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Abstract: The uplifting behaviors of existing tunnels due to overlying excavations are complex and
non-linear. They are contributed to by multiple factors, and therefore, they are difficult to be accurately
predicted. To address this issue, an extreme gradient boosting (XGBoost) prediction model based on
Bayesian optimization (BO), namely, BO-XGBoost, was developed specifically for assessing the tunnel
uplift. The modified model incorporated various factors such as an engineering design, soil types,
and site construction conditions as input parameters. The performance of the BO-XGBoost model
was compared with other models such as support vector machines (SVMs), the classification and
regression tree (CART) model, and the extreme gradient boosting (XGBoost) model. In preparation for
the model, 170 datasets from a construction site were collected and divided into 70% for training and
30% for testing. The BO-XGBoost model demonstrated a superior predictive performance, providing
the most accurate displacement predictions and exhibiting better generalization capabilities. Further
analysis revealed that the accuracy of the BO-XGBoost model was primarily influenced by the site’s
construction factors. The interpretability of the BO-XGBoost model will provide valuable guidance
for geotechnical practitioners in their decision-making processes.

Keywords: tunnel uplift prediction; overlying excavation; machine learning; Bayesian optimization;
model visualization

1. Introduction

In recent years, the development of three-dimensional urban transportation has made
conducting excavations above existing shield tunnels inevitable [1–5]. During the construc-
tion of such excavations, the surrounding soil experiences disturbance, stress release, and
uplift at the bottom of the excavation. Consequently, this leads to the force imbalance and
uplift of the pre-existing tunnel [6,7].

Numerous studies have been conducted on the deformations of existing tunnels
caused by excavations. These studies have primarily employed traditional methods such
as theoretical analyses, experimental testing, and numerical simulations [8]. Theoretical
analyses based on mechanical principles offer a simpler approach and reveal the underlying
laws governing engineering problems [9–15]. However, these methods often require
specific assumptions and consider limited parameters, making them challenging to adapt
to different project conditions. Experimental testing, on the other hand, provides intuitive
results and can better capture the influences of individual factors [16–22]. However, it
may not fully represent actual project conditions, and the associated costs are generally
high. Numerical simulations offer quick and effective means of predicting the impacts of
excavations on existing tunnel uplifts. They have been widely applied in the engineering
field [23–27]. Nevertheless, the complexities of soils pose challenges in selecting appropriate
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constitutive models, and the computational capabilities of the software used may impose
limitations.

Machine learning models are the outcome of research efforts rooted in statistical theory
and optimization algorithms with powerful high-dimensional nonlinear fitting capabilities.
The fundamental principle underlying machine learning involves constructing models that
learn from extensive datasets to identify patterns and regularities. These trained models can
then make predictions for new cases while considering all available information throughout
the learning process [28,29].

In the field of underground engineering, various machine learning methods have
been applied for prediction purposes, including artificial neural networks (ANNs), random
forests (RFs), support vector machines (SVMs), and the extreme gradient boosting (XGBoost)
method. Firstly, Shi et al. [30] utilized an ANN method to predict the maximum ground
settlement induced by tunnel excavation. Similarly, ANN-based prediction models have
been established to intelligently predict soil deformations and geotechnical environmental
issues in deep and large excavations and shield tunnel construction projects [31–34]. Zhou
et al. [35] employed an RF algorithm to predict the risk associated with deep excavations in
subway stations. Additionally, an auto machine learning (AutoML) -based approach has
been proposed for the accurate prediction of tunnel displacements induced by excavations,
with successful applications in real-world projects [36]. Researchers have also optimized
SVM models to assess horizontal displacements and potential risks during the construction
of deep excavations, effectively addressing excavation stability assessment challenges
[37–39]. Moreover, a multi-step prediction model for rock displacement around tunnels
has been proposed based on an SVM model, and its performance has been compared with
that of ANN models [40].

Although the aforementioned machine learning methods are effective, they typically
consist of single and complex algorithms. Ensemble methods have emerged as superior
approaches when compared to individual machine learning methods and other statistical
techniques [41,42]. Ensemble methods leverage combining multiple models to achieve
higher predictive performances and lower error rates. In the field of shield tunnel con-
struction, Zhou et al. [43] and Su et al. [44] developed XGBoost prediction models using
different optimization algorithms. Their research demonstrated that the XGBoost model
exhibits notable advantages in terms of accuracy and interpretability, surpassing other
models when the prediction results were compared. This highlighted the effectiveness of
such ensemble methods, specifically the XGBoost model, in the context of underground
engineering applications.

