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Abstract: This article presents the friction test results for cold-rolled low-carbon DC06 steel sheets,
which are commonly processed into finished products using sheet metal forming methods. A strip
drawing test with flat dies was used in the experimental tests. The strip-drawing test is used to
model the friction phenomena in the flange area of the drawpiece. The tests were carried out using
a tester that enabled lubrication with a pressurised lubricant. The friction tests were carried out at
different nominal pressures, oil pressures, and friction conditions (dry friction and oil lubrication).
Oils destined for deep-drawing operations were used as lubricants. Neural networks with radial
base functions (RBFs) were used to explore the influence of individual friction parameters on the
value of the coefficient of friction (COF). Under lubrication with both oils considered, the value of
the COF increased with decreasing oil pressure. This confirms the correctness of the concept of the
device for reducing friction in the flange area of the drawpiece. The developed concept of pressurised
lubrication is most effective at relatively small nominal pressures of 2–4 MPa. This range of nominal
pressures corresponds to the actual nip pressures when forming deep-drawing steel sheets. Under
conditions of dry friction, the values obtained for the COF rise above 0.3, while under lubrication
conditions, even without pressure-assisted lubrication, the COF does not exceed 0.2. As the nominal
pressure increases, the effectiveness of the lubrication exponentially decreases. It was found that the
Sq parameter carries the most information regarding the value of the COF. The RBF neural network
with nine neurons in the hidden layer (RBF-8-9-1) and containing the Sq parameter as the input was
characterised by an R2 of 0.989 and an error of 0.000292 for the testing set.

Keywords: coefficient of friction; deep drawing; sheet metal forming; stamping tools

1. Introduction

Sheet metal forming (SMF) is the basic process for obtaining a finished product with
a complex shape. When designing the deep drawing process for a product or a semi-
finished product from sheet metal, the mechanisms specific to this technology need to be
taken into account to guarantee the appropriate surface roughness of the drawpiece and
high durability of the tool [1]. In the cylindrical drawpieces formed, there is the so-called
drawing zone (in the flange part of the drawpiece) and the stretching zone in the bottom of
the drawpiece [2]. In the bottom, there are tensile stresses in both radial and circumferential
directions, and in the flange area, there are circumferential compressive and radial tensile
stresses [2,3].

Basically, stamping tools consist of a punch, a die, and a blank holder. In the SMF
process, there are two phenomena that hinder being able to obtain drawpieces of the desired
shape and dimensions [2]: wrinkling in the flange zone and circumferential cracking of
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the wall of the drawpiece. The task of the blankholder is to prevent wrinkling of the sheet
in the flange zone. At the same time, the blankholder should not block the movement of
the sheet. Therefore, the blankholder force, specifically the nominal pressure, should be
properly selected [4,5]. When forming drawpieces with complex shapes, especially in the
automotive industry, draw beads are additionally used to direct the flow of material in key
areas around the perimeter of the drawpiece [6].

Friction is a complex function of, above all, normal pressures [7,8], lubrication condi-
tions [9], load type (static or dynamic load) [10], sliding speed [11], material combination
of the friction pair [12], tool coating [13], temperature [14], and surface roughness and
topography both of the tool and the sheet metal [15]. The phenomenon of friction in
the blankholder zone is experimentally modelled using the strip drawing test [16] with
different tool geometries: flat/flat, cylinder/cylinder, and flat/cylinder. In such tests, a
strip of sheet metal is pulled between the countersamples, and the pulling force (friction
force) is measured. Based on the value of the clamping force of the countersamples, it is
possible to estimate the value of the coefficient of friction (COF). The variable parameters
in the strip drawing test are the clamping force, the surface roughness of the tools and
countersamples, the countersample material, and the friction conditions. An overview of
various tribometers for modelling the phenomenon of friction in specific places of a formed
sheet can be found in papers by Trzepieciński and Lemu [17] and Schell et al. [18]. The strip
drawing test is one of the most commonly used experimental models for determining the
COF in SMF [19].

