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Abstract: In light of the current situation where no testing equipment is available for measuring ther-
mal deformation of objects, this paper proposes a novel method for accurate and precise measurement.
The method overcomes the limitations of previous approaches that relied on pitch angle. By utilizing
the principle of biplane multiple reflections, a bivariate laser spot displacement analysis algorithm
is devised to attain highly precise measurements of bivariate angles. Additionally, a temperature
gradient comparison algorithm is introduced to calculate the indicator test results under specific
temperature conditions. To validate the effectiveness and reliability of this method, a testing system
is constructed and utilized. The results demonstrate that the thermal deformation angle change
test achieves an impressive accuracy of 0.015′′ and a rate of thermal deformation angle change of
0.3247′′/◦C. These values are in close agreement with the previously simulated analysis result of
0.359′′/◦C, with only a relative error of 9.55%. Therefore, the test results confirm the efficacy and
reliability of this testing method along with the feasibility of the algorithm processing.

Keywords: not limited by pitch angle; thermal deformation; bivariate angle; ultra-sub-arc;
position-sensitive device; displacement coordinate analysis algorithm; matrix comparison method;
integrated measurement equipment

1. Introduction

High-resolution microangle measurement techniques have rapidly evolved, playing
a crucial role in various fields, particularly in aerospace [1]. In astronomical exploration,
the thermal deformation of large-aperture spliced mirrors directly determines the imaging
quality: for example, the James Webb Telescope (Figure 1), successfully launched in 2021,
has a main mirror diameter of 6.5 m and is composed of 18 sub-mirrors spliced together [2,3].
Similarly, the effective aperture of the TMT (Figure 2) Third Realm under construction has
reached 30 m, consisting of 492 hexagonal fragments [4]. The thermal deformation of these
spliced mirrors due to temperature changes must be accurately determined. By using an
independent sub-mirror support system and a common phase correction system (i.e., sub-
mirror common phase correction device), the influence of temperature and other factors on
the spatial position of the mirror can be corrected, achieving a sub-mirror confocal common
phase [5–8] and achieving the optimal performance of large-aperture splicing mirrors.

Similarly, in the calibration of star sensors, the thermal deformation of the support
frame of the dome-type multi-star simulator (Figure 3) significantly impacts the star map
simulation accuracy of the simulator [9–12]. By identifying the thermal deformation
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direction of the support frame, timely correction of the thermal deformation error can
improve the simulation accuracy of the star simulator.
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However, the evaluation of thermal deformation currently relies primarily on simu-
lation analysis and lacks direct testing of object deformation. Several unresolved issues
contribute to this limitation:

Firstly, the thermal deformation of an object is generally elastic deformation, and the
change in the normal direction angle of the test area is measured in arc, sub-arc, or even
ultra-sub-arc, and it is tested at any elevation angle. Currently, the only testing equipment
with a testing accuracy of 0.01′′ is the Muller HR photoelectric autocollimator [13]. However,
this device’s testing is limited to the horizontal direction within a 10◦ field of view to achieve
the desired accuracy [14]. Therefore, this device cannot be used for thermal deformation
testing. It can be seen that there is currently no equipment that can meet the requirements
for the thermal deformation index such as the change in direction of the surface normal.

Secondly, conventional small-angle testing studies are conducted on univariate angle
changes. The change in the normal direction of a single part of an object is a single variable
of thermal deformation. The testing of this single variable cannot directly reflect the
deformation of the object as it cannot remove the rigid displacement of the entire object.
The change in the relative angle between the surface normals of different parts of the test
object in space can directly reflect the deformation of the object by removing the overall
rigid displacement change of the object. This requires testing the changes in the spatial
relative angle between two variables, that is, testing the changes in the angle between two
variables, which is a new problem.

Lastly, the thermal deformation index is proposed under specific temperature condi-
tions. However, it is difficult to consistently replicate these exact temperature conditions
during testing. Therefore, we cannot directly obtain indicator test results, which is also a
problem that needs to be addressed.

This paper proposes a high-precision thermal deformation index testing scheme,
which provides valuable insights for related thermal deformation index testing.