In summary, traditional research methods in the field of geotechnical engineering have
often relied on specific assumptions to simplify complex site conditions. However, such a
simplified approach has its limitations and can adversely affect the accuracy of research
outcomes. In contrast, while machine learning technologies have found widespread appli-
cations in predicting foundation deformations and surface settlements, there is a noticeable
scarcity of studies focusing on tunnel uplift displacement.

This study introduces an integrated learning algorithm, the BO-XGBoost model, for
predicting the uplift displacements of tunnel vaults caused by excavations. The model
combines the XGBoost algorithm with a Bayesian optimization (BO) algorithm, optimiz-
ing its hyperparameters. A comprehensive database of 170 cases was prepared through
extensive engineering research. The data quality and features played a crucial role in
determining the upper bound of the model’s accuracy. Therefore, this paper provides a
detailed description of the dataset processing. Next, the BO-XGBoost prediction model for
tunnel uplift is presented, and its performance is evaluated in comparison to SVM, CART,
and unoptimized XGBoost models. The evaluation criteria included root mean square
error (RMSE), mean absolute error (MAE), and coefficient of determination (R2) values,
which were used to assess the model’s learning and prediction abilities. Furthermore, the
interpretability of the BO-XGBoost model is analyzed. The results demonstrate that the
BO-XGBoost model exhibited the highest prediction performance for maximum tunnel
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vault uplift displacements. Moreover, the interpretability of the model will offer valuable
guidance to civil engineers during their decision-making processes.

2. Materials and Methods

In order to accurately capture the non-linear impact of multiple factors, it was cru-
cial for the tunnel uplift prediction model to possess strong interpretability. This study
addressed this requirement by utilizing an extreme gradient boosting model (XGBoost) as
the learning algorithm to establish a prediction model for the maximum uplift displace-
ment of an existing tunnel resulting from excavation. To further enhance the model’s
performance, the Bayesian optimization (BO) method was employed to select the optimal
hyperparameters for the XGBoost model.

2.1. Algorithm Principle for the XGBoost Model

XGBoost, firstly proposed by Washington computer Ph.D. Chen and Guestrin [45],
uses CART as a sub-model to achieve the ensemble learning of multiple CART trees by
gradient tree boosting. The integration follows the typical additive model and forward
distribution algorithm. The basic structure is shown in Figure 1.
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The XGBoost algorithm, including the objective function, regularization function, and
loss function, enabled it to learn the weights of each feature autonomously with excellent
accuracy while being trained. We assumed that the sample dataset used for training was
(xi, yi), where xi ∈ Rm, yi ∈ R, and where xi is a feature vector with m dimensions, yi
denotes the sample label, and the model contains K trees. The XGBoost model was defined
as shown in Equation (1):

ŷ(t)i =
t

∑
k=1

fk(xi) = ŷ(t−1)
i + fi(xi), (1)

where ŷ(t)i is the model prediction value of a sample xi at the tth iteration, ŷ(t−1)
i is the model

prediction value of sample xi at the previous iteration, and fi(xi) is the new sub-model
trained for the tth time. The objective function (Obj) of the XGBoost model was based
on the loss function (L) with the addition of the regularization term (Ω), measuring the
complexity of model, as in Equation (2):

Obj(t) =
n

∑
i=1

L(yi, ŷ(t)i ) +
t

∑
i=1

Ω( fi). (2)

The loss function (L) was used for evaluating the deviation between the predicted and
measured values of the model. In addition, the regularization term (Ω) was introduced to
account for the overall complexity of all trees in the model, effectively mitigating the risk of
overfitting [45]. The expression for the regularization term (Ω) is presented in Equation (3):

Ω( f ) = γT +
1
2

λ‖ω‖2, (3)
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where γ and λ are both regularization term coefficients, T is the number of leaf nodes in the
decision tree, and ω is a vector of the weight scores controlling the leaf nodes. γT affects
the complexity of the model by controlling the tree depth.