The effect of changing the lubrication conditions on the value of the COF and the
friction behaviour of sheets is the most studied issue. Rakotomahefa [20] used the strip
drawing test to analyse the tribological behaviour of a zinc-coated dual-phase steel strip.
Various sliding speeds, nominal contact pressures, and the amount of lubricant were
considered as process parameters. It was found that the lubrication effect is closely related
to the surface roughness of the sheet metal. Więckowski et al. [21] analysed the effectiveness
of vegetable-based lubricants in the friction testing of X20Cr13 stainless steel in contact
with X165CrV12 flat countersamples. The effect of unit pressure on the value of the COF
was considered. It was found that an oil-based lubricant with the addition of boric acid is
very effective in protecting the forming tools against galling. Schell et al. [22] developed
the flat die strip drawing test for hot forming. The transferability of friction between three
lubricants at various temperatures when testing AW-7075 aluminium alloy sheets was
tested. It was shown that the performance of the lubricant may depend on its ability to
transfer from the die to the blank at low contact pressure. Trzepieciński [23] analysed the
effect of lubrication with vegetable oils on the COF of DC04 steel sheets using the strip
drawing test with rounded (r = 200 mm) dies. The effect of tool surface roughness on the
value of the COF was also investigated. It was found, in general, that all the vegetable oils
(i.e., linseed, rapeseed, sunflower, and palm) with the addition of boric acid were shown
to be effective in lowering the COF. Jewvattanarak et al. [24] used different lubrication
conditions at two sliding speeds (10 and 100 mm/min) to determine the COF of a hot-rolled
JSH780R steel sheet. The experimental results revealed that a mixture of chlorine and
sulphur additives in the lubricant provided the best adsorption ability for the metal oxides.
At higher sliding speeds, a higher amount of sulphur could interact with the metal oxides
due to the increase in temperature and higher adsorption.

The metal sheet undergoes deformation during the deep drawing process, which
changes the initial roughness of the sheet metal surface. Masters et al. [25] tested the
frictional behaviour of AW-5754, AW-6111, and AW-6451 aluminium alloy sheets pre-
stretched at strains of 2%, 5%, 10%, and 15%. They found that the COF increases with the
level of pre-strain. However, the use of solid lubricants maintains uniform friction at strains
up to 10%. Trzepieciński et al. [26] used the flat die strip drawing test to investigate the
frictional performance of DC04 steel strips pre-strained at 7, 14, and 21% in the presence
of non-edible oils (Moringa and Karanja). The COF decreased with increasing contact
pressure in the range of pressures between 3 and 12 MPa.
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The shape of the countersamples and the protective coating on the tool ensure that
specific contact conditions are created. Wu and Groche [27] analysed the wear development
of galvanised high-strength dual-phase steel HCT98 in the strip drawing test with rounded
dies. The results revealed that wear development, wear mechanisms, and tool life span
depend on the initial surface roughness and tool hardness. Groche and Wu [28] demon-
strated in strip drawing tests that tools with higher hardness show better wear resistance
to galling when in contact with low-alloy, high-strength steels. Zabala et al. [29] used the
strip drawing test with rounded dies to analyse the interplay between the sheet and tool
surface roughness on the friction of an AW-1050 aluminium strip against different die
surface topographies. This paper underlines the key role of die surface functionalization in
preventing galling. The authors concluded that the reduced friction could be attributable
to the greater ability to retain lubricant in the oil pockets. Makhkamov [11] determined
the COF of high-strength, low-alloy HSLA 380 steel sheets in a flat die strip drawing
tribometer. Lubricant type, sliding speed, contact area, contact pressure, and surface
roughness of the samples were considered. It was concluded that lubrication minimises
the effect of the directionality of the tool surface topography on the friction behaviour.
Ter Haar [30] developed a strip-drawing tribotester with cylindrical dies. Coated and
uncoated steel sheets were tested. Based on the test results, several fitting curves were
used to describe the frictional behaviour of sheet metal in terms of a generalised Stribeck
curve. Guillon et al. [31] proposed a method to reduce extended slippage of EN AW-6061
aluminium alloy sheets by using a strip drawing test with rounded CrN and amorphous
diamond-like carbon (DLC)-coated dies. They concluded that CrN-coated dies seem to
be the best solution for producing well-drawn specimens. Payen et al. [32] used a flat die
strip drawing test to investigate the effects of contact pressure on the frictional behaviour
and roughness changes of hot-dip galvanised mild steel sheets. Contact pressures, slid-
ing speeds, and four morphological surface chemical treatment textures were analysed
as the process parameters. It was revealed that the surface roughness of sheet metals is
a decreasing function of pressure except during the stick-slip phase, when the surface
roughness evolves erratically. The COF above a certain pressure, depending on the texture
morphology, decreases as pressure increases. In this article, lubrication with forced oil
pressure is proposed for increasing the efficiency of sheet lubrication in the flange zone in
SMF. A cold-rolled low-carbon DC04 steel sheet, which exhibits excellent deep-drawing
properties under all types of deformation, was used as the test material. A proprietary
friction tester integrated with an oil pump was designed and manufactured. According
to the best of the authors’ knowledge, there are no other studies on forced oil pressure in
the blankholder zone. An experimental campaign was planned, taking into account the
variable pressure of the blankholder and the variable oil pressure. Two commercial oils
of different viscosities and grades adapted to the deep-drawing process were used. Due
to the analytically unpredictable interactive influence of many parameters on the friction
phenomenon, radial basis function (RBF) artificial neural networks (ANNs) were used to
determine the interaction between the input parameters and the output parameter (COF). In
Section 2.1, the research material is characterised. The experimental campaign and friction
process parameters using strip drawing tests with flat dies are described in Section 2.2.
The RNF ANN characteristics and verification method of the best RBF network structure
are shown in Section 2.3. Experimental results presenting the influence of friction process
parameters on the change of COF and coefficient of efficiency are presented and discussed
in Section 3.1. Finally, Section 3.2 presents the main results of neural modelling. The work
is completed with the quantitative and qualitative conclusions shown in Section 4.

