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Abstract: The fashion industry has a critical need for fashion compatibility. Modeling compatibility
is a challenging task that involves extracting (in)compatible features of pairs, obtaining compatible
relationships between matching items, and applying them to personalized recommendation tasks.
Measuring compatibility is a complex and subjective concept in general. The complexity is reflected
in the fact that relationships between fashion items are determined by multiple matching rules, such
as color, shape, and material. Each personal aesthetic style and fashion preference differs, adding sub-
jectivity to the compatibility concept. As a result, personalized factors must be considered. Previous
works mainly utilize a convolutional neural network to measure compatibility by extracting general
features, but they ignore fine-grained compatibility features and only model overall compatibility. We
propose a novel neural network framework called the Attention-based Personalized Compatibility
Embedding Network (PCE-Net). It comprises two components: attention-based compatibility em-
bedding modeling and attention-based personal preference modeling. In the second part, we utilize
matrix factorization and content-based features to obtain user preferences. Both pieces are jointly
trained using the BPR framework in an end-to-end method. Extensive experiments on the IQON3000
dataset demonstrate that PCE-Net significantly outperforms most baseline methods.

Keywords: fashion analysis; personalized compatibility embedding modeling; attention mechanism;
multi-modal

1. Introduction

The emergence of e-commerce has provided convenient shopping methods. However,
the overload of data information caused by the vast amounts of products available on
shopping websites has led to the need for a recommendation system to help users find
items more quickly and accurately. We focus on developing an intelligent recommendation
algorithm for clothing to address this demand. One of the primary challenges is generating
reasonable matching suggestions for clothing styles and types. This requirement gives rise
to the need for fashion compatibility modeling, which helps determine if fashion items meet
specific matching criteria. As illustrated in Figure 1, compatible items satisfy particular
rules, such as having matched colors and materials, while incompatible items violate those
rules. Moreover, users have individual preferences, including style, texture, pattern, and
more. For instance, user1 prefers pairing casual, loose tops with wide-legged pants, user 2
has a versatile fashion taste that ranges from casual sports to elegant dresses, and user 3
enjoys wearing clothes with striped patterns.

Initially, some studies only considered visual features of fashion items [1–4] when
building comparison models. Subsequently, several works [5–8] modeled compatibility by
fusing both visual and textual multi-modal content. Further, researchers [5,6,9,10], distin-
guished overall compatibility from fine-grained compatibility. Some recent studies [11–15],
have considered user factors in personalized recommendation tasks. Although these works

Appl. Sci. 2023, 13, 9638. https://doi.org/10.3390/app13179638 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13179638
https://doi.org/10.3390/app13179638
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0000-6182-8221
https://doi.org/10.3390/app13179638
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13179638?type=check_update&version=2


Appl. Sci. 2023, 13, 9638 2 of 19

have individual strengths, they fail to provide a comprehensive solution that addresses
all the underlying problems. We aim to develop a personalized clothing recommendation
system that takes visual and textual modalities as input, extracts fine-grained compatibility
characteristics, and considers user preferences.

Figure 1. Example of fashionable outfits from IQON3000.

In fashion recommendation, the primary challenge lies in accurately predicting and
providing reasonable suggestions that align with a user’s preferences. Researchers must
concentrate on two significant issues: firstly, how to enhance the accuracy of determining
fashion item compatibility from multi-modal data. Fashion recommendation is founded on
the principle of fashion compatibility, which implies that various types of fashion items
can be combined to create an outfit. Developing compatible feature spaces is crucial for
continually advancing fashion compatibility models. For instance, researchers often em-
ploy visual features [1,9], textual features [16], category-aware feature subspaces [5,6],
and neighbor node features of graph models [13,17] as inputs. Secondly, since an outfit
typically comprises multiple complementing fashion items, selecting items that satisfy the
user’s preferences while complementing each other is the crux of outfit construction. How-
ever, fashion is an inherently intricate and subjective concept, and defining fashion items
frequently involves many complex intersubjective relationships between complementary
fashion items. It is critical to note that the notion of compatibility between fashion items
often spans categories and encompasses intricate interactions.

To address the abovementioned challenges, our solution is an attention-based person-
alized compatibility embedding network called PCE-Net for clothing matching (Figure 2).
This network can evaluate the compatibility between fashion items while capturing the
user’s personal preference from multi-modal features and their previous preferences. The
two main components of the PCE-Net include attention-based compatibility embedding
modeling and attention-based personal preference modeling. To overcome the first chal-
lenge, we introduce two attention branches to model fine-grained compatibility for the
multi-modal data. To address the second challenge, we are inspired by the personal pref-
erence component of GP-BPR [11] and modeled attention-based personalized preference,
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which utilizes global latent preference factors and content-based preference factors. We
introduced feature extractors and two attention branches to learn the compatibility embed-
dings of fashion items. We also learned user preference by matrix factorization and inner
product. Finally, based on the Bayesian Personalized Ranking (BPR) framework [18], PCE-
Net integrates attention-based compatibility embedding modeling and attention-based
personal preference modeling.

Figure 2. Overview of the proposed attention-based compatibility embedding network (PCE-Net) ar-
chitecture. PCE-Net contains two parts: (1) attention-based compatibility embedding modeling based
on feature extractor with two attention branches; (2) attention-based personal preference modeling
based on matrix factorization and content-based inner product for user historical preferences.

