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Abstract: With the popularization of Wi-Fi router devices, the application of device-free sensing has
garnered significant attention due to its potential to make our lives more convenient. Wi-Fi signal-
based through-the-wall human detection offers practical applications, such as emergency rescue
and elderly monitoring. However, the accuracy of through-the-wall human detection is hindered
by signal attenuation caused by wall materials and multiple propagation paths of interference.
Therefore, through-the-wall human detection presents a substantial challenge. In this paper, we
proposed a highly robust through-the-wall human detection method based on a commercial Wi-Fi
device (TwSense). To mitigate interference from wall materials and other environmental factors, we
employed the robust principal component analysis (OR-PCA) method to extract the target signal
of Channel State Information (CSI). Subsequently, we segmented the action-induced Doppler shift
feature image using the K-means clustering method. The features of the images were extracted using
the Histogram of Oriented Gradients (HOG) algorithm. Finally, these features were fed into an SVM
classifier (G-SVM) optimized by a grid search algorithm for action classification and recognition,
thereby enhancing human detection accuracy. We evaluated the robustness of the entire system. The
experimental results demonstrated that TwSense achieved the highest accuracy of 96%.

Keywords: Wi-Fi; through-the-wall; human detection; channel state information; device-free

1. Introduction

With the advancement of wireless technology, Wi-Fi-enabled intelligent devices (e.g.,
cameras, air conditioners, smart audio, etc.) have been deployed everywhere [1], with
many Wi-Fi devices in homes and offices. No matter what environment we are in, the radio
frequency (RF) signals emitted by these devices surround us all the time. Therefore, people
can use ubiquitous Wi-Fi signals in their daily lives to enable applications for sensing
purposes (such as monitoring the usage of public restrooms). This type of device-free
sensing technology is currently gaining increasing attention.

Research on human detection using Wi-Fi signals has received much attention recently.
However, most of the early work was related to something other than through-the-wall
detection. Recently, through-the-wall sensing has received much attention because it can
monitor human activities without privacy and security [2]. With powerful capabilities
across different rooms, through-the-wall sensing can provide an application solution for
elderly monitoring, intruder detection, and emergency rescue [3]. Recent works on device-
free human detection can be divided into two main categories: active mode and passive
mode. The difference between the two is that the active mode requires outdoor devices
to send RF signals indoors continuously. In contrast, the passive mode can always obtain
the Wi-Fi signals sent by indoor Wi-Fi devices and thus conduct human detection, which
can more easily obtain the state data of indoor personnel. The passive mode shown in
Figure 1 allows easy acquisition of Wi-Fi signals sent by indoor Wi-Fi devices [4] for human
detection. As the human body moves through the space between various Wi-Fi devices, the
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Wi-Fi signal is refracted, reflected, and diffracted through the human body. The resulting
signals are in a different state than those generated after passing directly through an
interfering object. These signals have different levels of interference, based on which we
can distinguish whether a person is in the room. Due to the movement of a person, the
Wi-Fi signal may pass through a wall via the LOS path or the NLOS path, both of which
receive different signal strengths. We can also roughly determine the location and status of
a person based on this method.
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Figure 1. Indoor passive mode human detection.

Regarding research on human body detection, traditional methods for human sensing
and detection often require users to wear specialized wearable sensors [5] or use cameras,
RFID [6], smartphones, and other devices. In these cases, the operations become more
complicated, deployment costs increase, and people’s mobility is significantly affected,
causing considerable inconvenience to their daily activities and routines. Moreover, some
devices are susceptible to environmental influences and restrictions and may even raise
privacy concerns for users.

Unlike traditional approaches based on vision and devices, wireless technology is
used to sense and detect the state of the human body without installing more devices
or wearable devices using ubiquitous Wi-Fi signals. The advantage of this approach is
that Wi-Fi devices are very inexpensive and widely available. However, the complexity
of indoor environments and the varying structures of walls can affect the effectiveness
of person detection. Channel State Information (CSI) is a fine-grained measurement of
the physical layer that contains the amplitude and phase information of each orthogonal
subcarrier in the channel [7]. CSI obtained from Wi-Fi signals may be more suitable for
human detection.

However, most relevant research focuses on indoor human perception, recognition,
and detection using Wi-Fi signals. There has been relatively little research on human
perception after Wi-Fi signals have penetrated through-the-wall or other obstacles. The
reason for this is that through-the-wall human detection poses significant challenges. After
Wi-Fi signals pass through-the-wall, they are subjected to interference from wall materials
and multiple propagation paths behind the walls, resulting in severe signal attenuation
and affecting detection accuracy. Existing through-the-wall detection methods rely on
densely distributed transmitters and receivers or require specialized signal transmission
equipment, which is unsuitable for commercial devices. Many existing device-free Wi-Fi
human detection systems based on CSI experience significant performance degradation in
through-the-wall scenarios. Therefore, utilizing CSI variations for human perception in
through-the-wall conditions is a challenging problem.

To solve the problem, Wi-Fi signals through-the-wall increase the difficulty of human
detection. In this paper, we propose a highly robust through-the-wall human detection
method based on a ubiquitous commercial Wi-Fi device (TwSense). The robust principal
component analysis algorithm (OR-PCA) [8] removes the complex noise caused by walls
from the acquired data. Thus, we extracted CSI’s correlation and selected the subcarriers
with significant features for conversion to Doppler frequency shift images. We then used a
clustering algorithm (K-means) to segment the Doppler shift images based on the motions.
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Then, the feature vectors obtained by the HOG algorithm were fed into the G-SVM classifier
to enable human detection through-the-wall. For four materials of walls: concrete, plaster,
wooden door, and glass, we analyzed the effects of different parameter settings (different
personnel, thickness, personnel position, and device spacing) on the experimental results
and evaluated the robustness of the whole system. The experimental results showed that
TwSense had high detection accuracy. At the same time, based on the experimental results,
we provided a better deployment scheme for future practical through-the-wall applications.
In summary, the main contributions of the paper are as follows:

• We proposed a highly robust method for through-the-wall human detection based on
a ubiquitous commercial Wi-Fi device (TwSense). This method used the passive mode
to detect the presence of people in the room using the CSI in the Wi-Fi signal. It also
provided a solution for the emergency rescue and health monitoring of older people.