2. Materials and Methods
2.1. Test Material

The research material was a 0.75-mm-thick cold-rolled low-carbon DC06 (1.0873) steel
sheet. Samples oriented according to the sheet rolling direction were guillotined from the
sheet metal. For information purposes, the chemical composition of the DC06 steel sheet,
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according to the EN 10130 standard, is as follows (wt.%): C—0.02 (max.), Mn—0.25 (max.),
S—0.02 (max.), P—0.02 (max.), Ti—0.3 (max.), Fe—the remainder. The basic mechanical
properties of the sheet metal in the rolling direction were determined using a Z100 uniaxial
tensile testing machine. The tests were carried out at ambient temperature in accordance
with the requirements of the EN ISO 6892-1 standard. Three replicates were performed,
and the average values of the basic mechanical parameters (Table 1) were determined.

Table 1. Selected mechanical parameters of the test material.

Strength Coefficient
K, MPa

Strain Hardening
Exponent n

Yield Stress Rp0.2,
MPa

Ultimate Tensile
Stress Rm, MPa

Elongation
A50, %

561.4 0.242 154.7 310.9 25.3

The surface roughness parameters of the DC06 sheet metal in the as-received state
were determined using a T8000RC profilometer. The measuring area was 5 mm × 5 mm.
The surface roughness parameters and the topography of the test material are shown in
Figure 1a. In turn, Figure 1b shows the Abbott–Firestone curve. The method for deter-
mining the surface roughness parameters and their meaning can be found in ISO 25178-2.
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Figure 1. (a) The surface roughness parameters and topography of the sheet metal, and (b) the
Abbott–Firestone curve showing the distribution of the surface ordinates.

2.2. Experimental Testing

The authors’ own friction tester (Figures 2 and 3a) integrated with an Argo-Hytos
hydraulic power pack (max. pressure 6.3 MPa, power 0.18 kW, flow 0.4 dm3/min) was
used in the experimental tests for determination of the COF. The tribotester was mounted
in the lower gripper of a commercial Zwick-Roell Z100 testing machine. Strips of sheet
steel measuring 130 mm long by 25 mm wide were used as samples (Figure 3b) in the
friction tests. The aim of the experimental research was to build a knowledge base for
training ANNs. The strip drawing test consists of drawing a strip of sheet metal between
flat counter-specimens (Figure 4), which contain the channels supplying oil to the contact
zone. The value of the COF µ was determined on the basis of the value of the pulling force
(friction force Ffriction) and the clamping force of the countersamples (feed force Ffeed).

The countersamples were made of cold-worked steel NC6 (1.2063) with a hardness of
197.2 HV. The hardness measurement was carried out using a Vickers hardness tester from
the Qness 60 EVO series with a test force of 98.07 N. The topography of the countersamples
and the Abbott–Firestone curve of countersample surface are presented in Figure 5a,b,
respectively. The values of the basic parameters of the surface roughness are as follows:
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Sa = 0.338 µm, Sq = 0.531 µm, Sz = 11.7 µm, Sv = 5.95 µm, Sp = 5.72 µm, Sku = 18.2,
Ssk = −0.308.
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The friction tests were carried out for different contact pressures pn, corresponding
to nominal pressures between 2 and 8 MPa. This range corresponds to typical blank
holding pressures in the flange area of the drawpiece [2,33]. The value of the oil pressure
po was in the range between 0.6 and 1.8 MPa. The maximum value of the oil pressure was
selected to ensure there was no oil leakage between the countersamples and the tested sheet
metal. Reference tests were also carried out with classic lubrication of the contact surface
without supplying oil under forced pressure (po = 0 MPa). Two commercial oils, S100+
and S300, destined for deep-drawing operations with kinematic viscosities ηk at 20 ◦C of
360 mm2/s and 1135 mm2/s, respectively, were used. These oils contain additives that
increase lubricating properties and anti-corrosion additives. The oil viscosity measurement
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test was carried out using an Ostwald viscometer. Dry friction tests were also carried out.
The surfaces of all samples were cleaned before the friction tests.
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The contact force value was recorded using a type 9345B force sensor and LabView
software. The value of the friction force was recorded by the measuring system of the
Zwick-Roell Z100 testing machine.

