779
31 1.441 1.568 0.983 1.949 33.98 100.7751923 26.90492000 0.87137996
32 1.72 0.932 1.822 1.492 26.53 109.1475449 26.94120844 0.83619032
33 0.805 1.441 1.186 1.746 25 92.13642883 26.15691225 0.83742913
34 1.212 1.492 1.847 0.627 33.31 85.28304291 24.69711154 0.88691756
35 1.415 2 1.11 1.364 30.76 92.32149506 27.07020183 0.90570654
36 0.754 1.314 1.034 0.551 32.97 54.34207535 20.03192217 0.76660751
37 1.466 1.11 1.263 0.5 29.58 58.486763 21.18228986 0.81440263
38 1.847 1.415 1.695 0.729 26.02 81.47267914 24.87379190 0.89698179
39 0.831 1.797 0.576 1.11 32.12 58.70955277 22.89472230 0.87864541
40 0.602 1.644 1.212 1.669 33.47 98.02640533 26.07631989 0.83622852
41 0.576 1.008 1.415 1.924 29.92 102.7796021 26.28088244 0.80803277
42 1.364 1.136 0.678 1.39 25.34 62.23813248 23.41673627 0.84423196
43 2 1.263 1.136 1.288 28.9 82.09313965 26.34920334 0.90810149
44 0.703 1.39 1.669 0.525 28.73 70.21337891 22.83575216 0.84386887
45 1.339 1.949 1.466 0.653 28.39 77.56575012 23.67024308 0.86393435
46 0.525 0.653 0.856 1.008 31.61 51.09122849 19.44927919 0.71204341
47 0.627 1.339 1.898 1.263 31.95 105.0430908 26.82023108 0.85247459
48 1.822 1.593 0.551 1.339 32.8 67.79760742 18.23823219 0.67373307
49 0.729 1.975 1.441 0.932 32.29 85.90914917 24.88916179 0.86841285
50 1.669 0.856 0.907 1.517 34.49 73.7012558 24.30086932 0.862368361
51 1.949 0.958 1.949 0.856 30.59 91.10535431 24.17337595 0.842698407
52 1.924 1.72 1.517 0.907 32.46 91.38176727 25.66405737 0.890494034
53 1.39 1.542 2 1.186 29.24 110.4089966 25.86634032 0.833959711
54 1.568 1.746 0.754 0.576 31.78 54.2386322 20.53222844 0.818566565
55 0.5 1.466 1.059 1.136 28.56 69.34976959 23.34502902 0.819309729
56 1.288 1.873 1.797 1.441 34.15 120.6449738 27.35392593 0.859222077
57 0.983 1.847 1.593 1.898 29.07 121.1154556 28.52630889 0.87472431
58 0.856 1.186 1.975 1.644 26.69 117.101059 27.04864359 0.822575551
59 1.873 1.695 1.644 1.771 31.1 124.5606461 29.0063381 0.891892921
60 0.678 1.898 1.771 1.161 26.86 98.92190552 23.62567226 0.78182648
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