The optimization objective of the model was to find the optimal loss function satisfying
the minimum objective function, and this task was completed by introducing the Taylor
formula into the XGBoost model. After expanding Equation (1) using Taylor’s formula and
substituting Equation (2) into Equation (1), the objective function was transformed into
Equation (4):

Obj(t) =
n

∑
i=1

[gi fs(xi) +
1
2

hi f 2
t (xi)] + γT +

1
2

λ
T

∑
j=1

ω2
j . (4)

During the model training process, a crucial task is to determine the optimal cut points
for constructing the tth tree’s leaf nodes. In the XGBoost model, an exact greedy algorithm
was adopted to iterate through all the split leaf nodes that were eligible for splitting. Among
these nodes, the one with the highest gain in the splitting objective function was chosen
as the optimal splitting point. The gain of the splitting point was calculated by Equation
(5). Notably, the gain provided a basis for the feature importance output. The steps of the
optimal cut-point selection process are outlined in Algorithm 1.

Gain =
1
2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (GL + GR)

2

HL + HR + λ
]− λ, (5)

where GL and GR denote the first-order gradient statistical sums of the sample sets of the
left and right child nodes, respectively, that were split from the current node, and HL and
HR are the second-order gradient statistical sums of the sample sets of the left and right
child nodes, respectively.

Algorithm 1: Exact Greedy Algorithm for Split Finding

Input: I, instance set of the current node, and d, the feature dimension
gain = 0
G = ∑

i=I
gi, H = ∑

i=I
hi

for k = 1 to m do
GL = 0, HL = 0
for j in sorted (I , by xjk) do

GL = GL + gi, HL = HL + hi
GR = G− GL, HR = H − HL

gain = max(gain, G2
L

HL+λ +
G2

R
HR+λ −

G2

H+λ )
end

end
Output: Split with max gain

2.2. Hyperparameter Optimization Based on Bayesian Algorithm

XGBoost, being an integrated tree-based model, inherently possessed a risk of overfit-
ting [43]. To achieve an optimal prediction model performance, it was necessary to conduct
hyperparameter optimization prior to training the model. However, such an optimization
process can be intricate and time-consuming [46]. Bayesian optimization, on the other
hand, leverages information from previous search points to determine the next point to be
explored, enhancing both the quality and speed of the search. It is particularly well-suited
for fine-tuning parameters with lower dimensionality. The general analysis process of the
BO-XGBoost model is illustrated in Figure 2.
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3. Database-Building and Exploratory Analysis
3.1. Database-Building

Underground engineering problems are complicated and diverse. In this section, this
paper concentrates on the factors influencing the uplift of the underlying tunnel caused by
the excavation. Figure 3 shows the relative position between the excavation and the existing
tunnel. A database with 170 samples was built by investigating the existing engineering
projects, and it was divided into a training set and a test set, with the ratio of 7:3.
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The relationship between overlying the excavation-induced tunnel uplift and the
influencing factors is particularly important for predicting the tunnel uplift. Geological
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properties are usually essential for determining a construction program. The samples in
the database were categorized into four classes according to the properties of the soils in
which the existing tunnels were located, namely, muddy silty clay (Mud), soft clay (Sof),
silty clay (Sil), and gravelly clay (Gra). The size of an excavation, including its length (L),
width (B), and depth (He), directly affects the unloading force exerted on the soil above
the tunnel, which, in turn, affects the maximum uplift of the tunnel (Smax). Other factors
include the radius of the shield tunnel (D), the distance between the tunnel vault and the
base (Ht), and the actual underpass length of the tunnel underpass (Lc). Additionally,
the control measures adopted in a project that control the disturbance of the soil by the
excavation cannot be overlooked. They are, respectively, the excavation enclosure structure
(SWM, DW, and BP), the internal support structure (OC and NC), and other excavation
control measures (SM_1, SM_2, SM_3, and SM_4), respectively. It is worth noting that some
of these factors are non-numerical variables, such as the soil mixing wall (SWM) in the
excavation enclosure structure, which are quantified using binary values (0 and 1), with “1”
indicating that the effect of the variable is considered and “0” indicating otherwise. Table 1
presents the definitions, ranges, and detailed descriptions of each variable.

Table 1. The definitions, ranges, and detailed descriptions of each variable.