Our model has extensive application prospects on e-commerce platforms and social
networks. On e-commerce platforms, it can evaluate users’ personalized preferences based
on their purchase history and browsing history. Then, based on the clothing the user is
currently browsing, it can recommend items that match the current outfit and also cater
to the user’s personalized preferences. On social platforms, it can provide users with
compatibility assessment functionality, calculate compatibility scores based on the outfits
selected by users, and provide adjustment suggestions.

Our main contributions can be summarized in threefold:

1. First itemFirstly, we present an attention-based personalized compatibility embedding
scheme for personalized clothing matching, namely PCE-Net, which jointly models
attention-based (item-item) compatibility and personal (user-item) preferences;

2. Secondly, we propose an innovative approach to capture the compatibility embed-
dings of multi-modal data using different attention branches separately, which has
not been attempted before to the best of our knowledge. In addition, we demonstrate
the effectiveness of different attention branches through ablation experiments;

3. Lastly, we conduct extensive experiments and use t-SNE visualization on the real-
world dataset IQON3000 to validate the effectiveness of our scheme against state-of-
the-art methods.

The remainder of this paper is structured as follows. We briefly review the related work
in Section 2. In Section 3, we present the proposed PCE-Net in detail. The experimental
results and relative analysis are provided in Section 4, followed by our concluding remarks
and future work in Section 5.

2. Related Work

The area of fashion compatibility learning and recommendation employs two main
categories of algorithms: item-item level and multi-item level approaches. The former cate-
gory models compatibility interaction between two items. For example, Rendel et al. [19]
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proposed the pairwise interaction tensor decomposition (PITF) factorization model, which
simulates pairwise interactions between users, items, and tags. Meanwhile, refs. [20,21]
utilized a single latent style space to measure compatibility solely using visual features.
However, a single latent compatibility space is inadequate for the detailed modeling of com-
plex relationships among different concepts, such as color, pattern, and category. Thus, to
address this gap, Veit et al. [1] proposed the Conditional Similarity Network (CSN) model,
which learns different subspaces under different similarity metrics. Vasileva et al. [5] then
built on [1] by introducing a type-aware learning method to attain type-aware features in
a universally shared potential space. Lastly, Katrien Laenen et al. [9] incorporated three
attention mechanisms for multi-modal features in the type-aware subspace, building on
the previous works. When predicting the compatibility between items, concatenation is
adopted and implemented in a superior scheme. To automatically recognize the relative
significance of different conditions, Tan et al. [6] leveraged the attention mechanism [22].
In a different approach, Cucurull et al. [23] suggested a graph neural network utilizing
undirected graphs augmented with contextual information to predict associations between
two items, thereby transforming the fashion compatibility issue into a graph edge detection
problem. Singhal et al. [7] proposed a holistic approach to learning visual compatibility,
encompassing TC-GAE, SAE, and search techniques modeled on a graph-based network, an
autoencoder, and reinforcement learning, respectively. Finally, Song et al. [16] introduced
Dual Autoencoder Network (DAE) as the first model to learn the compatibility feature space
while incorporating the consistent relationship between visual-textual features and the im-
plicit preference between items via Bayesian Personalized Ranking (BPR). Song et al. [24]
presented AKD-DBPR, which employs knowledge distillation to combine fashion domain
expertise with deep neural networks. Yang et al. [25] introduced TransNFCM, a fashion
neural compatibility model based on translations that aim to capture complex compatibility
patterns via distance functions. Lu et al. [26] developed a method for personalized outfit
recommendation by training hash codes for both users and items and modeling users’
preferences as the average of their preference scores for each item. Song et al. [11] proposed
a joint model for general compatibility and personal preferences called GP-BPR, which
combines the two characteristics. Sagar et al. [12] proposed a personalized recommenda-
tion modeling scheme named PAI-BPR, which utilizes attributes for interpretability and
personalized recommendation. Finally, Taraviya et al. [27] introduced PSA-Net, which
learns attribute-wise visual feature subspaces via self-attention and incorporates customer
embeddings to aid in recommending item pairs in a category-based subspace.

The second category of outfit recommendation models aims to capture the interactions
between multiple items in an outfit composed of three or more items. An early model
developed by Han et al. [8] used a sequence approach, treating the items within an outfit
as ordered, and proposed the Bi-LSTM sequence model. However, this model poses a
limitation as it is order-sensitive. In contrast, Cui et al. [17] introduced the NGNN model,
where a directed graph represents the complex relationships between multiple items in
an outfit, providing a better model for data representation. For personalized outfit recom-
mendation, Rendle et al. [18] proposed the widely used Matrix Factorization (MF) model,
while He et al. [2] introduced the VBPR model, which is based on Bayesian Personalized
Ranking [18] and incorporates user preferences for visual factors. Furthermore, He et al. [2]
developed FashionNet, which recommends outfits (top, bottom, shoes) using a two-stage
training strategy, where a general compatibility model with personal preferences is fine-
tuned using encoding techniques. Li et al. [13] proposed the hierarchical fashion graph
network (HFGN) model, which combines compatibility modeling and personalized outfit
recommendation tasks. To generate personalized outfits based on users’ historical click
behaviors, Xu et al. [14] developed the personalized outfit generation (POG) model, which
utilizes the Transformer [22] architecture to encode users’ preferences for items and outfits.
Dong et al. [15] proposed a personalized capsule closet creation framework (PCW-DC)
based on the Bi-LSTM [8], which learns outfit compatibility, user preference, and body type
information concurrently. In addition, Lin et al. [10] presented the neural outfit recommen-