• In this paper, we adopted the OR-PCA method to extract the correlation of CSI,
eliminated the noise generated from other obstacles, such as walls, used the clustering
algorithm to segment the Doppler-shifted images caused by motion and then the HOG
algorithm to obtain the critical features of the images, and finally fed them into the SVM
classifier optimized by the grid search algorithm (G-SVM) for motion classification.
This method not only distinguished the indoor personnel state (unoccupied, occupied)
well but also improved the accuracy of human body detection in the case of through-
the-wall detection.

• We used commercially available Wi-Fi devices to collect various data for different
wall materials and thicknesses, as well as for different personnel locations and de-
vice distances. The reliability and stability of the system were verified by adjusting
various parameters. The final experimental results provided usage boundaries and
deployment scenarios for through-the-wall practical applications.

The rest of this article is organized as follows. The second part introduces the related
work and research; the third part introduces the related technical theory; the fourth part
describes the system structure and design in detail; the fifth part evaluates and analyzes the
experiments; and the sixth part summarizes the whole work and proposes a future outlook.

2. Related Work
2.1. Radar Through-the-Wall

Regarding through-the-wall human detection, radar technology is currently widely
used. Radar technology can utilize ultra-wideband signals through-the-wall and detect the
presence of human beings.

Ding et al. [9] proposed a target localization algorithm based on an improved Hough
transform frequency-fitting technique. The adaptive extended Bessel frequency fitting
model is constructed by dynamically adjusting two shape parameters. The demodula-
tion of the echo signal using the fitted curve completes the separation of multiple target
components and combines it with Doppler processing methods to synthesize the target
motion trajectory, realizing real-time target localization of the wall-penetrating radar targets.
Dong et al. [10] proposed a study of a time-frequency correlation MUSIC algorithm for the
detection of human body targets in wall-penetrating radar, which is achieved by correlating
the inverse fast Fourier transform (IFFT) algorithm with the MUSIC algorithm. The power
enhancement of the target signal is accomplished according to the time domain distance
calculation results. The signal is then converted to the frequency domain for the direction
of arrival (DOA) estimation. The status and position information of the human target
behind the wall can be better monitored. Rohman et al. [11] used radar technology to detect
the presence of people behind obstacles and proposed a new signal processing method
for extracting and enhancing human detection signals from radar to detect whether the
human body status is well detected. However, the problem with most of the human body
detection through the wall using radar technology is that the experiment has relatively
high requirements for the environment, and it must be in a dry environment and within a
certain linear distance or a small range to achieve better results. Otherwise, it will attenuate
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radar signal power; human body signals are challenging to detect, and deployment costs
are high, so this technology is not suitable for all scenarios.

2.2. Wi-Fi Through-the-Wall

Although there has been much research on human sensing for CSI, through-the-wall
applications still need to be improved compared to non-through-the-wall applications. This
is because Wi-Fi signals are more severely attenuated after through-the-wall, which has a
complex impact on recognition accuracy, and through-the-wall is still facing tremendous
difficulties and challenges, so there is less technical and related research work on Wi-Fi
through-the-wall for human detection. However, through-the-wall sensing technology
enables us to monitor human activity more effectively and accurately, and many potential
applications would benefit from powerful capabilities across different rooms, such as elderly
monitoring, intruder detection, and emergency rescue. In the actual wall-penetrating
environment, as there is no enclosed space, Wi-Fi signals may cross to the other side of
the wall through various gaps in the environment (e.g., door cracks, small holes, etc.)
through reflection, refraction, scattering, diffraction, etc. Therefore, it is critical to determine
the method that can penetrate the wall and sense the target. Furthermore, Wi-Fi devices
provide a good alternative.

Gong et al. [12] proposed a Wi-Fi-based system for device-less behavioral recognition
of wall penetration, which recognizes behavioral activities by extracting and analyzing
the amplitude values of the subcarriers in the wireless channel and classifying the prepro-
cessed activity samples using Bi-LSTM. Guo et al. [13] proposed a crowd base counting
system using Wi-Fi signals, which utilizes commercially available Wi-Fi devices to extract
the phase difference data of channel state information (CSI), removes the uncorrelated
noise, extracts the feature group by combining the subcarrier correlation, and then uses
a BP neural network to realize human detection and head counting through-the-wall.
Yuan et al. [14] proposed a new system that extracts finer features from the time off (ToF)
of the signal and then trains a neural network to classify these features to determine if there
is a stationary person behind the wall. Experiments were conducted in a typical office,
and good performance was achieved. Wang et al. proposed a device-free through-the-wall
human detection and localization system, TWPalo [15], by iterating the obtained AoA, ToF,
and DFS, all with channel reconstruction and pair-cancellation, so that the CSI of each prop-
agation path could be separated. Finally, the human-induced reflection (HIR) parameters
and an ellipse-based model are established by the obtained parameters and the spatial
geometric relationship between the human movement and the position of the transceiver
pair to achieve human detection and localization in the through-the-wall scenario, where
the experiments are conducted mainly in conference rooms and offices using wall materials
of glass and concrete.