Symbol Category Unit
Parameter Description

Note
Min-Max Mean

R Input m 6–11 6.36 Circular tunnel diameter

L Input m 8.2–867 90.04 Lateral excavation length of
an excavation

B Input m 9.7–200 48.14 Longitudinal excavation
length of an excavation

He Input m 4–24.3 8.85 Excavation depth

Ht Input m 0.35–12.4 5.20
The vertical distance between
a tunnel vault and the bottom

of an excavation

Lc Input m 10–203 53.24 The actual undercrossing
length of a tunnel

Mud Input - 0–1 0.25 Mucky clay
Sof Input - 0–1 0.24 Soft clay
Sil Input - 0–1 0.25 Silty clay

Gra Input - 0–1 0.26 Gravelly soil
SWM Input - 0–1 0.28 Soil mixing wall
DW Input - 0–1 0.15 Diaphragm wall
BP Input - 0–1 0.48 Bored cast-in-place pile
OC Input - 0–1 0.21 Sloping excavation

NC Input - 0–1 0.70 Internal support of an
excavation

SM_1 Input - 0–1 0.95 Excavation bottom
reinforcement

SM_2 Input - 0–1 0.98 Layered excavation of an
excavation

SM_3 Input - 0–1 0.68 Uplift pile

SM_4 Input - 0–1 0.21 Excavation bottom weight
anti-floating

Smax Output mm 20–205 87.89 Maximum displacement of a
tunnel’s vault uplift

3.2. Data Exploratory Analysis

Feature engineering plays a crucial role in determining the quality of a prediction
model. Therefore, selecting an optimal subset of features can significantly enhance the
accuracy of a model’s predictions. In the initial database, it is common to encounter
redundant features. These may include features that exhibit little variation or hold no
relevance to the uplift of a tunnel vault, and their included information can be inferred from
other features. Removing such redundant features is important for refining the dataset and
improving the overall predictive accuracy of a model.
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Figure 4 provides an overview of the box plot diagram. The length of the box plot
indicates the degree of the data dispersion and the lengths of the upper and lower dashed
lines indicate the overall data variances. Considering the soil layers, the samples in the
database were categorized into four groups. Figure 5 displays distribution pie chart related
to the maximum tunnel uplift (Smax), while Figure 6 illustrates the corresponding box plot.
It can be observed that there was a slightly higher proportion of silty clay and soft clay
samples, with gravelly clay comprising a smaller portion. This can be attributed to the fact
that the engineering cases primarily originated from the southeast coast, such as Shanghai,
and these areas experience faster development compared to the central and western regions.
Furthermore, Figure 6 shows that the overall sample distribution was relatively even,
indicating that the database exhibited good representativeness and universality.
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3.2.1. Numeric Variables

To visualize the numerical variables and identify the outliers, a box-normal plot was
employed. As shown in Figure 7, the skewness coefficient (SK) and kurtosis (BK) were
introduced to depict the distribution patterns of these variables. SK provided information
about the direction and extent of skewness in the distribution while BK described the
steepness of the distribution pattern.

As shown in Figure 7f, R had a limited effect on the output Smax, where no significant
change was observed. The variables B, Lc, He, and Ht exhibited wider distributions, as
shown in Figure 7a–d, and all presented slightly positive skew values (SK > 0). Figure 7e
reveals that the variable L was concentrated towards the lower end of the box plot, exhibit-
ing a clear positive skewness. Its kurtosis (BK) was calculated as 6.6581 (after subtracting
3). While some outliers may have held valuable information for training the prediction
model, only the extreme outlier of the variable L was removed, as represented by the red
triangle in Figure 7e.

The correlation between variables was assessed using Spearman’s correlation coeffi-
cient, as illustrated in Figure 8. It could be observed that the variables Lc and B exhibited a
high correlation of 0.93 (Lc = B × sinα, where α is the angle of the tunnel passing through
the excavation). However, when variables are highly correlated, it can reduce the inter-
pretability of a model. Therefore, in this case, the variable Lc was chosen to train the model
with a higher correlation to the output Smax.

3.2.2. Categorical Variables

Figure 9 shows a scatter plot of the categorical variables concerning Smax and indicates
the variables as percentages of the overall sample size. For instance, the variables SM_1,
SM_2, and NS, whose values were concentrated in category “1”, accounted for 95%, 98%,
and 96% of the sample size, respectively. This indicated that the construction measures
SM_1, SM_2, and NS were used in almost all the cases of the database, thereby making it
impossible to identify the effects of these factors on the maximum tunnel uplift. In contrast,
the distributions of other categorical variables in relation to Smax exhibited certain patterns,
indicating that they played significant guiding roles in the model training process.
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3.3. Data Standardized Processing

To fulfill the computational requirements of models such as SVM and enhance com-
putation efficiency, this study applied Z-score normalization to the data, ensuring a mean
value of zero and a standard deviation of one. It was calculated using Equation (6):

x′ i =
xi − µ

σ
, i = 1, 2, 3 , (6)

where µ is the mean of all samples and σ is the standard deviation of all samples. Ultimately,
the prediction results of a model are reflected in the original data space.