Appl. Sci. 2023, 13, 9638 5 of 19

dation (NOR) model, a neural network framework capable of simultaneously addressing
the tasks of outfit recommendation and comment generation. The framework consists of an
outfit-matching framework and a comment-generation framework. For outfit complemen-
tary item retrieval, Lin et al. [28] proposed a category-based subspace attention network
and an outfit ranking loss to model the item interactions within an entire outfit. Lastly,
Sarkar et al. [29] proposed OutfitTransformer, a framework based on Transformer [22], to
learn an outfit-level representation.

3. Methodology

This section presents the problem formulation and thoroughly describes the proposed
attention-based personalized compatibility embedding modeling approach.

3.1. Problem Formulation

First, assume we have a set of users U = {u1, u2, · · · , uM}, a set of tops T = {t1, t2, · · · ,
tNt}, and a set of bottoms B = {b1, b2, · · · , bNb}. Each user um is associated with a set which
contains historical top-bottom pairs Om = {(tim1

, bjm1
), (tim2

, bjm2
), · · · , (timNm

, bjmNm
)}, where

im
k ∈ [1, 2, · · · , Nt] and jm

k ∈ [1, 2, · · · , Nb] refer to the index of the top and bottom. Then,
for each ti(bj), we use vt

i(v
b
j ) ∈ RDv and tt

i(t
b
j ) ∈ RDt to represent its visual and textual

features from different ConvNet modules. Next, we use
∼
vt

i(
∼
vb

j ) ∈ RDv and
∼
tt
i(
∼
tb

j ) ∈ RDt to
indicate its visual and textual embeddings through different attention branches modules.
Dv and Dt denote the dimensions of the corresponding embeddings.

In this study, we aim to develop fashion compatibility embeddings for outfit rec-
ommendations by considering user preferences and employing an attention mechanism.
Consistent with previous research [11], we explore the challenge of determining “which
bottom would be preferred by the user to match the given top?”. Let em

ij denote the pref-
erence of the user um towards the bottom bj for the given top ti, based on a generated
personalized rating score list of bottoms bj’s for a given top ti and hence solve the practical
problem of personalized outfit matching.

To ensure accurate measurements of em
ij , we have designed a personalized compatibility

embedding modeling network F that incorporates an attention mechanism. This network
can integrate users’ preferences for visual and textual aspects of items into the compatibility
embedding model. The mathematical expression for this model is as follows:

em
ij = F(ti, bj, um|θF) (1)

where θF refers to the model parameters to be learned.

3.2. PCE-Net

To effectively address the challenge of personalized clothing matching, it is essential
to account for both item-item compatibility and user-item preference. Modeling fashion
item compatibility is a fundamental problem in this context. A significant issue, therefore,
is how to generate compatibility embeddings that are helpful in clothing matching. To
this end, we explore user preferences towards a bottom that complements a given top
by modeling compatibility embeddings between fashion items and the user’s personal
preferences. Formally, we have:

em
ij = µ · cij + (1− µ) · pmj (2)

cij = C(ti, bj|θc) (3)

pmj = P(um, bj|θP) (4)
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The attention-based compatibility embeddings modeling and attention-based personal
preference modeling are denoted as C and P, respectively, with θc and θP as their corre-
sponding model parameters. The compatibility interaction between the top ti and bottom
bj is represented by cij, while pmj denotes the personal preference of user um towards the
bottom bj. To balance the relative importance of both components, a non-negative trade-off
parameter µ is used.

3.2.1. Attention-Based Compatibility Embedding Modeling

We propose a more effective way of measuring the compatibility between the top
ti and bottom bj. To accomplish this, we suggest that the model learns its compatibility
embeddings in latent compatibility space. In this space, complementary top-bottom pairs
should be closer than incompatible pairs. Additionally, we argue that there should be
a gap between the interactive features of matching top-bottom pairs and mismatched
top-bottom pairs, i.e., cij, cik, thus turning the task of predicting compatibility into a
classification problem.

To learn the preliminary features of items in visual and text modalities, we employ
convolutional neural networks (CNN) which have demonstrated excellent performance
in learning representations [30–32]. It is imperative to note that all fashion items have
visual and textual modalities. For example, the information on colors, patterns, and
shapes of a fashion item can be extracted from its image, while its textual description can
provide information on the brand, material, and category. These two modalities provide
complementary information crucial for understanding the fashion items at the feature level.
Therefore, we integrate both modalities’ information to learn the compatibility embeddings
between fashion items.

In Section 3.1, we introduced vt
i(v

b
j ) ∈ RDv and tt

i(t
b
j ) ∈ RDt to represent the global

visual and textual features of the top ti and bottom bj, respectively, from various ConvNet
modules. Inspired by previous works [6,9,10], we incorporated two attention branches to
capture features that aid in compatibility embeddings modeling. These branches allow

us to obtain attentive visual and textual features, which we denote as
∼
vt

i(
∼
vb

j ) ∈ RDv and
∼
tt
i(
∼
tb

j ) ∈ RDt , respectively. Here, Dt represents the dimensionality of the latent compatibil-
ity space.