Although the articles mentioned earlier on the perception of Wi-Fi through-the-wall
have achieved good results, many experiments have been conducted in austere environ-
ments. Therefore, these experiments only sometimes guarantee the robustness of the
system. However, in wall-penetrating scenarios, many factors, such as wall material and
thickness, and changes in personnel positions, can significantly affect recognition perfor-
mance. However, many studies have yet to analyze this problem in experiments, so we will
design multi-class comparative experiments to verify the reliability of the system proposed
in this paper.
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3. Preliminaries
3.1. Through-the-Wall CSI Model

CSI describes how a signal propagates from a transmitter to a receiver in wireless
communications. At the same time, CSI is affected by the physical environment (such as
reflection, diffraction, and scattering). In a narrow-band flat fading channel with multiple
transmit and receive antennas (MIMO), the channel can be modeled as follows:

y = Hx + n (1)

where x is the transmitting vector; y is the receiving vector; H is the channel matrix; and n
is the noise vector.

Since commercial Wi-Fi devices use Orthogonal Frequency Division Multiplexing
(OFDM) systems, CSI has physical layer information with fine-grained characteristics,
describing the amplitude and phase information of each subcarrier to express channel
characteristics. Specifically expressed as:

H( f , t) =
N

∑
i

αi(t)e−j2π f τi(t) (2)

where αi is the amplitude attenuation of the ith path, N is the total number of propagation
paths, αi(t) and τi(t) are the complex attenuation factor and flight time of the ith path,
respectively [16].

When the Wi-Fi signal propagates through-the-wall, it will be affected by the complex
structure of the indoor wall, the human body, the ceiling, the floor, the table and chairs, and
other objects, resulting in the reflection, scattering, and refraction of the signal. As shown
in Figure 2, according to the free space propagation model [17], the propagation model of
the Wi-Fi signal in the above environmental influence is:

Pr(d) =
PtGtGrλ2

(4π)2d2L
(3)

where Pr(d) is the receiving power, Gr is the receiving antenna gain, Gt is the transmitting
antenna gain, Pt is the transmitting power, λ is the wavelength, and d is the distance from the
transmitting end to the receiving end. In a typical indoor environment, considering a series of
signals passing through-the-wall and people’s motion, the model can be expressed as:

ω =
ρ · s

6
(4)

Pr(d) =
PtGtGrλ2

(4π)2(d2 + 4dr2 + η2)L
− Lω (5)

where dr is the distance from the reflection point to the direct path, η is the change in path
length caused by human motion, L is the system loss factor, ω is the influence of the wall
material on the signal, ρ is the density of the wall, s is the surface area of the wall, and Lω
is related to the material of the wall. The thicker the thickness of the wall material and
the more complex the structure, the higher the value Lω, and the greater the attenuation
of the signal. For example, if the wall is 15 inches wide concrete, Lω = 15 dB, and if the
wall is 1.18 feet glass, Lω = 3 dB because the glass material is simpler in structure than the
concrete wall. The lower the value in Equation (4), the less the glass material affects the
signal, and the less signal attenuation will occur. Thus, the received power of Pr(d) will
become larger, and the obtained CSI signal characteristics will be more obvious.
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3.2. OR-PCA and Doppler Shift

Robust Principal Component Analysis (OR-PCA) can effectively reduce the degree of in-
terference to CSI signals from other environmental factors, such as walls. This method requires
the use of the principle of low-rank matrix decomposition, that is P = A + B(P ∈ Rn1×n2), it
is assumed that the matrix A is a low-rank matrix. B is the sparse error, known P, and finally
needs to get the value of A and B. Therefore, it can be expressed as the following combinatorial
problem [18]:

min‖A‖⊕ + γ‖B‖1 (6)

s.t. P = A + B (7)

where ‖A‖⊕ is the kernel norm of matrix A and is the sum of singular values of A. That is

‖A‖⊕ = ∑
min{n1,n2}
i=1 τi, τi is the ith singular value of A, where n1 and n2 are the row and

column lengths of P, respectively, γ is the weighting factor.
Therefore, OR-PCA eliminates the influence of noise B generated by other physical

environmental factors, such as walls, on the data P, thereby obtaining significant CSI
amplitude changes and making the Doppler frequency shift image characteristics caused
by human motion more obvious.

According to the literature, the Doppler frequency shift is the change in the oscillation
frequency of the reflected signal [19], as shown in Figure 3b. Usually, the Doppler frequency
shift of the reflector signal can be expressed as:

FD = − 1
υ

d
dt

d(t) (8)

where υ is the wavelength of the signal and d(t) is the length of the reflection path. Using
the above formula, the Doppler frequency shift of the CSI signal can be extracted. In order
to extract the Doppler shift correctly, converting the noisy CSI into a spectrogram of the
Doppler shift requires selecting the correct antenna pair, as shown in Figure 3a. According
to Equations (2) and (6), the channel response can be calculated with the Doppler shift on
each path is expressed as:

D( f , t) ≈ Hs( f ) + ∑
i∈Hd

αi(t)W(FDi (t)) (9)

where Hs( f ) is the sum of the static path responses that through-the-wall when no action is
triggered in the absence of people, and Hd is the set of dynamic paths after passing through-
the-wall caused by the signal changes caused by the action in the presence of people, which
W(FDi (t)) is the cutoff of the target signal area window function. The Doppler shift of the
CSI signal can be extracted using Equation (9), thus accurately extracting the characteristics
of the personnel when they are present.
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4. System Architecture
4.1. System Overview

We divided the system proposed in this paper into four main parts: data collection,
data processing, feature extraction, and active construction. The system flow is shown in
Figure 4. In the data collection part, we selected multiple wall materials (concrete wall,
plaster wall, wooden door, glass wall) and used a TP-LINK router and a commercial laptop
device equipped with an Intel 5300 NIC to communicate in the experimental scenario with
different wall materials: the router as the transmitter and the laptop as the receiver. The
receiving device records and stores the raw CSI action signals. The data preprocessing part
requires the raw CSI data to be processed and converted into Doppler shifts. First, outlier
removal is performed on the raw CSI action data using the Hampel filter, and denoising is
performed using a discrete wavelet transform. Then, the correlation extraction of CSI is
performed using the OR-PCA algorithm to remove complex noise from other obstacles and
walls. Finally, the subcarriers with significant waveforms are converted into Doppler shift
maps. The feature extraction part first uses the K-Means algorithm to segment the central
part of the action in the formed Doppler shift image and then extracts the HOG feature
of the segmented image as the feature vector of the action, which is convenient for use in
the human body detection and recognition stage. In the human detection and recognition
stage, the G-SVM classifier optimized by the grid search algorithm is used to classify and
identify the images after feature extraction, and finally output the human detection results.