2.3. Artificial Neural Networks

It is worth mentioning that there are different types of neural networks that vary,
among other things, in terms of the structure and applied functions of neural activation. In
the hidden layers of a multilayer ANN (multilayer perceptron—MLP), there are usually
neurons with sigmoidal activation functions. Therefore, the operation of the MLP consists of
dividing the space between the input signals by means of hyperplanes—multidimensional
equivalents of straight lines dividing two-dimensional space or planes dividing three-
dimensional space—into areas corresponding to individual classes distinguished by the
ANN. However, there are also networks capable of dividing space using other boundary
surfaces, for example, hyperspheres (multidimensional equivalents of circles in a plane



Appl. Sci. 2023, 13, 9572 7 of 19

or spheres in three-dimensional space). Such surfaces are most often obtained by using
RBF neural networks. The differences in the operation of the MLP and RBF ANNs are
illustrated in Figure 6.
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The effectiveness of the ANN model strongly depends on the set of data used for its
training because the neural network in the learning process acquires the ability to model
only those relationships that were observable in the training set. Therefore, one cannot
expect correct solutions for issues that are fundamentally different from those used during
training. When using neural networks, it is important to determine what data should be
included in the training set in order to build an effective neural model. For this purpose, it is
necessary to determine, first of all, on the basis of which variables (input data) it is possible
to achieve the correct generation of the desired output data. At this stage, it is necessary to
know the specifics of the model issue. One of the problems encountered in the learning
process is so-called overfitting. This occurs when the model, at the end of the training
process, no longer adjusts to the basic shape of the approximated relationship but to the fine
details represented by individual data from the training set. A validation process is used to
avoid overfitting the training set while training the network. For this purpose, a validation
set is required for independent control of the training process based on the training set.
The simultaneous reduction of the training error and the validation error proves the correct
course of the learning process. On the other hand, reducing the learning error with a
constant or increasing validation error suggests overfitting. This means losing the ability
of the ANN to generalise and, as a result, getting worse and worse results for new cases
while improving the fit only to the training set. By observing the training error and the
validation error during training, the user can conclude whether the network architecture
is correct or whether it needs to be extended or reduced. During training, the network
does not adjust to the validation set in the same way as to the training set, but it indirectly
influences the final model selection. For this reason, the quality of the responses provided
by the ANN for the validation set also does not allow for completely certain conclusions
about its effectiveness with regard to new data not used in the training process. It can be
assumed that the accidental ANN model will work correctly in relation to the training set
and the validation set; however, its ability to generalise will still be unsatisfactory. For this
reason, it is advisable to create a third data set, used only to assess the quality of the model
after its training is completed. This is the so-called test set. The data from this set is not
involved in the training and validation processes. When reporting the results obtained by
the ANN model, one should refer primarily to the test set because it is the only one that
allows objectively concluding how the model will predict new, completely unknown cases.

Due to the simplified learning algorithm of RBF ANNs and smaller requirements
regarding the amount of training data in relation to the MLP, in this article, RBF networks
(Figure 7) were used to analyse the friction phenomena. In the analysis performed, the
output and input variables were first selected.
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Figure 7. Architecture of the RBF neural network.

The input variables were nominal pressure, oil pressure, viscosity, and selected surface
roughness parameters (Sa, Sq, Sku, Ssk) of the sheet metal. These surface parameters were
indicated in the literature [34–36] as the most important in analysis of the friction of sheet
metals. Table 2 shows the groups of input and output variables used in the selection of the
network structure, and Figure 8 presents a block diagram for selecting the best network
structure. Table 3 presents the range for each input and output parameter.

Table 2. List of groups of input variables used in the selection of the network structure (an output
variable was the COF): • – variable included in the ANN.

ANN Denotation Nominal Pressure pn (MPa) Oil Pressure po (MPa) Viscosity ηk (mm2/s) Sa (µm) Sq (µm) Sku Ssk

ANN_1 • • • • – – –

ANN_2 • • • – • – –

ANN_3 • • • – – • –

ANN_4 • • • – – – •
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Table 3. The range for each input and output parameter.