2. Testing Methods
2.1. Theoretical Basis of Ultra-Sub-Arc-Level Angle Measurement

For long-distance small-angle testing, we usually consider using optical non-contact measure-
ment methods, such as the autocollimation method [15,16], Moire fringe method [17,18], internal
reflection reflectance method [19], internal reflection interference phase method [20,21], etc.

The biplane reflection calculates the angle change value through the displacement
change value of the light spot [22] as shown in Figure 4: two plane reflector mirrors are
parallel to each other. One of them serves as the target plane mirror, rigidly fixed with
the measured object, deflecting along with the measured object, while the other plane
mirror serves as the reference reflector mirror. The laser and the spot position detector
are separated on the left and right sides of the reference plane reflector mirror. The laser
is incident at a small angle, forming n reflections between two biplane mirrors. The final
output laser is received by the spot position detector, recording the initial position of the
light spot. The distance between the light spot and the emitting end is:

S0 = 2nH tan α (1)

S0 is the initial position of the laser spot, α is the incident angle of the laser, H is
the distance between two planar mirrors, and n is the number of times the laser reflects
between two plane reflector mirrors, as shown in Figure 4.

When the measured object is deflected along with the target plane reflector mirror ∆θ,
the light spot on the detector will generate a displacement ∆S, with a total displacement of S:

S ≈ Htanα + ∑n−1
i=1 2Htan(α + 2i∆θ) + Htan(α + 2n∆θ

)
(2)

Displacement of light spot ∆S can be approximated as:

∆S = S− S0 ≈ 2n2H∆θ (3)
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∆θ= arc tan
(

∆S
2n2H

)
≈ ∆S

2n2H
(4)

dθ ≈ ds
2n2H

< 0.1′′ (5)

Among them, dθ represents the angle testing accuracy and ds represents the displace-
ment resolution of the spot position detector.

We can see from Equation (5) that both increasing the number of reflection cycles n
and increasing the distance H of the double-sided mirror can improve the sensitivity of
angle measurement. As long as we select a detector with appropriate resolution and match
the number of reflections n and the testing distance H, we can theoretically obtain a testing
accuracy of ultra-sub-arc. Moreover, this testing principle is not limited by the pitch angle
and can be tested at any pitch angle.
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2.2. Dual-Variable Angle Variation Test

We can see from Equation (4) that the angle change value is calculated through the
displacement change value of the light spot. Therefore, we can also calculate the change
value of the bivariate angle through the relative displacement value of the bivariate spot
for testing.

To calculate the relative displacement of the bivariate laser spot, we first need to
convert the displacement Si measured at different reflection times ni and testing distance Hi
to the uniform displacement Si

′ of the spot under the conditions of reflection times n and
testing distance H. Then, through vector calculation, we obtain the relative displacement
value ∆S of the bivariate laser spot. Finally, we calculate the relative angle change value of
the two variables according to Equation (4).

We assume two variables: O1 and O2; the test parameters for variable O1 are: reflection
number n1 and distance H1, spot displacement S1, and the test parameters for variable O2
are: reflection number n2 and distance H2, spot displacement S2.
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Based on the test parameters of variable O1, we convert S2 measured under O2, n2,
and H2 conditions to S2

′ under O1, n1, and H1 conditions:

S′2
S2

=
2n1

2H1

2n22H2
(6)

We can see from Equation (6) that the conversion of displacement only changes the
numerical value and does not change the vector direction of O2 displacement. The relative
displacement ∆S of the dual laser spot is:

∆S = S1 + S′2 (7)

We then calculate the relative angle change value ∆θ of the two variables based on
Equation (4), and the schematic diagram of relative displacement calculation is shown in
Figure 5.
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2.3. Conversion Algorithm for Thermal Conditions

We know that the thermal deformation of linear materials is directly proportional to
temperature within the temperature range of the linear expansion coefficient. Therefore,
we can infer that within the linear temperature range, the thermal deformation µ between
the two temperature measuring points of the linear material is directly proportional to the
magnitude of the temperature gradient (∆T), as shown in Equation (8).