4.2. Data Preprocessing

The first component of processing the collected CSI data is the removal of abnormal
values. From the experimental process and the collected data, there is a mixture of abnormal
data not caused by human motion, so these data need to be removed.

Since commercial Wi-Fi equipment is very susceptible to the influence of complex
indoor and outdoor environments, especially in the condition of passing through-the-wall,
it will become more serious; it will make the raw CSI data contain noise that affects the
human detection results, so the CSI data should first be denoised [20]. Here, we use
a denoising method based on discrete wavelet transform to remove random noise and
smooth the CSI data.

The PCA algorithm is used to select the optimal subcarrier in the channel to reduce
the data dimension and computational complexity. In this way, the complexity of the data
can be effectively reduced, and the optimal sub-carrier can be selected to represent the
channel. Compared with the original CSI data, the data after using the PCA algorithm is
smoother and cleaner, and a specific CSI correlation can be extracted. The quality of the CSI
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correlation determines the accuracy of the final human detection. However, when walls
block all direct and reflected propagation paths between the transmitter and receiver, the
change in CSI value caused by human activities becomes small, and existing denoising
techniques (PCA) may lead to a poor final classification effect. The reason is that the
CSI correlation directly extracted from the raw CSI measurements includes not only the
correlation between human activities but also the correlation between the background
environment and noise, which will seriously interfere with the CSI correlation between
human activities and the changes in CSI values caused by them.
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Table 1 shows the signal attenuation for the different wall materials. Therefore, we
must eliminate the complex indoor propagation environment and noise interference on
the waveform. Here, we chose OR-PCA for correlation extraction of CSI. According to CSI
magnitude matrix analysis and low-rank matrix decomposition theory, OR-PCA divides
the original CSI measurement into two components: the indoor physical environment CSI
value and the changed CSI value, which are separated into two components. In order
to obtain only the CSI value due to human movement and thus detect the presence of a
person, we need to separate the original CSI from other ambient noise, such as walls, and
the separation process can be expressed as follows:

min‖CSIwall‖⊕ + γ‖CSIperson‖1 (10)

s.t. CSIraw = CSIwall + CSIperson (11)

where CSIraw is the original CSI value, CSIwall and CSIperson is the CSI values from other
environments, such as walls and changes caused by human actions, respectively. In
Equation (6), B is equivalent to CSIperson, which should be removed for sparse noise, but
CSIperson contains the CSI value caused by human activities and noise, so the augmented
Lagrange multiplier method is used to solve it.

OR-PCA extracts the CSI value after eliminating the influence of the environment
and noise on the waveform by eliminating the CSI value of the physical environment
OR-PCA extracts the CSI values that contain only the changes caused by human motion as
much as possible by eliminating the CSI values of interference signals generated by other
environmental noises, such as walls, so that the changes in CSI values are more pronounced
than raw values. In this way, even if the Wi-Fi signal passes through-the-wall, the OR-PCA
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waveform will change significantly when the human activity state occurs. The before and
after CSI sequences of human motion using OR-PCA under the through-wall condition are
plotted, as shown in Figure 5. From Figure 5a, it can be seen that the original CSI contains
more noise, and the waveform features are not obvious. At the same time, the amplitude
of the subcarrier changes significantly, as shown in Figure 5b, after the noise from other
environmental disturbances, such as walls, is processed away using the OR-PCA algorithm.

Table 1. RF attenuation of different materials at 5 GHZ.

Building Materials 5 GHz

Glass wall 1.18 inches 3 dB
Wooden Door 1.75 inches 6 dB
Gypsum wall 11 inches 13 dB
Concrete wall 15 inches 15 dB
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Then, the selected optimal sub-carrier is converted into a Doppler frequency shift,
as shown in Figure 5c. It can be seen that there is no change in the Doppler image when
the previous action does not start, which is similar to the Doppler frequency when no one
exists. This is also a critical performance to distinguish whether there is someone indoors.

4.3. Motion Segmentation and Feature Extraction

We classified the representative motion states when someone is present into four types,
as shown in Figure 6: walking, sitting down, stooping, and getting up. They correspond to
the Doppler frequency shifts caused by each action. From the figure, we can see that the
Doppler shift changes with the action, and the Doppler shift caused by different actions
are different, and the different Doppler effects caused by different actions simultaneously
are the factors that distinguish the presence of the human body whether or not. Doppler
images need to be extracted with corresponding features to improve the final classification
results. In this paper, first, we used the K-Means algorithm to segment the action subject in
the image that causes the Doppler shift, and the pixels of RGB images were divided into
three classes by calculating the Euclidean distance. The results showed that the K-Means
algorithm segmented the action occurring part accurately.