Parameter Range of Variability

pn (MPa) 2–8

po (MPa) 0.6–1.8

ηk (mm2/s) 0–1135 *

Sa (µm) 1.07–1.96

Sq (µm) 1.33–2.42

Sku 2.5–3.0

Ssk −0.0967–0.395
*—ηk = 0 is assumed for dry friction conditions (without lubrication).

The data set containing the results of 36 experiments was divided into three sets:
training, validation, and testing. The purpose of the test and validation sets was to check
the correct operation of the selected solution models, and the rest of the data were included
in the training set (used directly for training the network). The following proportions were
adopted: 70% of the experimental data were allocated to the training set, 15% to the test set,
and 15% to the validation set. The experimental data were randomly assigned to specific
sets. The ratio between the total number of data sets and the total number of input factors
is equal to 9.

In the analyses regarding the search for optimal RBF ANN models, a tool supporting
the creation and testing of neural networks, the so-called automatic network designer
(AND), available in the Statistica 13.3 package, was used. AND uses advanced multi-
parameter optimisation algorithms, which allow the testing of a large number of networks
in a short time and facilitate the automatic selection of the best models. It was assumed
that the AND will generate a certain number of networks that will be automatically trained
based on the experimental data and that only the five best networks will be retained after
validation of the training process.

3. Results and Discussion
3.1. Experimental Results

Under lubrication with both oils considered, the value of the COF increased with
decreasing oil pressure. This conclusion is valid for all the nominal pressures analyzed.
This confirms the correctness of the concept of the device for reducing friction in the flange
area of the drawpiece. In general, the higher the nominal pressure value, the smaller
the difference between the COF determined for different oil pressures. When the sheet
is heavily loaded, the nominal pressure and mechanical cooperation of the summits of
the surface asperities have a dominant influence on the friction phenomena. Under these
conditions, the oil, even under high pressure, is not able to effectively reduce the COF. The
developed concept of pressurised lubrication is most effective at relatively small nominal
pressures of 2–4 MPa. Such pressure values correspond to the actual pressures applied
during the deep-drawing of steel sheets [2,33]. Under conditions of dry friction, the values
obtained for the COF rise above 0.3, while under conditions of lubrication, even without
pressure-assisted lubrication, the COF values do not exceed 0.2 (Figure 9). The value of
the COF initially increases in the nominal pressure range of 2–6 MPa and decreases after
reaching the maximum value. This is a phenomenon also observed by other authors [37–39]:
after exceeding a certain pressure value, the relationship between the friction force and
the contact force is not proportional, and consequently, the value of the COF decreases. It
should be remembered that in SMF, a very hard tool and a relatively soft sheet come into
contact. So, the friction phenomena are more intense than in machine nodes. Oil lubrication
significantly affects the stability of the friction process and reduces error bars.
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It seems crucial to determine the effect of lubrication on the change in the COF
in relation to the conditions of conventional lubrication (without pressurised lubricant).
For this purpose, the coefficient of lubrication efficiency (CLE), defined as follows, has
been introduced:

CLE =
µp − µp0

µp
· 100% (1)

where µp is the COF determined at pressure-assisted conditions and µp0 is the COF deter-
mined at conventional lubrication (po = 0 MPa).

Figure 10 confirms that pressure lubrication is most effective at low nominal pressures.
Lubrication efficiency increases with increasing oil pressure. A liquid medium placed
between two rubbing surfaces acts as a cushion. Oil pressure-assisted lubrication ensures
better oil filling of all valleys in the surface topography. Under these conditions, the summits
of the surface asperities are not flattened, and the surface topography is characterised by
valleys with a large volume holding the lubricant. The lubrication efficiency of both oils,
S100+ (Figure 10a) and S300 (Figure 10b), is similar, and for the nominal pressure of 2 MPa,
it is about 15–50% depending on the oil pressure. As the nominal pressure is further
increased, the value of the CLE decreases exponentially. At the highest tested nominal
pressure of 8 MPa, the value of the CLE does not exceed 3–15%. The lubrication efficiency
clearly decreases with the value of the oil pressure. It should be noted that the oil pressure
cannot be increased arbitrarily because, at a certain pressure value, oil will leak from the
contact zone and, consequently, reduce the pressure of the ‘lubricating cushion’. In the
case of S300 oil lubrication (Figure 10b) with an oil pressure of 1.2 MPa, a favourable
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increase in the CLE was observed at a nominal pressure of 8 MPa. This behaviour was
not observed in the tests with S100 oil (Figure 10a). The explanation may be a three-fold
difference in the kinematic viscosity of these oils. Two commercial oils, S100+ and S300, are
characterised by kinematic viscosities at 20 ◦C of 360 mm2/s and 1135 mm2/s, respectively.
When testing sheets with a specific surface topography containing closed lubricant pockets
under a sufficiently high nominal pressure, a sufficiently high hydrostatic pressure could
be generated in the closed oil pockets, which, despite the increased nominal pressure,
effectively separated the rubbing surfaces. As a consequence, there is a slight increase in the
coefficient of lubrication efficiency. During friction with high pressures, the formation of
hydrostatic pressure can only slightly increase the effectiveness of lubrication. It is known
that during friction at high pressures, the mechanical contact between the summits of the
surface asperities dominates.
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3.2. Artificial Neural Networks