Visual Attention. To enable the compatibility embeddings module to automatically
capture pertinent fine-grained visual characteristics such as color, pattern, and shape, we
incorporate visual dot product attention to generate attention weights based on global
visual features, vt

i(v
b
j ) ∈ RDv . Specifically, we employ the visual attentive representation

learning of the top portions as an illustration. The visual attention weight, ω
ti
v , can be

calculated according to Equation (5) by applying the following formula:

eti = VT
a tanh(Ua(vt

i)
T) (5)

where Ua ∈ RDv×Dv and Va ∈ RDv . The visual attention weight ω
ti
v = eti . Then we calculate

the attentive visual features
∼
vt

i ∈ RDv of top ti,

∼
vt

i= ω
ti
v vt

i (6)

Likewise, we can calculate the attentive visual features v
∼
b
j ∈ RDv of bottom bj,

ebj
= VT

a tanh(Ua(vb
j )

T) (7)

ω
bj
v = ebj

(8)
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∼
vb

j = ω
bj
v vb

j (9)

Next, we utilize inner products to quantify the visual compatibility interaction between
the attentive visual features of the top portion ti and the bottom portion bj.

∼
vij=

∼
vt

i (
∼
vb

j )
T (10)

where the inner product encodes the visual interaction scores between fashion items.
Text Attention. We propose the integration of a text attention branch into the compati-

bility embedding network. This branch aims to capture the text features of each individual
top and bottom, as well as the interactive text features of top-bottom pairs. By incorporating
a text attention branch, our model is able to autonomously identify the crucial text features
that contribute to compatibility interaction.

For a pair of textual features tt
j and tb

j , the input feature to the text attention branch is
calculated as follows,

yij = concat{tt
i , tb

j } (11)

where concat{. . .} refers to the concatenation operation.
As depicted in Figure 2, the concatenated text features are passed through a sequence

of fully-connected and ReLU layers. Subsequently, a softmax function is applied to the final
activation values, producing a weight vector ω

ij
t of dimension Dt. This vector is crucial

in determining the significance of the textual compatibility embedding interaction. The
expression for this process is as follows:

ω
ij
t = So f tmax(FC(ReLU(FC(yij)))) (12)

Then, the attentive textual features of the top ti and bottom bj are as follows,
∼
tt
i= ω

ij
t tt

i∼
tb

j = ω
ij
t tb

j

(13)

Likewise, we also use inner products to measure the textual compatibility between
attentive textual features of the top ti and bottom bj,

∼
tij=

∼
tt
i (
∼
tb

j )
T (14)

where the inner product encodes the textual interaction scores between fashion items.
Finally, to comprehensively measure the compatibility embeddings utilizing the afore-

mentioned attention branches, we define the following:

cij = π
∼
vij + (1− π)

∼
tij (15)

where π is a non-negative trade-off parameter that determines the relative importance of
the two modalities. cij denotes the interaction of compatibility embeddings of the top ti
and bottom bj.

3.2.2. Attention-Based Personal Preference Modeling

Drawing from matrix factorization techniques, we propose a model that captures
users’ personalized preference for a specific type of product, a bottom, which has proven
effective in personalized recommendation tasks [33–38]. The underlying principle is de-
composing the user-item interaction matrix into latent factors representing users and items.
Additionally, building upon the work of Song et al. [11], we expand the matrix factorization
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approach to incorporate latent factors that capture users’ content-based preferences. This is
crucial because users’ preference for fashion items may stem from visual or textual features.
For instance, users may prioritize visual characteristics like color and pattern, or textual
features like brand and material. To comprehensively account for users’ and fashion items’
latent factors, as well as their content-based factors, considering both aspects is imperative.

In a similar vein, we employ the inner product to encode the latent scores for user-item
interactions and the content-based scores for user-item interactions. To illustrate, let us
consider the personal preference of user um for the bottom item bj. The expression is
as follows:

pmj = α + βm + β j + γT
mγj + (ξν

m→j)
T
∼
vb

j +(ξt
m→j)

T
∼
tb

j (16)

where α represents the global offset to be learned, βm and β j are the bias terms correspond-
ing to the user um and the bottom bj, respectively. γm and γj are the separate latent factors
of user um and bottom bj. Their inner product captures the latent preference of user um

towards bottom bj. ξv
m→j and ξt

m→j denote the latent visual and textual factors of user um

for the bottom bj, respectively.
∼
vb

j and
∼
tb

j correspond to the attentive visual and textual
features of the bottom bj, which were computed in Section 3.2.1. To summarize, the first
four terms in Equaton (16) encode the global latent preference, while the last two terms
encode the content-based latent preference of user um towards bottom bj.

3.2.3. Objective Function

Based on the BPR framework [18], we utilize a model that captures the implicit
interaction between users and fashion items. This model has been shown to effectively
represent implicit preferences in various studies [11,12,16,17,39,40]. We construct a training
set for training the BPR algorithm, ensuring its optimal performance.