The feature extraction part used the Histogram of Oriented Gradient (HOG) feature.
The HOG feature obtained the local feature of the detected object by detecting the gradient
and edge direction information of the local object. Compared with other feature extraction
methods, HOG can better capture the local shape information, and can maintain good
invariance and stability to the geometric and optical changes of Doppler frequency shift
images, so different distances or similar content of the same action can be extracted by
using the HOG feature when testing with different people. Therefore, this paper extracted
the HOG feature of a Doppler frequency shift image.
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K-means clustering was used to convert the Doppler image into a grayscale image
and, at the same time, reduced the local shadow of the image, reduced the impact caused
by the attenuation of the signal in the process of penetrating the wall so that during feature
extraction, the image features were more apparent, which is necessary for gamma space
normalization. The standardized Gamma compression equation is:

I(x, y) = I(x, y)Gamma (12)

where x, y are the horizontal and vertical coordinates of the pixel, respectively. This method
can well reduce the influence of image feature extraction.

Then, the horizontal and vertical gradients of each pixel were calculated in the image.
Operations can effectively record the look of the graph based on color and luminance
changes. The gradient size and gradient direction for each pixel were calculated, more
clearly outlining the action signals in the graphics:

G(x, y) =
√

G2
x(x, y) + G2

y(x, y) (13)

ξ(x, y) = tan−1 Gy(x, y)
Gx(x, y)

(14)

where Gx(x, y) and Gy(x, y) are the horizontal and vertical gradients of the image pixels,
respectively, and G(x, y) and ξ(x, y) are the gradient magnitude and direction, respectively.

Then, the picture was divided into several cells of the same size. It consisted of
tiny unit pixels. Gradient information for 6 × 6 pixels in each cell was collected using a
histogram of 9 cells. All pixels in the cell were multiplied by the gradient magnitude to
project the gradient direction; their projections were then summed to form a histogram of
cell gradient directions.

Each adjacent unit was formed into an interval, and the eigenvectors in an interval
were combined to obtain multi-dimensional eigenvectors to obtain HOG features, as shown
in Figure 6. The following normalization equation integrated the extracted multiple feature
vectors into one:

f =
σ√

‖σ‖2 + τ2
(15)

where σ is the multi-dimensional eigenvector, which τ is a small constant, in order to avoid
the denominator from becoming 0.

All the extracted HOG features were integrated, and the HOG features were used as
the input vector for the subsequent classification work. In the feature extraction stage, if
the input data were offline data, the HOG features were extracted directly; if we want to
perform person detection dynamically, we first need to perform the segmentation of the
person state, segment the images of the two states of occupied and unoccupied, and then
perform the HOG feature extraction, and input the data into the classifier in order to output
the final action classification results.
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4.4. G-SVM

Completing person presence detection requires the use of support vector machines
(SVM) to classify the presence and absence of persons. SVM is a very typical binary
classification algorithm. However, to avoid the occurrence of overlearning and under
learning in classification, this paper used the G-SVM algorithm to optimize the penalty
factor C and the kernel parameter g by using the grid search algorithm [21]. The penalty
factor C and the kernel parameter g in the SVM algorithm were divided into a grid in a
given range, and the values of all grid nodes were traversed. Then, the point with the
highest classification accuracy was selected. The penalty factor C and the kernel parameter
g corresponding to that point were optimal, thus improving the classification accuracy.

There are two main types of personnel status: no presence and occupied. Actions
with occupants were divided into four groups, and people with no presence were divided
into one group. When people exist, 150 data groups were collected for each action, and
600 groups of four kinds of action exist. We collected 600 datasets without the presence of
anyone. The process of G-SVM training for classification was as shown in Figure 7:
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We sequentially acquired RGB images from the Step 1 dataset to extract features at
Step 2 (using the HOG algorithm). We divided the data into two categories, training set
and test set, from which 80% of the data samples were selected as training samples and 20%
as test samples. The final feature vector was formed by combining the HOG descriptors
of all the blocks in the detection window, and then fed to the G-SVM classifier as input
features. Based on the characteristics of the input images, labels continued to be assigned
to each corresponding image at step 3 (a label of 1 corresponds to an image where a person
is present; a label of 0 corresponds to an image where no person is present). Then, at step
4, based on the G-SVM algorithm, these were used to train on the Matlab tool, thereby
obtaining hyperplanes for classification.

The training sample set was (Ai, Bi)(i = 1, 2, · · ·, k), where Ai is the input variable,
Bi is the corresponding expected value, and k is the number of samples. In this paper, the
Gaussian kernel function was used to map the linear inseparable data in the low-dimensional
input space to the high-dimensional feature space to make it linearly separable. The optimal
separation hyperplane was constructed in the high-dimensional feature space to distinguish
the state of the human, and then determine whether there was a person in the room. In
order to find the optimal separating hyperplane that separate the two states, occupied and
unoccupied, we needed to solve the following constrained minimization problem to find the
optimal parameter for classification to distinguish these two types of data:

minP =
1
2
‖ω‖2 + C

n

∑
i
(ξi + ξi

∗) (16)

where ω is the direction vector separating the hyperplane, P is the optimization objective,
C is the penalty factor, and ξi and ξi

∗ are the relaxation coefficients.
The linear regression function was obtained using the Lalangrangian function and

then computed using the Gaussian kernel function for the solution:

f (x) =
n

∑
i
(αi + αi

∗)G(Ai, Bi) + b (17)
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G(Ai, Bi) = exp
{
−g‖Ai − Bi‖2

}
(18)

where αi and αi
∗ are the Lagrange factor, G(Ai, Bi) is the kernel function, and g is the kernel

parameter, if f (x) > 0, then Ai corresponds to the person action data.
The whole process of using the grid search algorithm to improve the SVM classifier is

shown in Algorithm 1.

Algorithm 1: G-SVM

Input: Dataset: (Ai, Bi)(i = 1, 2, · · ·, k), learning algorithm: SVC; the number of training
iterations: k.