After processing the sample data using the above methods, the variables B, Lc, He, Ht,
SMW, DW, BP, Muc, Sof, Sil, Gra, SM_3, and SM_4 were selected as the inputs of the model,
and Smax was the output of the model.

4. Model Prediction Performance Discussion
4.1. Model Creation and Hyperparameter Optimization

As shown in Figure 2, the model-building process included database creation, data
processing, database partitioning, model training, result output, and evaluation metrics.
The database was derived from engineering cases involving excavations above existing
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shield tunnels. Before being fed into the model, the data underwent a screening process
and were normalized using the Z-score method to mitigate any effects. Of the database,
70% was used as the training set, while the remaining 30% served as the test set.

In this study, the Bayesian optimization method was used to optimize the hyperpa-
rameters of the XGBoost model, taking the parameter with the minimum mean square error
as the model hyperparameter. To mitigate model overfitting, a five-fold cross-validation
iteration was employed. Similar procedures were followed to construct prediction models
based on SVM, GBDT, XGBoost, and BO-XGBoost algorithms, and their prediction per-
formances were evaluated using the same dataset. Table 2 provides a summary of the
hyperparameters for the XGBoost model, including their descriptions, search scopes, and
optimal values.

Table 2. Search scopes and optimal hyperparameters for each of the XGBoost parameters in the BO
tuning process.

XGBoost Hyperparameter Search Scope Default Value Optimal Value

n_estimators 1–50 100 43
max_depth 1–20 6 4

learning_rate 0.00001–1 0.3 0.6633
subsample 0.1–1 1 0.9131

gamma 0–20 0 14.6795
reg_alpha 0–20 0 1.5322

reg_lambda 0–20 1 16.5579

Based on the Bayesian search results in Table 2, the optimal XGBoost model hyperpa-
rameters were determined to be n_estimators = 43, max_depth = 4, learning_rate = 0.6633,
Subsample = 0.9131, Gamma = 14.6795, reg_alpha = 1.5322, and reg_lambda = 16.5579.

4.2. Metrics of the Model Validation and Evaluation

In order to quantitatively evaluate the performances of the training and testing models,
this study selected root mean square error (RMSE), mean absolute error (MAE), and coeffi-
cient of determination (R2) values as the evaluation metrics to describe the correspondence
between the predicted and measured values. Smaller RMSE and MAE values reflected
the higher prediction accuracy of the model, while an R2 value closer to one indicated a
better fit between the predictive model and the actual results. The evaluation indices were
calculated as shown in Equations (7)–(9).

RMAE =

√
1
n

n

∑
i=1

(y(i)true − y(i)predict)
2
, (7)

MAE =
1
n

n

∑
i=1

∣∣∣y(i)true − y(i)predict

∣∣∣, and (8)

R2 = 1−

n
∑

i=1
(y(i)true − y(i)predict)

2

n
∑

i=1
(y(i)true − ytrue)

2 , (9)

where y(i)true is the measured tunnel uplift maximum displacement of sample i in the

database, y(i)predict is the predicted maximum tunnel uplift displacement of sample i in the
database, ytrue is the measured average value of the maximum tunnel uplift displacement,
and n is the total number of samples in the database.
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4.3. Performance Analysis of the Prediction Model for the Maximum Tunnel Uplift Displacement

As shown in Figures 10–13, the distributions of the predicted and measured Smax
values for the SVM model, CART model, XGBoost model, and BO-XGBoost model were
given. The scatter plots, which were closer to the diagonal line P = A, indicated the superior
prediction results. The performances of the four established models were analyzed using
the evaluation metrics. It is worth stating that model performance was evaluated based
on the learning ability and prediction ability corresponding to the training and test sets,
respectively.
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Figure 10a,b shows the prediction results for the training and test sets using the SVM
model. The predictions exhibited a clear tendency: the prediction was generally large for
smaller measured Smax values and smaller for larger measured Smax values. The RMSE,
MAE and R2 values were 20.0142, 15.0773, and 0.7126 for the training set and 25.4354,
21.0216, and 0.6172 for the test set, respectively. This indicated that the prediction results of
the SVM model deviated significantly from the measured Smax values, and thus, they were
not reliable.