D := {(m, i, j, k) | um ∈ U ∧ (ti, bj) ∈ Om ∧ bk ∈ B \ bj} (17)

where the quadruplet (m, i, j, k) denotes that the user um prefers the bottom bj over bk for
the given top ti. As for the compatibility embeddings and personal preference, the objective
function is defined as follows,

Lbpr = ∑
(m,i,j,k)∈D

[−ln(σ(em
ij − em

ik))] +
λ

2
‖ΘF‖2

F

= ∑
(m,i,j,k)∈D

[−ln(σ((µcij + (1− µ)pmj)

−(µcik + (1− µ)pmk )))] +
λ

2
‖ΘF‖2

F

(18)

where cik indicates the compatibility interaction between the top ti and bottom bk, and
pmk denotes the personal preference of the user um towards the bottom bk, whose specific
calculation is similar to Sections 3.2.1 and 3.2.2. λ is the non-negative hyperparameter, ΘF

refers to the set of parameters of the model, including ω
ti
v , ω

bj/bk
v , ω

ij/ik
t , α, βm, β j/k, γm,

γj/k, ξv
m→j/k,ξt

m→j/k. σ is the sigmoid function σ(x) = 1/(1 + e−x).

4. Experiment

To evaluate the proposed method, we conduct comprehensive experiments on the
large-scale real-world dataset IQON3000 [11] extracted from the social commerce website
IQON. These experiments were conducted to showcase the effectiveness of our approach.

4.1. Dataset

Our experiments were conducted on the IQON3000 real-world dataset [11], compris-
ing 216,791 outfits created by 3568 users using 650,373 fashion items. The outfit splits
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provided by the authors were utilized, including 170,601 quadruplets in the training set,
23,095 quadruplets in the validation set, and 23,095 quadruplets in the test set. Each fashion
item, encompassing all tops and bottoms, is associated with a visual image and a textual
description. We merged all quadruplets from the training set and incorporated signals
from both modalities to train the PCE-Net model.

4.2. Implementation

Visual Representation. To understand the visual attributes of fashion items, a con-
volutional neural network (CNN) is employed as the feature extractor. Deep CNNs have
demonstrated outstanding performance in image representation learning [41–43]. Specif-
ically, the ResNet-50 [44] is selected as the visual representation learning module. For
each fashion item image, the final global average pooling layer’s output is considered
the preliminary visual characteristics. These outputs are 2048-D vectors that serve as the
main visual features in the vision modality. By combining these features with the visual
attention branch discussed in Section 3.2.1, we obtain the ultimate visual attributes of each
fashion item.

Textual Representation. However, we encounter a limitation that must be acknowl-
edged here. Due to the closure of the fashion website IQON, we cannot source text
descriptions directly from the provided data URLs by the authors of GP-BPR [11]. Thus,
we rely on the text features previously extracted by the authors. The following section
will briefly overview their approach to extracting text features. The authors utilized the
category metadata and title descriptions as textual information for the fashion items. These
textual inputs were tokenized using the Japanese morphological analyzer Kuromoji. Each
word in the text description is then represented as a 300-D vector using Nwjc2vec [45],
a Japanese Word2vec method. Subsequently, the feature matrix for the overall textual
description is constructed, with each word’s feature vector occupying a distinct row. This
textual feature matrix is input into a single-channel CNN, comprising a convolutional layer,
a max pooling layer, and an activation layer. Ultimately, the output vector of each fashion
item, a 400-D representation, is obtained as the preliminary textual features. Therefore, we
adopt this textual representation as the initial textual modality features of the fashion items.
Subsequently, the top and bottom features are fed into the text attention branch to compute
the definitive textual features for each fashion item.

Detail Settings. The trade-off parameters π and µ are explored in the interval [0.0, 1.0],
with π = 0.5 and µ = 0.1 identified as the optimal values. During the training process, the
model parameters are randomly initialized in Equation (16) using the Normal Distribution.
Furthermore, the weights of the visual attention branch and textual attention branch
in Equations (6), (9), and (13) are respectively initialized using the Xavier method [46]
and Uniform distribution. For optimization, we utilize the Adam algorithm [47] with
a learning rate set as 0.001. The learning rate is investigated in the range [0.0005, 0.001,
0.005, 0.01]. To expedite the training and promote faster convergence, a mini-batch size
of 64 is employed. The proposed approach is fine-tuned for 100 epochs, and the model’s
performance is evaluated on the test set. Finally, the area under the ROC curve (AUC) [48] is
used as a metric to assess the effectiveness of the attention-based personalized compatibility
embedding network.

4.3. Results and Discussion

We consider the following baselines in the top-bottom pairs recommendation experi-
ments to evaluate the proposed model.

• POP-T: POP is frequently used as a baseline in recommender systems [49]. POP-T
simply selects the most popular bottoms for each top and vice versa. Here, “popularity”
is defined as the number of tops paired with the bottom, i.e., the number of top-bottom
pairs in the training set.

• POP-U: For this baseline [49], the number of users that used this bottom as a compo-
nent of an outfit in the training set is used to determine the “popularity” of the bottom.
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• RAND: The compatibility ratings between positive and negative pairs were ran-
domly assigned.

• Bi-LSTM: The bidirectional LSTM method in [8] modeled an outfit as an ordered
sequence. Its operating principle is to predict the next item conditioned on previous
ones. We keep the variables constant by setting the sequence length to 2, i.e., there are
only a top and a bottom.