Output: avgmax (Maximum accuracy average)→ optimal parameters (C, g).
Initialization: penalty factor C∈[2−8, 28], kernel parameter g∈[2−8, 28].
1. For i = 1, 2. . .k do
2. Construct Grid(C,g) coordinate system at intervals of 1;
3. For (C, g)= (C, g)1 (C, g)2,. . .(C, g)k do
4. K = Test, K − 1 = Train, Test[(C,g)]K-fold cross-validation, replace the training

set and the test set
5. while Not is (C, g)k do
6. repeat step 3 and 4, Calculate the average classification accuracy under each

parameter combination avg
7. end
8. end for
9. For avg = avg1, avg2,. . .avgk do
10. sort(avg) and select avgmax
11. end for
12. end for
13. Output: Returnavgmax→(C, g)

Eventually, the results of the returned penalty factor c and kernel parameter g were
used as the optimal parameters, which could find the most accurate classification results
for human detection, effectively avoiding the problems of overlearning and under learning.
This could effectively distinguish between two types of feature data (human and non-
human), improve the feasibility and accuracy of data classification, and achieve better
human detection results.

5. Results and Evaluation
5.1. Experimental Set Up

This paper used a commercial TP-Link wireless router and a Thinkpad x201 laptop
equipped with a Wi-Fi network card as the experimental equipment. As shown in Figure 8,
the Wi-Fi network card was an Intel Wi-Fi Link 5300 with 3 antennas as the receiver,
and the router is a TL-WDR5300 with three antennas as a transmitter for sending CSI
signals. To collect CSI measurements, we installed the Linux CSI tool [22] on a laptop. In
our experiments, the transmitter operated in the 5 GHz band using a 20 MHz channel
bandwidth. To ensure communication quality, the notebook computer was equipped with
an extended antenna, and the signal gain was 6 dB. At the same time, the CSI measurements
obtained from the Linux CSI tool were processed using MATLAB.

To evaluate the performance of through-the-wall human body detection in different
environments, four wall materials and three experimental environments were designed
for verification. The experimental environments were bedroom, meeting room, and hall,
respectively. The general structure is shown in Figure 9. The wall materials were concrete,
plaster walls, wooden doors, and glass. Laptops with Intel Wi-Fi Link 5300 were deployed
on one side and TP-Link wireless routers on the other in each environment.
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Table 2 shows the recognition accuracy under different wall materials. It can be seen
that the recognition accuracy rate of the glass wall material was the highest, and the effect
was the best. The accuracy rate of the wooden door and gypsum wall material was slightly
lower, and the accuracy rate of the concrete wall material was the lowest. However, the
recognition accuracy rate was more than 90%, which was a better result.

Table 2. Experimental results of different wall materials.

Experimental Scene Wall Materials Accuracy (%)

bedroom Concrete wall 93.6
meeting room Gypsum wall 94.8
meeting room Door 96.5

hall Glass wall 97.3

5.2. Analysis of Experimental Results

To analyze the influence of different experimental parameters on the experimental
results, we mainly studied the influence of the wall material on the experiment. From
different wall thicknesses, different equipment spacing, different positions of person-
nel, and different test participants. These aspects were used to verify the reliability of
the experiment.
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5.2.1. Influence on Different Users

To verify the influence of different users on the experimental effect. We selected a
total of 5 volunteers to participate in the experiment, including 2 females and 3 males.
As can be seen from Figure 10a, the recognition accuracy of the three male users of user
1, user 2, and user 5 was usually higher than that of the two female personnel of user 3
and user 4, but the overall average accuracy was small. Figure 10b shows the results of
the recognition accuracy of different users using the walls of different materials. It also
demonstrated that the recognition accuracy of male personnel was indeed higher than
that of female personnel in general. However, the influence of different testers on the final
detection accuracy of the experiment was relatively small. We also used four kinds of
walls for experimental verification. It can be seen that the average recognition accuracy
rate was the highest when passing through the glass wall, followed by a slightly lower
recognition accuracy rate when passing through the wooden door. Due to the gypsum
wall and concrete wall structure being more complex, the recognition accuracy through the
gypsum wall is lower than that through the door, and the recognition accuracy through the
concrete wall is the lowest. The final experimental results showed that under the condition
of different wall materials, different experimenters had different final detection accuracy
of the experiment. The experimental accuracy of glass walls was the highest, and the
experimental accuracy of the concrete wall was the lowest. In the case of the same wall
material, the experimental accuracy of the user was not much different, thus verifying the
stability of the system performance.
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5.2.2. Influence on Different Wall Thicknesses

To verify that different wall thicknesses had a particular impact on recognition accu-
racy, we first selected three kinds of walls: concrete walls, plaster walls, and glass walls.
Since the thickness of the door in daily life was roughly the same, we did not consider the
difference or effect of the thickness of the door here in the experiment. Then, under the
same material as the wall, three different thicknesses of walls were selected for experiments.
The thicknesses of the gypsum wall and the concrete wall were selected as 27 cm, 30 cm,
and 37 cm, respectively, and the thickness of the glass was generally higher than that of
other walls, and the selected thicknesses were 3 cm, 6 cm, and 12 cm. The final experimental
results are shown in Figure 11. It can be seen from Figure 11a that when the wall was
made of concrete, the recognition accuracy of the wall thickness of 27 cm was the highest,
and the accuracy was slightly lower when the thickness was 30 cm. The worst accuracy
was 37 cm. In addition, in Figure 11b, when the wall was made of gypsum material, the
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recognition accuracy of the wall thickness of 27 cm was the highest, and the recognition
accuracy of the thickness of 37 cm was the worst. In Figure 11c, when the wall was made
of glass, the recognition accuracy of the wall thickness of 3 cm was the highest, and the
recognition accuracy of the thickness of 12 cm was the worst. It can also be seen from
the figure that when the wall was made of concrete and gypsum, the difference in the
recognition accuracy caused by the change in the wall thickness was more remarkable;
when the wall was made of glass. The difference in the recognition accuracy caused by the
change in the wall thickness was slight. Therefore, the experimental results showed that
the thickness of the wall was related to the experimental accuracy; when the wall thickness
was thicker, the wall interference was more excellent and thus the accuracy of recognition
was lower.
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Figure 11. Cumulative distribution functions of various materials with different thicknesses: (a) CDF
of the concrete wall; (b) CDF of the gypsum wall; (c) CDF of the glass wall.