We use the discretization mathematical idea to set the temperature control conditions
as the small grid temperature matrix, as shown in Figure 6.
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We can further infer that the ratio of thermal deformation (µ′) under the actual tem-
perature gradient (∆T0) to the thermal deformation (µ 0) under the specified temperature

gradient (∆T ′
)

is directly proportional to the ratio of the two temperature gradients, as
shown in Equation (9):

µ = σ∆T (8)

µ0

µ′
=

∆T0

∆T′
(9)

We use the discretization mathematical idea to set the temperature control conditions
as the small grid temperature matrix, as shown in Figure 6. We obtain the set temperature
gradient matrix (∆T0-row) by decomposing the set temperature conditions and calculate
the actual temperature gradient matrix (∆Trow)′ from the actual temperature matrix, for
example, the row direction temperature gradient matrix as shown in Equation (10).

∆T0−row =



t11 t12 t13 . . . . . . t1,n−1

t21 t22 t23 . . . . . . t2,n−1

t′31 t′32 t′33 . . . . . . t′3,n−1

...
...

...
...

...

tm−1,1 tm−1,2 tm−1,3 . . . . . . tm−1,n−1



∆Trow
′ =



t′11 t′12 t′13 . . . . . . t′1,n−1

t′21 t′22 t′23 . . . . . . t′2,n−1

t′31 t′32 t′33 . . . . . . t′3,n−1

...
...

...
...

...

t′m−1,1 t′m−1,2 t′m−1,3 . . . . . . t′m−1,n−1



(10)

We calculate the ratio of the corresponding elements of two matrices, as shown in
Equation (11), and obtain a comparison matrix N, as shown in Equation (12). We use the
concept of a mathematical matrix norm to calculate the norm formula of the comparison
matrix N, as shown in Equation (13).

Setting:

nij =

∣∣∣t′ij∣∣∣∣∣tij
∣∣ (11)

That is:

Nrow =


n11 n12 n13 . . . . . . n1,n−1
n21 n22 n23 . . . . . . n2,n−1
n31 n32 n33 . . . . . . n3n−1

...
...

...
...

...
nm,1 nm,1 nm,3 . . . . . . nm,n−1

 (12)

Nrow =
m

∑
i=1

n−1

∑
j=1

∥∥nij
∥∥ (13)
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Similarly, the column direction comparison matrix norm is:

Ncol =
n

∑
j=1

m−1

∑
i=1

∥∥nij
∥∥ (14)

Therefore, the average norm of the ratio matrix, which is the average multiplier of the
temperature gradient, is:

Nmatrix mean norm =
Nrow + Ncol

Erow−number o f elements + Ecol−number o f elements
(15)

Among them, Erow-number elements represents the number of elements in the row direction
magnification matrix. Ecol-number elements represents the number of elements in the column
direction magnification matrix.

According to the linear expansion law of materials, for example, Equation (9), the
thermal deformation index under the set temperature gradient is:

∆θ0

∆θ′
=

∆T0

∆T′
= Nmatrix mean norm

That is to say:

∆θ0 =
∆θ′

Nmatrix mean norm
(16)

3. Test and Verification
3.1. Test System Parameter Design
3.1.1. Introduction to Test Objectives

In order to verify the rationality of the above testing plan, we test the thermal stability
of the support frame of a certain dome multi-star simulator. The schematic diagram of the
support frame is shown in Figure 7, and the temperature gradient conditions of its thermal
index is shown in Figure 8. Through finite element simulation analysis, we have learned
that the thermal deformation rate of the angle between the installation surface normals
of the two single-star parallel light tubes in the upper left and upper right corners of the
support frame is ν = 0.359′′/◦C, as shown in Figure 9. The physical definition of the rate of
angular thermal deformation change is shown in Equation (17).

ν =
∆θ

∆T
(17)
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Based on the testing plan, it can be seen that the rate of change in the angle at a specific
temperature is:

ν′ =
∆θ0

∆T
=

∆θ′

Nmatrix mean norm ∗ ∆T
(18)

At the same time, we can see from Figure 9 the left and right mirror symmetrical
structure of the support frame, and the relative angle between the two normals is 6.71◦,
which means that the thermal deformation changes in its upper left and upper right
mounting surfaces should be mirror symmetrical. Therefore, we only need to measure
the change in normal direction of one of the single variables to simultaneously obtain the
change in normal direction of the two variables.