• BPR-DAE: The baseline [16] uses a dual autoencoder network (DAE) to learn the
potential compatibility space by jointly modeling the consistent relationship between
visual and textual patterns and the implicit preference between items by Bayesian
Personalized Ranking.

• BPR-MF: This model [18] is one of the most commonly used techniques for person-
alized recommendation tasks, which captures the latent user-item interaction by the
Matrix Factorization (MF) method in the pairwise ranking tasks.

• VBPR: Unlike MF, the model [2] also considers the user’s preference for visual factors.
The model represents the visual characteristics of an outfit by averaging the visual
characteristics of the items in the set.

• TBPR: The difference between TBPR [2] and VBPR is using information from different
modalities.

• VTBPR: This model [2] uses a combination of both visual and text modalities to model
user preferences.

• GP-BPR: This baseline [11] combines visual and textual features of clothing with
personal preferences to jointly model general (item-item) compatibility and personal
(user-item) preferences, where matrix factorization for the user-item interaction matrix
is performed to obtain the potential user preferences.

• PAI-BPR: This model [12] is an attribute-based interpretable personal preference
modeling scheme, where personalization is achieved by taking inspiration from
GP-BPR [11] and adding attribute-wise interpretable results. Since the code is not pub-
licly available, we directly report the experimental results of Table III in the original
paper [12] for quantitative comparison.

The performance comparison of various techniques is shown in Table 1. These quanti-
tative data allow us to draw the following conclusions:

• BPR-DAE outperforms Bi-LSTM, demonstrating that the content-based model, which
captures the compatibility relationship between items by directly extracting features
from multimodal data, is superior to the sequential model (predicting the following
item from the previous one).

• VTBPR performs better than VBPR, TBPR, and BPR-MF, indicating the value of multi-
modal data in enhancing model performance.

• To solve the problem of personalized clothing matching, GP-BPR and PAI-BPR com-
bine generalized item-item compatibility and user-item preferences using multi-modal
characteristics. Since PAI-BPR uses an attribute classification network to address the
interpretability of the model, performance has been slightly improved.

• PCE-NET obtains the best performance compared to the above baseline, but there is
no modeling attribute classification module because PCE-NET does not focus on inter-
pretability problems. Our model can automatically capture the compatibility features
of multi-modal data using two attention branches separately, which indicates that
further development and exploitation of multi-modal data is necessary for embedding
learning tasks.
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Table 1. Performance comparison among different approaches in terms of AUC.

Approach AUC

Baselines

POP-T 0.6042
POP-U 0.5951
RAND 0.5014

Bi-LSTM 0.6675
BPR-DAE 0.7004
BPR-MF 0.7913

VBPR 0.8129
TBPR 0.8146

VTBPR 0.8213
GP-BPR 0.8314
PAI-BPR 0.8502

Proposed PCE-Net 0.8534

Qualitative Results. To visually demonstrate the superiority of our model compared
with GP-BPR [11] in personalized clothing matching and to analyze the impact of each
component in our model, we present multiple sets of test samples along with the model’s
evaluation of positives and negatives in Figure 3. As previously mentioned, the testing
quadruplet (m, i, j, k) indicates the user um prefers the bottom bj than bk for the given top
ti. In the first example involving user1, our model determines that the bottom bk is more
compatible with ti compared to bj. Further analysis reveals that our model can capture the
historical preference of users for brown, skirts, which stems from the contribution of the
visual attention branch. In contrast, GP-BPR [11] captures users’ preference for short skirts.
Even though our model predicts incorrectly, we can see that there is a visually compatible
relationship between ti and bk, which indicates that our model is capable of generating
some convincing matching suggestions. In the second example, our model learns better
than GP-BPR for visual features of fashion items.

Figure 3. Illustration of the method comparison and the influence of the attention-based compatibility
embedding and personal preference model-ing. All the quadruplets satisfy the ground truth that
{um, ti} : bi > bk. PCENET-C and PCENET-P denotes the above two components, respectively. “X”
and “×” separately indicates the correct and wrong judgements of the model.

In the first example involving user 3, the bottom bj and bk both have similar styles
of clothing in the user’s historical preferences, which may lead PCE-Net-P to predict



Appl. Sci. 2023, 13, 9638 12 of 19

incorrectly. However, by considering the fine-grained compatibility relationships between
fashion items from PCE-Net-C, black and white pairing is more common in the matching
rules, and white clothing is more versatile in the matching results, i.e., the matching degree
is well, so PC-E-Net finally obtains the correct evaluation result. In the second example,
the top ti and the bottom bk are indistinguishable in terms of visual features such as color,
which leads to an incorrect prediction of PCE-Net-C. At this point, component P (i.e.,
Personal Preference Modeling) enables PCE-Net to obtain the correct prediction result by
capturing the user’s historical preferences.

Above, we have demonstrated that our model outperforms other baseline models to a
certain extent. Additionally, both components of our model are indispensable and serve as
complementary sources of information to enhance its overall performance.

To assess the learning ability of the proposed PCE-Net, we visually analyze the
compatibility relation for positive and negative pairs, as well as the resulting compatibility
embedding space.