The Smax value predicted by the CART model is plotted in Figure 11. Compared with
the SVM model, the CART model could predict a wider range of measured Smax values
more accurately. The RMSE, MAE and R2 values of the SVM model for the training set
were 10.8984, 9.4908, and 0.9148, respectively, indicating that the predicted values for the
entire training set were closer to the measured Smax value. However, the deviation of the
CART model was still relatively large for the test set (RMSE = 16.5961 and MAE = 14.6490).

The prediction results using the unoptimized XGBoost model and the BO-XGBoost
model are respectively shown in Figures 12 and 13. For the training set, the RMSE, MAE and
R2 values were 3.5153, 3.2277, and 0.9916, respectively, for the XGBoost model and 5.8232,
4.9647, and 0.9763, respectively, for the BO-XGBoost model, and they both demonstrated
excellent learning abilities for the data. Figures 12a and 13a show the scatter distributions
over the range of 0.8 to 1.2 for the accuracy of the P = A line. For the test set, the RMSE and
MAE values were reduced from 13.8493 and 11.9235 to 10.9808 and 9.2765, respectively,
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after the hyperparameters of the XGBoost model were optimized by the Bayesian algorithm.
The prediction accuracy of the XGBoost model evaluated by the RMSE and MAE values
had improved by 20% and 22%, respectively.

The metrics of the different models evaluated on the training and test sets are summa-
rized in Figure 14 to compare their performances more visually. The models were ranked
according to their learning ability on the training set from lowest to highest, as follows:
SVM < CART < BO-XGBoost < XGBoost, and, similarly, for their predictive ability on the
test set, they were ranked as follows: SVM < CART < XGBoost < BO-XGBoost. Unexpect-
edly, the BO-XGBoost model showed a lower performance on the training set compared to
the unoptimized XGBoost model, but it achieved a better prediction performance on the test
set (XGBoost: R2 = 0.8865 and BO-XGBoost: R2 = 0.9287). This could be explained by the
fact that the unoptimized XGBoost model tended to overfit the training data, highlighting
the importance of hyperparameter optimization for the XGBoost model.
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The calculation results of the four algorithm models on the test set are shown in
Figure 15. The maximum displacements of the tunnel vault uplift, i.e., the Smax values,
were sorted from smallest to largest, and then the errors for the predicted and measured
values were calculated using Equation (10):

Error = SmaxP − SmaxA, (10)

where SmaxP represents the predicted uplift displacement and SmaxA represents the mea-
sured uplift displacement. Figure 16 shows the predicted errors corresponding to the four
different algorithmic models. The positive values indicate that the predicted value of Smax
was greater than the measured value while a negative value indicates the opposite.
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Combining Figures 15 and 16, it can be noticed that the four models exhibited similar
prediction patterns, with variations in their accuracy levels. Notably, the SVM model
demonstrated the highest deviation from the measured Smax value, with the maximum
error exceeding −60 mm, particularly for the highest measured Smax value. This finding
highlighted the unsuitability of the SVM model for projects where Smax values are expected
to be relatively large, which could potentially compromise engineering safety.

Compared with the SVM model, the prediction accuracy of the CART algorithm model
for Smax values had improved, and the maximum prediction error was less than −50 mm.
The XGBoost algorithm model provided a more accurate prediction for the measured Smax
values than the SVM and CART models, as evidenced by the maximum prediction error
value of −31 mm. Meanwhile, the maximum prediction error of the BO-XGBoost algorithm
was further reduced to −26 mm, and the absolute value of the maximum prediction error
was controlled within 20 mm in most periods. Consequently, the BO-XGBoost algorithm
demonstrated the highest prediction accuracy among the four models considered in this
study.

Summarizing the above analysis, the BO-XGBoost algorithm model performed better
for generalization ability, with a higher prediction accuracy in predicting the maximum
uplift displacement of the underlying tunnel vault caused by the excavation, and the
prediction error of the maximum uplift displacement was only approximately ±10 mm,
which was suitable for practical projects. It is worth noting that for the prediction results of
the BO-XGBoost model on the test set, two of the prediction errors exceeded −20 mm and
the predicted values were smaller than the measured values. Since the outliers of input
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variables can provide some extreme information to an established prediction model, the
processing of a database in combination with field knowledge is necessary before training
a model. However, the overall results demonstrated that the proposed BO-XGBoost model
was effective at accurately predicting the maximum tunnel uplift displacement.