3.1.2. Test System Parameter Design

According to the aforementioned testing methods, we have developed a dual-variable
relative angle thermal deformation angle measurement system, which includes a laser spot
detection unit, a biplane reflector unit, a post-processing unit, and a condition guarantee
unit, the specific composition of which is shown in Figure 10. Among them, the biplane
reflection unit and the laser spot detection unit are used for detecting deformation laser
spot displacement changes, and the thermal control unit is used for the heating operation
of the support frame.
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For laser spot displacement detectors, we choose position sensitive detector (PSD)
devices [23]. This is because PSDs have the following advantages [24]: (1) the shape of
the light spot does not affect the measurement of the displacement change value of the
light spot by the PSD; (2) the PSD target resolution is extremely high and has achieved
1 µm resolution; (3) the PSD has a high sampling frequency, which can output the spot
coordinate value in real time, which is conducive to the development of test automation
equipment in the later stage.

Therefore, PSDs are widely used in non-contact rapid measurement of displacement
and distance [25]. Meanwhile, with the further evolution and optimization of PSDs, the
measurement accuracy of PSDs will become more precise. For example, the 3CSiC/Si
hetero structure proposed by Abu Riduan, Md Foisal et al. may be a position-sensitive
detector [26], which is a promising choice in harsh environments (such as highly corrosive
environments). Therefore, choosing PSDs in this study is more conducive to the later
promotion and application of the testing plan. Therefore, choosing PSD devices is more
conducive to the promotion and application of this scheme.

Finally, we select Shanghai Ou-guang Company’s S2-0003-2L10-SU24 two-dimensional
PSD and its controller [27]. Its resolution is 1 µm, effective photosensitive surface is
10 × 10 mm, spectral response range is 380~1000 nm.

The composition of the entire testing system is shown in Figure 11. The laser passes
through two reflection cycles and lands on the PSD, with two planar mirrors spaced at a
distance of H of 3435 mm. According to the biplane reflection principle mentioned earlier,
the parameters of the above testing system are brought into Equation (16), and the testing
resolution of the testing system is 0.015′′, which can achieve angle testing accuracy of
bivariate angles in super-sub-arc.
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Figure 11. Principle sketch for the experiment.

Due to the thickness of the bottom plate of the support frame reaching 32 mm, under
the condition of slow thermal conductivity of the frame material, there may be inconsisten-
cies in the temperature values of the front and rear surfaces at the same position. For this
purpose, heating plates and temperature measurement points are set on the front and back
of the support frame bottom plate, and each is independently controlled for temperature.
The coverage and thermal coating of the heating element implemented by the thermal
control of the support frame are shown in Figure 12, and the distribution of the thermistor
is shown in Figure 13. The temperature measurement accuracy of the thermistor used is
±0.1 ◦C, and the appearance is shown in Figure 14.
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Figure 14. Thermistor sensor.

The target reflector is connected to the support frame through an adapter plate and
leads out in the normal direction of the installation surface of the support frame, as is shown
in Figure 15a. In order to avoid measurement errors caused by mirror deformation, we have
taken the following two measures: (1) using an adapter plate made of invar 4J32 low thermal
expansion coefficient material (thermal expansion coefficient 1.0 × 10−6/◦C) to eliminate
measurement errors caused by changes in mirror position caused by thermal deformation
of the adapter plate; (2) the reflector and adapter plate are exposed without thermal coating
to maintain consistency with the temperature in the laboratory hall, ensuring that the
reflector itself does not undergo thermal deformation, as is shown in Figure 15b. By taking
the above two measures, we eliminate the measurement error caused by the reflector.
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Figure 15. Installation diagram of target reflector; (a) Schematic diagram of target reflector connection;
(b) The target reflector is exposed to the air.