The possible influence of the selected surface roughness parameter was considered
independently by building an independent network according to the scheme in Table 2.
Tables 4–7 present the statistics of the five networks with the best quality for data sets
ANN_1, ANN_2, ANN3, and ANN_4, respectively. The statistical values were determined
for all data sets. The network structure was saved as a code composed of four elements:
RBF-x-y-z, (RBF—network type; x—number of inputs; y—number of neurons in the hidden
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layer; and z—number of outputs). The quality of the network is determined by the
coefficient of determination, R2.

Table 4. Statistics of the selected network for input data set ANN_1.

No. Architecture
of RBF ANN

Quality of
Training

Quality of
Testing

Quality of
Validation

Error for
Training Set

Error for
Testing Set

Error for
Validation Set

1 RBF-8-9-1 0.871618 0.803771 0.438966 0.000894 0.003857 0.000901

2 RBF-8-9-1 0.783536 0.771894 0.335256 0.001436 0.004312 0.000897

3 RBF-8-8-1 0.553045 0.601645 0.753373 0.002582 0.007471 0.000725

4 RBF-8-8-1 0.596346 0.903178 0.332278 0.002405 0.006046 0.000817

5 RBF-8-8-1 0.937774 0.986012 0.487998 0.000448 0.000507 0.000147

Table 5. Statistics of the selected network for input data set ANN_2.

No. Architecture
of RBF ANN

Quality of
Training

Quality of
Testing

Quality of
Validation

Error for
Training Set

Error for
Testing Set

Error for
Validation Set

1 RBF-8-9-1 0.978036 0.989737 0.089184 0.000162 0.000292 0.000204

2 RBF-8-8-1 0.912376 0.898732 0.519752 0.000623 0.001936 0.000446

3 RBF-8-8-1 0.622464 0.704487 0.774165 0.002278 0.006728 0.000407

4 RBF-8-7-1 0.307466 0.772568 0.454893 0.003367 0.009136 0.000272

5 RBF-8-8-1 0.719541 0.907828 0.518341 0.001794 0.004651 0.001069

Table 6. Statistics of the selected network for input data set ANN_3.

No. Architecture
of RBF ANN

Quality of
Training

Quality of
Testing

Quality of
Validation

Error for
Training Set

Error for
Testing Set

Error for
Validation Set

1 RBF-8-7-1 0.747877 0.697086 0.796668 0.001639 0.005628 0.000335

2 RBF-8-9-1 0.809854 0.866648 0.635650 0.001280 0.003743 0.000738

3 RBF-8-8-1 0.397396 0.188642 0.670846 0.003132 0.009617 0.000299

4 RBF-8-7-1 0.847235 0.987671 0.889200 0.001050 0.001670 0.000087

5 RBF-8-8-1 0.965571 0.980861 0.521025 0.000252 0.000435 0.000256

Table 7. Statistics of the selected network for input data set ANN_4.

No. Architecture
of RBF ANN

Quality of
Training

Quality of
Testing

Quality of
Validation

Error for
Training Set

Error for
Testing Set

Error for
Validation Set

1 RBF-8-8-1 0.894587 0.974533 0.627975 0.000743 0.002112 0.000280

2 RBF-8-9-1 0.934342 0.974127 0.323185 0.000472 0.000778 0.000374

3 RBF-8-8-1 0.874248 0.987826 0.782566 0.000878 0.003250 0.000074

4 RBF-8-8-1 0.925234 0.982205 0.579015 0.000535 0.001283 0.000071

5 RBF-8-7-1 0.591974 0.710101 0.346976 0.002416 0.006794 0.000429

In the analysis of the experimental results, a search for the most promising network
architecture was conducted. Due to the significant impact of random effects on the final
efficiency of the obtained network, comparing the quality of individual models with
different architectures cannot be the basis for recognising one particular architecture as
‘more promising’ than another. It often happens that a network with an architecture less
suitable for modelling the specific phenomenon under consideration accidentally achieves
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better results than a model with a potentially more appropriate architecture because a
more favourable initial set of weights will be randomly selected for it. In general, however,
networks with a similar architecture are characterised by similar efficiency in solving a
specific task.

