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Abstract: In this paper, the evaluation of the Rn-222 radioactivity content in drinking water samples
from the Calabria region, southern Italy, is reported as a case study. The Rn-222-specific activity
in the analyzed groundwater samples for human use was evaluated by using the PerkinElmer
Tricarb 4910 TR setup and compared with the parameter value (100 Bq L−1) reported in the reference
Italian legislation, i.e., D.Lgs. 28/2016, derived from the European Directive 2013/51/Euratom. The
radiological health risk for the population of the investigated area, due to the ingestion and inhalation
of Rn-222 dissolved in water, was then evaluated by calculating the total annual effective dose, only in
those cases where the parameter value was exceeded. The obtained results represent a main reference
for the investigated area and are useful for determining any possible radiological health risk for
human beings related to the ingestion of the investigated radionuclide. Moreover, they can also be
used as a baseline for future investigations regarding background radioactivity levels.
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1. Introduction

The natural radioactivity in the environment, due to the presence of cosmogenic and
primordial radioisotopes in the Earth’s crust, contributes the highest percentage to the dose
received by the population [1–3]. Although environmental aspects of natural radioactivity
have been widely discussed in the literature [4–6], the presence of natural radioisotopes in
drinking water has not been sufficiently addressed up to now, despite the fact that water
represents a critical component of the surrounding environment. In fact, it is worthy of
note that the health protection of the population cannot be separated from ensuring the
quality of water for human consumption, as drinking water should not pose a health risk
over a lifetime [7–9]. In particular, as water is a critical component of the environment, its
quality can be harmed by increased pollution, human activity and a high concentration of
naturally occurring radioactive elements [10,11].

As widely reported in the literature, drinking water has a natural radioactivity content
that is strictly dependent on its origin [12]. In particular, among the naturally occurring
radioisotopes, radon is one of the most remarkable, since, as is well known, its ionizing
radiation provides the major contribution of internal human exposure compared with
other natural sources [13,14]. Radon exhalates from rocks and easily migrates and enters
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fracturing groundwater bodies [15]. Each rock type has a characteristic radon content,
with the highest values for granitic and metamorphic rocks, phosphate rocks, black shales
and some carbonate rocks [16]. Although the solubility of radon in water is relatively
low [17], its specific activity in this environmental matrix may instead be several orders of
magnitude higher than that of other natural radionuclides [18]. This could also lead to an
increase in indoor airborne radon activity concentration, since it was estimated that the
transfer coefficient of radon from water to indoor air is 10−4 [19]. Therefore, a very high
concentration of radon in drinking water poses a serious public health hazard because it
can lead, in the long term, to the development of diseases of internal organs, i.e., stomach
cancer from ingestion and lung cancer from inhalation [19,20].

In light of this, in order to protect the public from possible health consequences, it is
necessary to investigate radon levels in drinking water [21,22]. This is usually achieved by
using reliable measuring devices with reasonably low detection limits, affordable price and
simple operation, now available in many laboratories [2,23].

The results of a campaign to measure the specific activity of radon in groundwater
samples for human use coming from civic springs of the Reggio Calabria district, an aquifer
system located in the Calabria region, southern Italy, are reported in this article in order
to (i) increase the available experimental data with respect to the presence of Rn-222 in
groundwater samples for human use from the area under investigation and (ii) to ascertain
the relative health risk to members of the population. The overall approach consisted of
an initial screening to assess if activity concentration values (in Bq L−1) were below the
parameter value (100 Bq L−1) reported in the Italian D.Lgs. 28/2016 [24], and a second,
deeper investigation, based on the assessment of radiological risk to public health by
computing the total annual effective dose associated with ingestion and inhalation of the
investigated radionuclide, only in those cases where the parameter value was exceeded [25].

2. Materials and Methods
2.1. Sample Collection

Four samples of groundwater for human use (one for each season of the year 2022)
were collected for each of the nine selected Calabrian locations (ID#, # = 1, . . ., 9), southern
Italy, as detailed in Table 1 and indicated in Figure 1.

Table 1. The IDs and GPS details of the sampling locations.