3.1.3. Test Implementation

After setting up the testing system, we begin to experiment: the laser falls on the
PSD target surface after two reflection cycles, as shown in Figure 16. We read the initial
temperature matrix value of the support frame, as shown in Figure 17. The laser spot of
the PSD is set to zero as shown in Figure 18, while reading the displacement drift error of
the spot, as shown in Table 1. After the support frame is heated up by about 10 degrees
Celsius, it is first kept warm for 1 h. The temperature matrix value after the heating is read
for the second time, and after waiting for half an hour, the final temperature matrix value is
read for the third time, as shown in Figure 19. The three temperature change curves are
obtained, as shown in Figure 20. The PSD spot deviates, and the displacement deviation is
shown in Figure 21. The displacement sampling values are shown in Figure 22.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

3.1.3. Test Implementation 
After se ing up the testing system, we begin to experiment: the laser falls on the 

PSD target surface after two reflection cycles, as shown in Figure 16. We read the initial 
temperature matrix value of the support frame, as shown in Figure 17. The laser spot of 
the PSD is set to zero as shown in Figure 18, while reading the displacement drift error 
of the spot, as shown in Table 1. After the support frame is heated up by about 10 de-
grees Celsius, it is first kept warm for 1 h. The temperature matrix value after the heating 
is read for the second time, and after waiting for half an hour, the final temperature ma-
trix value is read for the third time, as shown in Figure 19. The three temperature change 
curves are obtained, as shown in Figure 20. The PSD spot deviates, and the displacement 
deviation is shown in Figure 21. The displacement sampling values are shown in Figure 
22. 

 
Figure 16. Laser reflection situation. 

 

Figure 17. Initial temperature matrix. 

 
Figure 18. Schematic diagram of PSD displacement drift. 

Table 1. PSD Spot Coordinate Zeroing Sampling. 

Sampling X Y 
1 ⁻0.014 ⁻0.01 

Figure 16. Laser reflection situation.



Appl. Sci. 2023, 13, 9725 13 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

3.1.3. Test Implementation 
After se ing up the testing system, we begin to experiment: the laser falls on the 

PSD target surface after two reflection cycles, as shown in Figure 16. We read the initial 
temperature matrix value of the support frame, as shown in Figure 17. The laser spot of 
the PSD is set to zero as shown in Figure 18, while reading the displacement drift error 
of the spot, as shown in Table 1. After the support frame is heated up by about 10 de-
grees Celsius, it is first kept warm for 1 h. The temperature matrix value after the heating 
is read for the second time, and after waiting for half an hour, the final temperature ma-
trix value is read for the third time, as shown in Figure 19. The three temperature change 
curves are obtained, as shown in Figure 20. The PSD spot deviates, and the displacement 
deviation is shown in Figure 21. The displacement sampling values are shown in Figure 
22. 

 
Figure 16. Laser reflection situation. 

 

Figure 17. Initial temperature matrix. 

 
Figure 18. Schematic diagram of PSD displacement drift. 

Table 1. PSD Spot Coordinate Zeroing Sampling. 

Sampling X Y 
1 ⁻0.014 ⁻0.01 

Figure 17. Initial temperature matrix.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

3.1.3. Test Implementation 
After se ing up the testing system, we begin to experiment: the laser falls on the 

PSD target surface after two reflection cycles, as shown in Figure 16. We read the initial 
temperature matrix value of the support frame, as shown in Figure 17. The laser spot of 
the PSD is set to zero as shown in Figure 18, while reading the displacement drift error 
of the spot, as shown in Table 1. After the support frame is heated up by about 10 de-
grees Celsius, it is first kept warm for 1 h. The temperature matrix value after the heating 
is read for the second time, and after waiting for half an hour, the final temperature ma-
trix value is read for the third time, as shown in Figure 19. The three temperature change 
curves are obtained, as shown in Figure 20. The PSD spot deviates, and the displacement 
deviation is shown in Figure 21. The displacement sampling values are shown in Figure 
22. 

 
Figure 16. Laser reflection situation. 

 

Figure 17. Initial temperature matrix. 

 
Figure 18. Schematic diagram of PSD displacement drift. 

Table 1. PSD Spot Coordinate Zeroing Sampling. 

Sampling X Y 
1 ⁻0.014 ⁻0.01 

Figure 18. Schematic diagram of PSD displacement drift.

Table 1. PSD Spot Coordinate Zeroing Sampling.