5.2.3. Influence on Different Distances of Equipment

In order to verify that the device spacing can have an impact on the final experimental
results, we set the distance between the transmitter and receiver between 1 m and 5.5 m,
with an interval of 0.5 m for each distance, and verified it by using walls of different mate-
rials. The experimental results are shown in Figure 12. In the concrete wall experimental
scenario, when the device spacing was about 1.5, the highest recognition accuracy reached
94.7%; when the device spacing was about 2.5 m, the action recognition rate dropped to
83.3%. When the device spacing was 5.5 m, the accuracy was the lowest, reaching 54%.
Similarly, in the two experimental scenarios of plaster wall and door, the recognition accu-
racy was highest when the device spacing was 1.5 m, both at 95% and above. In the glass
wall experimental scenario, the effect of device spacing on the experimental results was
more minor compared to other materials of the wall. Recognition accuracy was the highest.
Thus, if we want to obtain the best experimental effect, the equipment spacing should be
set at 1.5 m, at which time the router is 1 m away from the wall, which can realize the effect
of high-precision human detection. The final results of the experiment showed that the
recognition accuracy of human detection through concrete and plaster walls was lower
than that of the two materials of glass walls and doors. The main reason is that the signal
attenuation of glass walls and doors is smaller than that of walls. With the increase of the
equipment spacing, the recognition accuracy decreased, the accuracy of the equipment
spacing outside the 5.5 m was less than 50%, and the detection effect became worse and
worse. When the equipment spacing was within 3.5 m, the probability of action recognition
was maintained at 80% and above, indicating that the system had a better performance.
The results also showed that the size of the equipment spacing affected the accuracy of
the detection, but a smaller spacing of equipment was not better. The results also showed
that the size of the equipment spacing affected the detection accuracy, but a more minor
equipment spacing was not better. We need to find the most suitable distance. At this time,
the quality of the collected data and the final classification effect was also the best.
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Figure 12. The experimental effect of different equipment spacing.

5.2.4. Influence of a Different Position

To verify that the different positions of the personnel had a particular impact on the
experimental results, we selected three positions with different distances from the device,
as shown in Figure 13: close to the device, in the middle position, and far away from the
device. The three positions were separated by 1.5 m and were verified in the walls of four
materials: glass, wooden door, gypsum, and concrete. The errors in different personnel
positions are shown in Figure 13. Figure 13a shows the error ratio of different wall materials
when approaching the equipment. The error ratio of glass walls was lower than that of
wooden doors, followed by gypsum walls, and the most significant error was concrete
material. When using the same material wall to conduct experiments, it can be seen that the
error ratio of the position close to the equipment was smaller than that of the intermediate
position and the position far away from the equipment. The final results showed that when
the human body was close to the device, the error ratio was the smallest, the recognition
accuracy rate was the highest, and the experimental effect was better. When the human
body was far away from the device, the error ratio was the largest, the recognition accuracy
rate was the lowest, and the experimental effect was worse. To obtain better results, the
location of the personnel is crucial and needs to be as close to the equipment as possible.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 21 
 

 

Figure 12. The experimental effect of different equipment spacing. 

5.2.4. Influence of a Different Position 

To verify that the different positions of the personnel had a particular impact on the 

experimental results, we selected three positions with different distances from the device, 

as shown in Figure 13: close to the device, in the middle position, and far away from the 

device. The three positions were separated by 1.5 m and were verified in the walls of four 

materials: glass, wooden door, gypsum, and concrete. The errors in different personnel 

positions are shown in Figure 13. Figure 13a shows the error ratio of different wall mate-

rials when approaching the equipment. The error ratio of glass walls was lower than that 

of wooden doors, followed by gypsum walls, and the most significant error was concrete 

material. When using the same material wall to conduct experiments, it can be seen that 

the error ratio of the position close to the equipment was smaller than that of the interme-

diate position and the position far away from the equipment. The final results showed that 

when the human body was close to the device, the error ratio was the smallest, the recog-

nition accuracy rate was the highest, and the experimental effect was better. When the 

human body was far away from the device, the error ratio was the largest, the recognition 

accuracy rate was the lowest, and the experimental effect was worse. To obtain better re-

sults, the location of the personnel is crucial and needs to be as close to the equipment as 

possible. 

   
(a) (b) (c) 

Figure 13. The experimental results of the different locations of the personnel: (a) Error ratios at 

near positions from the device; (b) Error ratios at middle positions from the device; (c) Error ratios 

at far positions from the device. 

5.3. System Performance Evaluation 

In order to prove that the combined algorithm of Kmeans+HOG+G-SVM (KHG) used 

in this paper was better than the single algorithm for classification and to verify the relia-

bility and high performance of the method proposed in this experiment, we used the ROC 

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
50

55

60

65

70

75

80

85

90

95

100

A
cc

u
ra

cy
/%

Different distance between equipment ends

 Concrete wall

 Gypsum wall

 Door

 Glass

Concrete wall Gypsum wall Wood door Glass wall
−6

−4

−2

0

2

4

6

E
rr

o
r 

R
a

ti
o

 (
%

)

Near

Concrete wall Gypsum wall Wood door Glass wall
−6

−4

−2

0

2

4

6

E
rr

o
r 

R
a
ti

o
 (

%
)

Middle

Concrete wall Gypsum wall Wood door Glass wall
−6

−4

−2

0

2

4

6

E
rr

o
r 

R
a

ti
o

 (
%

)

Far

Figure 13. The experimental results of the different locations of the personnel: (a) Error ratios at near
positions from the device; (b) Error ratios at middle positions from the device; (c) Error ratios at far
positions from the device.