4.4. Interpretability of the Prediction Model

The uplifting behavior of overlying excavations on existing tunnels is a complex civil
engineering problem. Explainability is an important criterion for assessing whether or
not machine learning models are trustworthy. In other words, a model should not only
provide accurate predictions to engineers but also provide a safe and reliable basis for
decision-making. The XGBoost model, for example, provided an interface for visualizing
decision trees. This feature enhances the interpretability of a model by providing engineers
with an intuitive representation of the decision-making process. Figure 17 illustrates the
visualization of the last tree by specifying the parameter “num_trees”. This shows that the
model consisted of five layers, including four layers of tree structure and one layer of leaf
structure, and the features at the nodes determined the cut of the nodes. This visualization
capability of the XGBoost model aided in model analysis and provided valuable insights
into the decision-making process. It enhanced the model’s explainability, which will allow
engineers to understand how a model arrives at its predictions, thereby enabling informed
decision-making based on a safe and reliable foundation.
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Feature importance plays a crucial role in elucidating a model’s behavior. By utilizing
the feature importance module within the XGBoost model, the proportionate significance
levels of the top ten features were calculated according to the number of times they were
utilized for splitting the tree. Figure 18 shows the feature importance of the prediction
model based on the BO-XGBoost model for the maximum displacement of the tunnel vault
uplift.

According to the weight of the feature importance, the three factors SWM, BP, and
DW were the most prominent. This indicated that the excavation enclosure structures
were the most important factors in this prediction model. Additionally, the remaining
features, in descending order of their weight shares, included SM_3, Lc, Sil, Mud, Sof, Gra,
and SM_4. The control measure of using uplift-resistant piles (SM_3) in the excavation
could effectively control the soil uplift below the excavation bottom. Prior to designing an
excavation, equal attention should be given to the actual length (Lc) of a tunnel’s under-
crossing. Unexpectedly, the four soil types were ranked at the bottom according to their
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weights, which were far below the construction measures. This confirmed that suitable
construction measures can significantly counteract the effects of geological factors resulting
from underlying tunnel uplift. As a result, the interpretability of the BO-XGBoost model
provided significant guidance to the tunnel engineers in the decision-making process.
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5. Conclusions

This study proposed the XGBoost model in a machine learning algorithm to predict
the maximum uplift displacement of an underlying shield tunnel vault caused by an
excavation. Meanwhile, the Bayesian optimization algorithm was applied to optimize
the XGBoost model’s hyperparameters, and the best prediction model was established,
namely, the BO-XGBoost model. The RMSE, MAE, and R2 values were selected as metrics
for quantitatively evaluating the prediction performances of the SVM, CART, XGBoost, and
BO-XGBoost models. The main conclusions were as follows:

(1) Among the four algorithmic models for Smax prediction, the SVM model’s pre-
dicted results deviated the most from the measured values (RMSE = 25.4354, MAE
= 21.0216, and R2 = 0.6172). The highest prediction accuracy was achieved by the
BO-XGBoost model. In addition, compared to the unoptimized XGBoost model, the
RMSE and MAE values of the BO-XGBoost model improved from 13.8493 and 11.9235
to 10.9808 and 9.2765, respectively.

(2) According to the prediction results for the test set, the prediction errors of the four
models showed tendencies to grow larger as Smax values grew larger in certain time
periods. These tendencies were particularly reflected in the SVM and CART models.
The maximum prediction error of the SVM-based model was more than −60 mm,
whereas it was near−50 mm for the CART model. However, the maximum prediction
error of the BO-XGBoost model was controlled to within±2 mm for most time periods,
which was superior to the ±31 mm error of the XGBoost model.

(3) The BO-XGBoost model had better interpretability, including its ability to visualize
the decision trees and calculate the feature importance. According to the weights of
the characteristic importance elements, the three measures of the excavation enclosure,
in order of the SWM, BP, and DW, were the most critical factors in predicting the
maximum tunnel uplift displacement.

(4) Expanding a dataset is beneficial for improving the prediction accuracy of a model.
Currently, cases of actual projects with excavations over existing tunnels are insuffi-
cient. Apart from this, the input parameters of the training prediction model were
still divided in inadequate detail. These play vital roles in achieving higher levels of
accuracy for predictive models.
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