As mentioned earlier, a group of five structures of different RBF networks was obtained
with the help of the AND. Their effectiveness was then compared. On this basis, the
architecture potentially most beneficial for the operation of the network was selected. In the
case of neural networks, it is practically impossible to say with certainty that the developed
model is ‘the best’ possible solution to the problem under consideration. When evaluating
and comparing the efficiency of the neural networks of the models presented in this paper,
the smallest training and validation errors were selected as indicators of the ANN’s quality.

In issues referring to the use of neural networks, the error measure referred to as the
mean square error (MSE) is most often used. It is a measure based on the sum of the squares
of the differences between the obtained and the actual value of the network output for all
individual cases included in a given set of data [40]:

MSE =
n

∑
i=1

(yi − ŷi)
2

n − p
(2)

where yi represents the actual COF values, ŷi represents the predicted COF values, n repre-
sents the number of data, and p represents the number of parameters within the model.

Errors during summation are squared to avoid the effect of compensating positive
errors by negative errors (after squaring, every error is positive), and moreover, squaring
makes the measure used sensitive to large errors. The resulting SSE is divided by the
number of elements in the considered set of cases in order to obtain the MSE (per single
case). Often, the square root of the MSE is taken to obtain error values in the same units in
which the network output value is measured, which facilitates their interpretation. Network
training consists of minimising the MSE for the training set. The MSE is very intuitive
and is mainly used in regression tasks when the trained network returns output numerical
values that are a solution to the analysed problem. However, this error is less useful in
classification tasks, where the network should indicate the correct category at the output.

Table 8 summarises ‘the best’ networks in terms of error values, one for each of the
data sets ANN_1–ANN_4. In this way, it was determined which sheet surface roughness
parameter, Sa, Sq, Ssk, or Sku, carries important information apart from the other parame-
ters, determining the value of the COF. From this, the best network was determined as the
RBF-8-9-1 network (Table 8) for the ANN_2 input parameters (Table 2): nominal pressure,
oil pressure, oil viscosity, and the root mean square height Sq surface roughness parameter.
The next part of the article will concern this network.

Table 8. Summary of the best networks for COF prediction.

No. Architecture
of RBF ANN

Input Data
Set

Quality of
Training

Quality of
Testing

Quality of
Validation

MSE for
Training Set

MSE for
Testing Set

MSE for
Validation Set

1 RBF-8-8-1 ANN_1 0.937774 0.986012 0.487998 0.000448 0.000507 0.000147

2 RBF-8-9-1 ANN_2 0.978036 0.989737 0.089184 0.000162 0.000292 0.000204

3 RBF-8-8-1 ANN_3 0.965571 0.980861 0.521025 0.000252 0.000435 0.000256

4 RBF-8-8-1 ANN_4 0.925234 0.982205 0.579015 0.000535 0.001283 0.000071

Figures 11–13 show the dependence of the COF and the input variables for the ex-
perimental data and the response surfaces of the RBF-8-9-1 network. As expected, the
highest value of the COF was observed for dry friction conditions. In lubrication conditions,
initially with increasing oil viscosity, the COF value decreases and then begins to increase
(Figure 11). This is due to the fact that the highly viscous oil adheres more to the rubbing
surfaces, and consequently, the viscosity shear stability increases. The above conclusions
are valid for the entire range of the analysed nominal pressures.
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The ANN almost perfectly reflects the relationship between the nominal pressure and
the root mean square height Sq of sheet metal on the value of the COF (Figure 13). The
highest value of the COF in the entire range of the analysed pressures was observed for the
average value of the Rq parameter. In addition, there is a tendency to decrease the value of
the COF with increasing nominal pressure. In general, there is good agreement between
the experimental data and those predicted by the RBF neural network. The scatterplot of
the actual and predicted COFs for the 95% confidence interval shows that the COFs are
distributed correctly along the diagonal (Figure 14). The four points on the right side of
this graph correspond to dry friction conditions where the COF has reached significant
values in excess of 0.3.