5.3. System Performance Evaluation

In order to prove that the combined algorithm of Kmeans+HOG+G-SVM (KHG)
used in this paper was better than the single algorithm for classification and to verify the
reliability and high performance of the method proposed in this experiment, we used
the ROC curve as an evaluation criterion, thus analyzing the effectiveness of the KHG
classification method. The results are shown in Figure 14. With the simultaneous use of
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Doppler shift, we compared the two classification methods without using the K-means
clustering method and only using the G-SVM algorithm. From the comparison results, it
can be seen that, when the actual positive rate (TPR) reached 0.8, the KHG method proposed
in this paper had a false positive rate (FPR) of 0.1, which was the best performance, and
the FPR of the method without using the K-means clustering method reached 0.4, which
was slightly lower than that of KHG. The FPR of only using the G-SVM method reached
0.64, which was the worst performance. From the comparison results, we see that the KHG
method in this paper had the best performance, and the method using only the G-SVM
method without HOG feature extraction had the worst performance, indicating that the
combination algorithm was better than a single algorithm for classification.
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To evaluate the classification performance of the TwSense system, this paper was com-
pared with the typical detection systems DeMan [23], R-TTWD [24], and TWMD [25], three
methods related to human detection under the use of four wall materials conditions. The
classification method we used was the combined algorithm (HKG) of HOG+K-means+G-
SVM, and then the ROC curve was used as the evaluation standard to analyze the effect of
the KHG classification method. The results are shown in Table 3.

Table 3. Comparison of different classification systems for different materials.

Experimental Scene System Method

Different Material Recognition Accuracy (%)

Concrete
Wall

Gypsum
Wall

Wooden
Door

Glass
Wall

bedroom,
meeting room,

hall

TwSense OR-PCA+HOG+Doppler+G-Svm 93.6 94.8 96.5 97.3

TWMD BP Network 90 91 93 95.5

R-TTWD PCA+SVM 87 89 91.5 93

DeMan Sine model+Parameter estimation 50 71 79 85

Table 3 shows the experimental results of the average recognition accuracy of human
detection using the four methods. It can be seen from the table that in the glass wall experiment
scene, our system used glass material and had a simple structure. Thus, the attenuation of the
Wi-Fi signal after passing through the glass was small, and the classification accuracy was
the highest. Compared with the glass wall, the thickness of the door had been improved,
the structure was slightly complicated, and the classification effect was slightly worse. The
structure of the gypsum wall and concrete wall was more complex, resulting in excellent
attenuation of the signal, and the classification accuracy was the lowest but still more than
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90%. However, DeMan’s detection effect in several wall-penetrating scenes was not ideal, and
its accuracy was about 50%. R-TTWD had relatively better detection accuracy for presence
or absence (no one is one category; other categories are considered one category), with an
accuracy of about 93%; the TWMD system performed human counting work by detecting
human bodies, and the recognition accuracy was around 94%. The comparison results showed
that the TwSense system improved detection accuracy based on previous work and effectively
improved the accuracy of the system.

In order to verify the processing efficiency of these several systems using the methods,
we compared the running time of several systems, as shown in Figure 15, from which it
can be seen that the average recognition accuracy using the TwSense method was 95.5%
and took 2.8 s; the average recognition accuracy using the TWMD method was 92.4% and
took 4.2 s; the average recognition accuracy using the R-TTWD method was 90% in 3.7 s;
the average recognition accuracy using the TW-See method was 71.2% in 5.6 s. In terms
of processing time and accuracy, TwSense had a significantly lower processing time than
the other systems, a higher recognition accuracy than the other systems, and the highest
processing efficiency.
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6. Conclusions

This paper proposed a highly robust detection method for people through-the-wall
based on ubiquitous commercial Wi-Fi devices. First, commercial wireless equipment
was used to collect the CSI signal of human motion, and then the OR-PCA algorithm was
mainly used to extract the correlation of the collected CSI signal. The Doppler frequency
shift image caused by the action was segmented by the K-means clustering method. Then,
the HOG algorithm was used to send the acquired Doppler frequency shift image features
to the improved algorithm G-SVM classifier to classify the human activity state, which not
only reduced the number of training samples but also improved the accuracy of G-SVM
classification. This paper evaluated and verified the robustness of the proposed system by
analyzing the effects of different environments, different people, different distances, and the
use of different wall materials. The experimental results showed that the proposed scheme
had high robustness. In future work, since most walls in life are made of concrete, in order
to improve the accuracy of through-the-wall detection at this time, TwSense will explore
the use of the Fresnel zone model in combination with the through-the-wall condition
to establish a theoretical model of through-the-wall detection between human activity
and wireless signals. Since the final effect of the difference between the stationary and
unoccupied state of the person is small, it is necessary to further study the original basis of
the through-the-wall condition to accurately detect the human body breathing to achieve
a practical distinction between the stationary and unoccupied state of the person, which
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will provide more ideas for the actual through-the-wall application. For non-technical
users, we suggest that the through-wall human body detection application of a simple and
easy-to-understand user interface, for example, the elderly in the toilet. When detecting
the presence of people show red, no one presence shows green; in the case of not violating
personal privacy, it can be more obvious to show the state of the personnel.
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