Site ID
GPS Coordinates

Latitude Longitude

1 38◦21′03.0′′ N 16◦10′35.0′′ E
2 38◦23′39.1′′ N 16◦11′17.3′′ E
3 38◦25′30.8′′ N 16◦09′41.5′′ E
4 38◦16′42.4′′ N 16◦09′46.7′′ E
5 38◦18′17.4′′ N 16◦06′40.2′′ E
6 38◦19′57.4′′ N 16◦09′37.1′′ E
7 38◦16′24.7′′ N 16◦04′47.3′′ E
8 38◦20′00.5′′ N 16◦09′20.7′′ E
9 38◦13′24.4′′ N 15◦59′43.8′′ E

The sample collection was carried out according to the local weather conditions, which
severely limit the access to the monitoring stations at times [25]. Moreover, the sampling,
packaging and preservation of the samples were carried out according to [26].

2.2. Liquid Scintillation Counting (LSC) Measurements

The activity concentration of Rn-222 in the investigated drinking water samples was
obtained through liquid scintillation counting (LSC) measurements, according to [27].
Specifically, 10 mL of each sample was inserted with a gas-tight syringe into the bottom of
a 25 mL plastic vial previously filled with 10 mL of Perkin Elmer Opti-Fluor O scintillating
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cocktail immiscible in water, stored and, after a rest time of 5 h, counted for 60 min together
with a background [28]. The scintillator was a Perkin-Elmer Tricarb 4910 TR, with an
energy range of 0–2 MeV (β particles) and 0–10 MeV (α particles). Its minimum acceptable
efficiency is 60% for H-3 (0–18.6 keV) and 95% for C-14 (0–156 keV). Its average background
is 17 CPM for H-3 and 26 CPM for C-14. It operates in normal/low-activity–high-sensitivity
mode, with the external Ba-133 standard to account for chemical and optical quenches and
to assess the counting efficiency by using the tSIE/AEC [29].
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A picture of the detector is presented in Figure 2.
During the radon-in-water analysis or if a water sample is taken and analyzed some-

time later (rather than immediately), the sample’s radon concentration will diminish,
mainly due to radioactive decay and, partly, to the degassing phenomenon [30]. Then, it is
essential to correct the resulting activity concentrations in order to take into account the
decay from the sampling time to the analysis time. The decay correction is described by a
simple exponential function with a time constant of 132.4 h, coming from the exponential
law for radioactive decays:

CRn−222 = C0,Rn−222e−λt, (1)

where CRn-222 is the measured Rn-222 concentration, C0,Rn-222 is the initial concentration at
the sampling time and t is the time elapsed since collection (hours).
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The time elapsed from sampling to measurement is less than 48 h in all cases, in order
to minimize the Rn-222 content due to the decay of Ra-226 in the investigated samples.

Moreover, the uncertainty associated with the measurement of the Rn-222 concentra-
tion for each of the four investigated samples (per single sampling location) is given by [27]

U(CRn−222) = CRn−222

√(
UC N
CN

)2
+

(
Uε

ε

)2
+

(
UV
V

)2
, (2)

where UCN is the uncertainty associated with the net counts CN of the detector calibration
source, Uε is the uncertainty associated with the detection efficiency ε and UV is the
uncertainty associated with the volume V of the analyzed sample [27].

The quality of the LSC experimental results was certified by the Italian Accreditation
Body (ACCREDIA). This implies the continued verification (with annual periodicity) of the
maintenance of the LSC method’s performance characteristics [31].

2.3. Evaluation of the Radiological Health Risk

The radiation dose from radon gas in drinking water is ingested and inhaled. Thus,
with the aim of monitoring the radiation exposure of the population, the assessment of the
annual effective dose due to the ingestion of Rn-222 in drinking waters was carried out [32]:

Hing

(
Svy−1

)
= DCFing × CRn−222 × Iw × 365, (3)

where DCFing (Sv Bq−1) is the dose conversion factor for ingestion of Rn-222 in water
samples (23, 5.9 and 3.5 nSv Bq−1 for infants, children and adults, respectively) and
Iw (L day−1) is the average daily water consumption rate [20]. In detail, a per capita
consumption of 150, 350 and 730 L per year for infants, children and adults, respectively,
was defined [33].

Moreover, the contribution to the total effective dose due to inhalation of Rn-222
present in the investigated samples is given by [34]

Hinh

(
Svy−1

)
= CRn−222 × R× F×O×DCFinh, (4)

where R is the transfer coefficient of radon from water to indoor air, equal to 10−4; F is the
equilibrium factor between radon gas and its progeny, equal to 0.4; O is the average annual
number of hours spent indoors by a single individual, equal to 7000, and DCFinh is the
inhalation dose conversion factor of Rn-222, equal to 9 nSv Bq−1 h−1 m3 [35].
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3. Results and Discussion

In Table 2, the annual mean value (±standard deviation) of the Rn-222-specific activity
in the investigated drinking water samples is reported for each collection site.