Sampling X Y

1 −0.014 −0.01

2 0 −0.004

3 −0.003 −0.019

4 0.017 0.024

5 −0.003 −0.004

6 0.012 −0.047

7 0.005 −0.04

8 0.008 −0.007

9 0.012 0.014

Average drift error 0.003778 −0.01033
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3.2. Calculation of Test Results
3.2.1. Calculation of Angle Test Results

Based on the collected experimental data, we first calculate the average displacement
value of the laser spot and the average heating value of the support frame, as shown in
Table 2. Then, using the symmetry of the support frame mirror image, we calculate the
relative displacement value of the bivariate laser spot. The displacement vector calculation
diagram is shown in Figure 23, and the displacement calculation is shown in Equation (19).

x1,vertical = x1 cos β,

x′1 = x1,vertical

x′2 = −x′1

x1 = 1.24622, β = 3.355◦

∆S =
√
(x′1 − x′2)

2

(19)

Table 2. Calculation of spot displacement and temperature rise.

Displacement Direction X1 Y1

Average displacement value (mm) 1.25 0.83

Average drift error (mm) 0.003778 −0.01033

Absolute displacement value (mm) 1.24622 0.8403

Average temperature change value ∆T (◦C) 10.4633
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We insert the test parameters H = 3435 mm, n = 2, and ∆S into Equation (4) and obtain
the relative angle change value of the two variables as:

∆θ = 18.676′′

3.2.2. Calculation of Thermal Condition Magnification

The temperature gradient required by the indicator is 0.2 ◦C in the row direction
and 0.5 ◦C in the column direction. According to the uniform distribution of the actual
temperature in the 6 × 3 matrix columns, the temperature gradient matrix in the row
direction is a matrix of 6 × 2, as shown in Equation (20). The temperature gradient matrix
in the column direction is a matrix of 5 × 6, as shown in Equation (21).

∆Trow =


a11 a12
a21 a22
...

...
a12,1 a12,2

 =


0.1 0.1
0.1 0.1
...

...
0.1 0.1

 (20)
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∆Tcol =


0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

∣∣∣∣∣∣∣∣∣∣

0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1
0.1 0.1 0.1

 (21)

To calculate the temperature gradient comparison matrix in the row direction, we
merge the two temperature matrices in Figure 19 into a temperature matrix with 12 rows
and 3 columns:

T′row =

[
T′

f ront

T′
back

]
=



31.46 30.17 32.32
30.72 31.53 30.06
30.72 30.06 30.21
30.39 30.28 30.85
31.93 30.21 30.08
31.36 30.45 31.25

29.97 30.87 30.06
30.48 30.21 30.22
30.23 30.23 30.28
30.17 30.05 29.99
30.14 30.74 30.23
30.06 30 30.09


We calculate the temperature gradient matrix ∆Tcol

′ in the row direction:

∆T′row =

[
∆T′row, f ront

∆T′row,back

]
=



1.29 2.15
0.81 1.47
0.21 0.15
0.11 0.57
1.72 0.13
0.91 0.8

0.9 0.81
0.27 0.01

0 0.05
0.12 0.06
0.6 0.51

0.06 0.09


Similarly, in order to obtain the temperature gradient comparison matrix in the column

direction, the two temperature matrices in Figure 16 are merged into a temperature matrix
of 6 rows and 6 columns:

T′
col

=
[

T′
f ront

∣∣∣T′back

]
=



31.46 30.17 32.32
30.72 31.53 30.06
30.72 30.06 30.21
30.39 30.28 30.85
31.93 30.21 30.08
31.36 30.45 31.25

∣∣∣∣∣∣∣∣∣∣∣∣

29.97 30.87 30.06
30.48 30.21 30.22
30.23 30.23 30.28
30.17 30.05 29.99
30.14 30.74 30.23
30.06 30 30.09


We calculate the temperature gradient matrix ∆Tcol

′ in the column direction:

∆Tcol
′ =

[
∆T′col, f ront

∣∣∣∆T′col,back

]
=


0.74 1.36 2.26
0.45 1.47 0.15
0.12 0.22 0.64
1.54 0.07 0.77
0.57 0.24 1.17

∣∣∣∣∣∣∣∣∣∣

0.51 0.66 0.16
0.25 0.02 0.06
0.06 0.18 0.29
0.03 0.69 0.24
0.08 0.74 0.14
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By introducing Equations (11) and (12), the multiplication matrices for row and column
directions are obtained as follows:

Nrow =



12.9 21.5
8.1 14.7
2.1 1.5
9 8.1

2.7 0.1
0 0.5

1.1 5.7
17.2 1.3
9.1 8
1.2 0.6
6 5.1

0.6 0.9



(22)

Ncol =


7.4 13.6 22.6
4.5 14.7 1.5
1.2 2.2 6.4
15.4 0.7 7.7
5.7 2.4 11.7

∣∣∣∣∣∣∣∣∣∣

5.1 6.6 1.6
2.5 0.2 0.6
0.6 1.8 2.9
0.3 6.9 2.4
0.8 7.4 1.4

 (23)

By introducing Equations (13) and (14), the ratio matrix norm of the row direction and
column direction is:

Nrow−number =
m

∑
i=1

n−1

∑
j=1

∥∥nij
∥∥ = 138;nrow−number = 12 ∗ 2 = 24;

Ncol−number =
n

∑
j=1

m−1

∑
i=1

∥∥nij
∥∥ = 158.8;ncol−number = 5 ∗ 6 = 30; (24)

By introducing Equation (15), the average norm of the temperature gradient matrix is
obtained as:

Nmean = Nmean−norm =
Nrow−norm + Ncol−norm

nrow−number + ncol−number
= 5.4963

3.2.3. Calculation of Test Results for Indicators

We substitute the results of the angle change of the relative angle between the two
variables tested and the temperature condition multiplier value into Equation (16) and
obtain the change value of the angle between the normal direction of the double-hole
installation surface under the specific temperature gradient condition of the indicator
as follows:

∆θ0 =
∆θ′

Nmatrix mean norm
= 3.398′′

By introducing Equation (18), the final target test value is:

v′ =
∆θ0

∆T
=

∆θ′

Nmatrix mean norm ∗ ∆T
= 0.3247′′/◦C (25)

3.3. Test Error Analysis

According to Equation (18), there are three sources of error in indicator testing:
(1) angle testing error, ε (∆θ) = 0.015′′; (2) the temperature sensor thermistor tempera-
ture test error limit is ε (∆T) = 0.2 ◦C, (3) the calculation error of temperature gradient
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ratio N: ε (∆N) = 0.2 ◦C/0.1 ◦C = 2. The error in the rate of angle change under specified
temperature conditions is:

ε(∆νset) =
∣∣∣ ∂ f

∂∆θ

∣∣∣ε(∆θ) +
∣∣∣ ∂ f

∂∆T

∣∣∣ε(∆T) +
∣∣∣ ∂ f

∂N

∣∣∣ε(N)

ε(∆νset) = 0.126
′′
/◦C

(26)

The results of this testing system’s indicators are:

νset = 0.3247
′′
/°C± 0.126

′′
/◦C (27)

The relative error between the test results and the thermal deformation simulation
analysis is:

εr =
‖ν′ − ν0‖
‖ν0‖

= 9.55% (28)

It can be seen that the relative error between the indicator test results and the thermal
deformation simulation analysis results is 9.55%. The two are basically consistent.

4. Conclusions

This paper proposes a novel approach for thermal deformation testing, specifically
focusing on the measurement of dual-variable angles. Building upon the current research on
thermal deformation index testing, a measurement system has been developed and applied
to the thermal deformation testing of a single star light tube support frame in a dome
multi-star simulator. With a testing accuracy of 0.015′′, this system allows for super-sub-arc
testing accuracy of dual-variable angles, even at different pitch angles. Through calculation,
the relative deviation between the final test results of the support frame indicators and the
simulation analysis results is 9.55%. The test results validate the correctness, reasonability,
and feasibility of the proposed measurement scheme.

From the test error analysis results, it can be seen that the test verification scheme
achieves a super sub angular second test accuracy of unrestricted pitch angle and rela-
tive deformation of different parts of the object. This paper transforms the conventional
untested deformation indicators into testable indicators through technological innovation.
This technology can be applied to the field of precise deformation testing, such as the defor-
mation testing of sub mirrors of ground-based ultra large aperture reflection telescopes.
The pose parameters of each sub mirror can be adjusted in real-time, or the relative defor-
mation testing of ultra large aperture antennas can be carried out. Through the precision
testing results of object relative deformation, we can timely correct the pose parameters of
the equipment, ensuring that the equipment can have good working conditions and high
indicator performance.
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