Compatible Relations Visualization. Figure 4 illustrates the application of t-SNE [50]
to represent the learned compatible relation space. Each dot in the plot represents the multi-
modal fusion feature of a top-bottom pair. The red dots represent compatible top-bottom
pairs, while the blue dots represent incompatible pairs. The separation of the two relations
learned by PCE-Net indicates that our model effectively distinguishes whether a compatible
relationship exists between the top-bottom pairs and produces convincing matching results.
We observe an intriguing occurrence of crossover points between the red and blue regions.
This can be attributed to two factors: (1) The attention mechanism renders compatibility
interaction modeling more intricate and implicit than general compatibility modeling.
(2) As mentioned earlier, textual attention relies on a top-bottom feature connection, which
means that the final features of an item may contain some characteristics of the other item,
resulting in erroneous relationship predictions.

Figure 4. Visualization for the compatible relations between the top-positive bottom pairs (red), and
the incompatible relations between the top-negative bottom pairs (blue) by using t-SNE. Best viewed
in color.

Compatibility Embeddings Visualization. In this part, we utilize t-SNE [4] to visual-
ize the distribution of some and all test triplets (i, j, k) from IQON3000 [11] in 2-dimensional
spaces. The results are shown in Figures 5 and 6. Figure 5 represents the compatibility
embedding space with ten triplets. A dotted line indicates the distance between two triplets
on the left. In the right part, the item enclosed in an orange box represents the given tops,
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while the green and red represent compatible bottoms and incompatible bottoms, respec-
tively. The length of the dotted line corresponds to the distance between the top and bottom.
In the latent compatibility space, compatible items should be closer. Both example triplets
satisfy this criterion, illustrating that our model effectively learns compatible embeddings.

Figure 5. Visualization for Compatibility Embedding of some samples from PCE-Net by using t-SNE.
we give two test triplet examples in the left part, and give their embedding distribution in the right
part. In the compatible space, the top ti and bottom bi are compatible, and hence their distance is
closer than the incompatible items bk.

1 

 

 Figure 6. Visualization for Compatibility Embedding of all test samples from PCE-Net by using
t-SNE. The blue part represents all the tops’ embeddings, and the red and green part denote the
posi-tive bottoms’ and negative bottoms’ embeddings, respectively. Best viewed in color.

Figure 6 illustrates the visualization of all feature distributions obtained by combining
the multi-modal features of each test triplet (i, j, k). The blue dots represent the tops, while
the red and green dots denote the positive bottoms and negative bottoms, respectively.
Notably, the blue region is distinct from the areas occupied by the red and green dots.
Consequently, the overlapping feature distribution between the red and green dots appears
reasonable since they both pertain to the same category. This similarity results from our
model’s ability to employ two feature extractors and two attention branches to learn the
embedding of fashion items.
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4.4. Ablation Study

Different Modalities. We further assess the contribution of different input modalities
in our model, specifically, the two variants of PCE-Net: PCE-Net-V and PCE-Net-T. PCE-
Net-V utilizes only the visual modality to extract compatibility features, while PCE-Net-T
focuses on the textual modality. Table 2 presents the performance of these modalities when
used as inputs for PCE-Net. To provide a more precise comparison, we also offer the
experimental results of the optimal baselines (GP-BPR [11] and PAI-BPR [12]) using only
a single modality. Based on the findings in Table 2, we make the following observations:
(1) PCE-Net-V and PCE-Net-T outperform GP-BPR-V and PAI-BPR-V, and GP-BPR-T and
PAI-BPR-T, respectively. This validates the effectiveness of the attention branches we intro-
duced to enhance model performance for different modalities. (2) PCE-Net performs better
than both PCE-Net-V and PCE-Net-T, indicating that utilizing both modalities as com-
plementary information improves the learning of compatibility embedding and enhances
personalized preference modeling. (3) Interestingly, we note that model-T outperforms
model-V in the GP-BPR [11] and PAI-BPR [12] baselines. The authors argue that critical
features like pattern, style, and brand can be better summarized in the textual informa-
tion. For instance, fashion items are more likely to be compatible if they share the same
brand. However, our model PCE-Net-V attains equivalent performance to PCE-Net-T
and even slightly outperforms the latter, suggesting that the visual attention branch effec-
tively captures compatibility features automatically and enhances personalized preference
modeling.

Table 2. Performance comparison among different modalities in terms of AUC.

Modality Approach AUC

Visual modality
GP-BPR-V 0.8239
PAI-BPR-V 0.8413
PCE-Net-V 0.8485

Textual modality
GP-BPR-T 0.8313
PAI-BPR-T 0.8432
PCE-Net-T 0.8475

Muti-modal
GP-BPR 0.8314
PAI-BPR 0.8502
PCE-Net 0.8534

In Equation (13), the non-negative parameter π denotes the weight assigned to the
visual modality. Based on the aforementioned conclusions, it is imperative to incorporate
multiple modalities concurrently into the model. Thus, Figure 7 presents a line graph
depicting the model’s performance at various values of π. As the figure reveals, our model
achieves optimal performance when π = 0.5, indicating that both modalities hold equal
importance.