Table 2. The annual mean value (±standard deviation) of the Rn-222-specific activity in the investi-
gated drinking water samples, for each collection site.

Site ID CRn-222
(Bq L−1)

1 164 ± 46
2 7.4 ± 1.4
3 13.1 ± 2.4
4 9.1 ± 1.6
5 76 ± 18
6 38.9 ± 8.3
7 15.5 ± 2.8
8 64 ± 15
9 32.4 ± 6.6

It can be noticed that that the radon activity concentration varies from a minimum
of (7.4 ± 1.4) Bq L−1 for the site ID2 to a maximum of (164 ± 46) Bq L−1 for the site
ID1, thus suggesting that the provenance of these drinking water samples is different and
that they originate from different depths and pass through distinct geological strata. This
uneven distribution of the specific activity may be dependent on the amount of Rn-222
in the aquifer rocks of different locations and on the residence time of water/rocks-soils
in contact [36]. Specifically, the highest value was recorded for a site situated within the
geological context of the “Calabrian-Peloritan arc” [37]. This particular geological setting is
known for its abundance of uranium-rich rocks, resulting in elevated levels of radon gas.

In addition, the relative uncertainty for the site ID1 is higher than in other cases; this
is due, according to Equation (2), to the higher Rn-222 activity concentration measured in
the four investigated samples picked up from this sampling location.

Moreover, in all cases, with the only exception of site ID1, the activity concentration
values were found to be always lower than 100 Bq L−1, i.e., the parameter value according
to the Italian legislation [24]. Then, in this case, the assessment of the total annual effective
dose due to the ingestion and inhalation of Rn-222 by infants, children and adults was
carried out by using Equations (3) and (4), respectively. Specifically, the annual effective
dose due to ingestion of Rn-222 was 0.56 mSv y−1, 0. 4 mSv y−1 and 0.42 mSv y−1 for
infants, children and adults, respectively. These values fall within the acceptable range of
0.2–1.8 mSv y−1 reported in the literature [38]. Furthermore, the annual effective dose due
to inhalation of Rn-222 in the analyzed water sample was 0.41 mSv y−1. Therefore, the total
annual effective dose was found to be 0.97 mSv y−1, 0.75 mSv y−1 and 0.83 mSv y−1 for
infants, children and adults, respectively. All these results, obtained in a fully precautionary
scenario, are below the 1 mSv y−1 limit value recommended by the World Health Organi-
zation (WHO), thus allowing us to reasonably exclude any possible radiological health risk
related to the radon exposure for the population living in the investigated area [39].

4. Conclusions

In this paper, the evaluation of the radon content in groundwater samples for human
use coming from nine selected locations of Calabria, southern Italy, representative of the
investigated area, is reported as a case study.

The radon-specific activity was measured by means of a liquid scintillation counting
setup, and the experimental results provide evidence that the activity concentration of
radon is below the parameter value indicated by the current Italian legislation (100 Bq L−1),
except for the site ID1. In this latter case, the corresponding annual effective doses for
infants, children and adults due to the ingestion of Rn-222 were shown to fall within the
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acceptable range of 0.2 mSv y−1–1.8 mSv y−1 reported in Recommendation 2001/928/Eu-
ratom. Moreover, the total (ingested and inhaled) annual effective doses for infants, children
and adults were found to be below the 1 mSv y−1 limit value recommended by the World
Health Organization (WHO), thus reasonably ensuring the safety of the analyzed samples
for drinking purposes, and no remedial actions are demanded.

Although these results display low levels of radon-specific activities and doses, in
complete accordance with official institutional guidance, it should be highlighted that
regular monitoring is necessary to ensure the safety of drinking water. In light of this,
the data reported in this paper will be supplemented in the near future by increasing the
sampling points and the number of analyzed drinking water samples. Moreover, it should
be remarked that the approach reported in this article might be applied, in principle, for
the assessment of any potential radiological hazard for human beings due to the presence
of radioactive elements in drinking water, by constituting a guideline for investigations
focused on the monitoring of the radiological quality of these samples.
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