The graph in Figure 15a shows the comparison of the actual COF and the one estimated
on the basis of the RBF-8-9-1 network. The first four points correspond to friction in non-
lubricated conditions. So, initially, the COF has a much greater value than under lubrication
conditions. In general, we can see that the forecasts are well matched to the experimental
data. Figure 15b shows the performance of the ANN training. The y-axis shows the
performance parameter (MSE). The individual epochs of network training were recorded
on the axis of abscissa. The smallest MSE error in testing the neural network was achieved
by the ANN for epoch no. 12 and was 0.009. It can be seen that the neural network
continued the training algorithm for 52 more epochs in order to confirm the presumptive
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global minimum of the MSE. From epoch #1 to epoch #12, there is a downward trend in the
MSE for the training and test sets.
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The use of the radial basis function ANNs to analyse the influence of the input
parameters of the friction process on the value of the COF made it possible to determine
the correlation between the selected surface roughness parameters and the value of the
COF. It was found that the surface roughness parameter Sq is the most correlated with the
COF. The research confirmed the effectiveness of RBF ANNs for the analysis of the friction
phenomenon based on a limited number of experimental data points. Recognising the
relationship between many parameters, often synergistically interacting, using analytical
methods would be difficult and complex. Meanwhile, ANNs allow for finding response
surfaces to assess the interaction of individual input parameters in the multidimensional
response of a neural network. Moreover, it is possible to forecast the value of the COF for
data that did not participate in the training process. The only condition is that the values of
the input parameters for the predicted parameter should be within the range of the values
of the input parameters used in the training and validation processes of the ANN.
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4. Conclusions

In this article, the authors put emphasis on modelling the friction phenomenon in
SMF using RBF ANNs. Since it is analytically difficult to find complex interactions between
input parameters and the COF value, ANNs can acquire the ability to predict the COF from
a set of training data. The main conclusions from the experimental research and neural
modelling are as follows:

• Under lubrication with both oils considered (S100+ and S300), the value of the COF
increased with decreasing oil pressure. This relation is observed for the whole range
of nominal pressures analysed.

• The higher the nominal pressure value, the smaller the difference between the COF
determined for different oil pressures. So, in the case of pressurised lubrication, the
viscosity of the oil becomes less important in SMF under high pressures.

• The developed concept of pressurised lubrication is most effective at relatively small
nominal pressures of 2–4 MPa. This range of nominal pressures corresponds to the
actual nip pressures when forming deep-drawing steel sheets.

• Under conditions of dry friction, the values obtained for the COF rise above 0.3, while
under lubrication conditions, even without pressure-assisted lubrication, the COF
values are reduced by at least 50%.
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• As the nominal pressure increases, the value of the coefficient of lubrication effective-
ness decreases exponentially. Moreover, the lubrication efficiency clearly decreases
with the value of the oil pressure.

• Several combinations of input parameters were tested using RBF ANNs. Among the
sheet surface roughness parameters considered (Sa, Sq, Ssk, and Sku), the root mean
square height Sq was found to be the most sensitive in relation to the COF.

• The smallest error for the test set (0.000292) was characteristic of the RBF network
with nine neurons in the hidden layer. The ANN prediction value for the training set,
determined by the coefficient of determination R2, was 0.989.

• ANN response surfaces showed very good agreement with the experimental data, and
the main experimental observations are also confirmed by the RBF ANN predictions.

The experimental results show that pressure-assisted lubrication in the blankholder
area in sheet metal forming allows for a reduction of COF compared with conventional
lubrication conditions. This confirms the correctness of the concept of the device for
reducing friction in the flange area of the drawpiece. The use of channels in the construction
of the die to supply lubricant to the zone of contact between the sheet metal and the surface
of the stamping tool under the appropriate pressure, by reducing the value of the COF,
will enable obtaining greater strains on the sheet metal without risk of fracture. Further
research is required for the optimal arrangement of the supply channels and the selection of
a lubricant with an appropriate viscosity and appropriate lubricant pressure for the specific
conditions of forming various grades of sheet metal.

One of the basic limitations of neural networks is the possibility of predicting output
parameters only in the range of input parameters used to train the RBF ANN. The second
limitation of the neural network model is the strong relationship between the amount of
training data and the quality of prediction. Therefore, it is planned to extend the variability
range of input parameters and conduct more experiments for oils with different viscosities.
In this paper, only four surface roughness parameters were considered, which, according
to the literature, are the most representative in the analysis of the friction phenomenon in
sheet metal forming. It is planned to check the correlation of the COF with other roughness
parameters. The influence of pressure-assisted lubrication on the final surface roughness of
the drawpieces also requires further research.
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