Figure 7. Performance of PCE-Net with respect to the trade-off parameter π, π = 0.5 is the best.
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Attention Branch. The Attention Branch plays a crucial role in our study. To evaluate
its impact on the model across different modalities, we present quantitative data in Table 3.
The findings highlight that employing two separate attention branches to encode the
preprocessing features of visual and textual modalities effectively captures compatible
interaction features. Furthermore, these features serve as complementary data, ultimately
enhancing the model’s overall performance.

Table 3. Performance comparison of the two attention branches in terms of AUC.

Approach AUC

Attention branch
Visual Attention 0.8432
Text Attention 0.8508

(V + T) Attention 0.8534

Different Component. To evaluate the individual contributions of each component
in our model, we present the results in Table 4, specifically focusing on two components:
compatibility embedding modeling and personal preference modeling within PCE-Net.
Our observations are as follows: (1) Our comprehensive model surpasses the performance
of the two derived models containing only one component. This substantiates the vital role
each component plays in our model. (2) PCE-Net-P outperforms PCE-Net-C, signifying
that users’ historical preferences effectively capture their personalized preferences, thereby
influencing the outcome of the personalized clothing matching task.

Table 4. Performance comparison among each component in terms of AUC.

Approach AUC

Different component PCE-Net-P 0.8376
PCE-Net-C 0.6982

ours PCE-Net 0.8534

Additionally, our model’s performance in Equation (2) is evaluated by showcasing its
performance as a line graph in Figure 8, within the range [0.0, 1.0]. For the sake of clarity in
comparing with the baseline GP-BPR [11], we also include the experimental results of both
models in the same line graph, highlighting the varying parameter µ. However, we cannot
compare our model with PAI-BPR [12] due to the original paper’s absence of publicly
available code and relevant experimental results. The figure demonstrates that, for most
parameter values, our model outperforms GP-BPR, thereby affirming the validity of our
approach. It is worth noting that PCE-Net exhibits lower performance than GP-BPR when
µ = 1.0, likely because our text attention interaction branch constructs interactions between
the top-bottom pairs, resulting in the fusion of their respective features. Consequently,
without the personalized preference component’s guidance, our model’s performance in
item recommendation is compromised.

Figure 8. Performance of PCE-Net with respect to the trade-off parameter µ. Best viewed in color.
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4.5. User Study

An additional user study is conducted to further validate our model’s effectiveness. A
total of 100 participants are selected for this study. They are then presented with seven ques-
tions, depicted in Figure 9 (only six are displayed). As an illustration, for the first question,
participants are provided with five pairs representing their historical style preferences from
top to bottom. Following that, they are shown a triplet in the test set, consisting of a top, a
positive bottom, and a negative bottom. The top serve as the condition, while the positive
and negative bottoms are given as two options. It should be noted that the order in which
the options are presented is unrelated to the positive or negative bottom. Subsequently,
all participants are asked to choose a compatible bottom aligned with their historical pref-
erence for the given top. More than half of the participants choose the ”positive bottom”
option for each question, except the last one.

Figure 9. Some examples of the questions presented to the participants for the user study.

In Q1, the user exhibits a preference for black bottoms and primarily favors black-black
matching rules. Notably, 86% of the participants chose the positive bottom A, indicating
that our model successfully simulates user preferences. It is worth mentioning that bottom
A and bottom B in Q3 possess similar visual styles and align with the user’s historical
preferences. This fact influenced 43% of the participants to choose the negative bottom
B. Upon consultation, it became apparent that they largely overlooked the compatibility
features of bottom A and the top (please refer to the enlarged pink patterns for color
reference). In contrast, our model adequately considered these compatibility features,
resulting in accurate prediction outcomes. This further illustrates the capability of our
model to learn fine-grained compatibility embeddings and enhance the performance of
downstream tasks. As for Q6, due to an incorrect prediction by our model, this question was
excluded from the user study to determine whether the model could generate convincing
recommendation suggestions. Surprisingly, 70% of the participants also selected option B,
the negative bottom. This implies that our model’s misguided choice could be attributed
to its assertion that the user prefers black bottoms to complement the given top. Despite
the incorrect prediction in this particular case, the fact that 70% (>50%) of the participants
selected the same option as suggested by our model reinforces the notion that our model can
provide persuasive bottom recommendations that exhibit compatibility with the given top.

5. Conclusions and Future Work

Our research addresses the task of modeling compatibility embeddings in the context
of fashion. To achieve this, we propose an attention-based personalized compatibility
embedding network called PCE-Net, which consists of two components: attention-based
compatibility embedding modeling and attention-based personalized preference modeling.
By incorporating multiple attention branches for visual and textual modalities of fashion
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items, our model automatically captures features relevant to compatibility embedding,
thereby benefiting downstream tasks such as top-bottom matching. To evaluate the ef-
fectiveness of our model, we conducted various experiments on the IQON3000 dataset.
These experiments encompassed quantitative and qualitative comparisons, ablation studies
for each modality/component/attention branch, t-SNE visualization, and user studies.
The results of these experiments corroborated the model’s ability to learn compatibility
embeddings and generate convincing matching results.

However, it is essential to acknowledge a limitation of our work: we only model users’
personalized preferences using potential preference factors for bottoms and content-based
preference factors. In the future, we intend to address this limitation by incorporating
a component that can search for visually or textually similar tops in the candidate pool,
enabling the identification of compatible bottoms for personalized recommendations and
ultimately enhancing the performance of the recommendation task for fashion collections.
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