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Abstract: The disturbance of local areas with complex railway networks and high traffic density
not only impedes the efficient use of rail networks in those areas, but also propagates delays to the
entire railway network. This has motivated research on train rescheduling problems in high-density
local areas to minimize train delays by modifying their planned arrival and departure times. In
this paper, we present a train rescheduling method based on Q-learning in reinforcement learning.
More specifically, we used deep neural networks to approximate the action-value function, and the
underlying Markov decision process (MDP) is based on the alternative graph formulation for the
train rescheduling problem. In the proposed MDP formulation, the status of the alternative graph
corresponding to the current schedule is defined as the state, and the alternative arc corresponds to
the action the agent can take. The MDP is approximately solved via deep Q-learning in which deep
neural networks are used to approximate the action-value function in Q-learning. Although the size
of the alternative graph depends on the number of trains, our MDP formulation is independent of the
number of trains, which makes the proposed method more scalable. The evaluation of the method
was performed on a simple railway network and a real-world example in Seoul, South Korea, with
randomly generated initial train schedules and train delays. The experimental result showed that
the proposed method is comparable to the mixed-integer-linear-programming (MILP)-based exact
approach with respect to the quality of the solution.

Keywords: train timetable rescheduling; reinforcement learning; alternative graph; Markov
decision process

1. Introduction

When a train delay occurs on a complex railway network with high traffic density, this
delay can be propagated to the entire railway network. This spread hinders the efficient
use of railway networks and causes a decrease in the service quality of passenger or
freight transportation.

This study addresses train timetable rescheduling (TTR) (also called train dispatching
or conflict detection and resolution) in a high-density local area to minimize the knock-on train
delays in cases of disturbances that make it impossible to comply with the pre-planned
train schedule. Here, “disturbance” means a relatively small perturbation that can be dealt
with only by modifying the timetable, different from “disruption”, which requires a change
in the duty of a rolling-stock or crew. The TTR problem has been intensively studied in
various works, and an overview of the various models and algorithms for this purpose can
be found in [1].
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Except for some macroscopic models [2,3], most of the models for TTR are microscopic
models [4–10], which allow more-accurate runtime calculations by simulating train move-
ment in detail, down to the microscopic level. One of the mathematical tools to describe
these microscopic movements of trains is the alternative graph, used in most microscopic
models, which graphically expresses the order in which the trains occupy a common block,
as well as a sequence of blocks that each train traverses. For example, the decision vari-
ables of several integer programming models are the entry/exit times at the blocks in the
alternative graph [7–9], and several heuristics are explicitly based on the alternative graph
model [4,5,10].

TTR can be modeled as an integer programming model from which we can obtain the
optimal solution using branch-and-bound methods or their variants (e.g., branch-and-cut,
branch-and-price-and-cut, etc.). However, TTR arises in real-time problem settings in
which the solution needs to be provided very quickly. This requirement is hardly satisfied
with the existing exact approaches. To address this limitation, several heuristics have been
proposed, but there is still a demand for research to find a compromise in the trade-off
between the quality of the solution and the computation time.

Recently, reinforcement learning has been applied to TTR, in which, instead of finding
the arrival and departure times of trains as a solution, a policy or rule is learned such that
any legitimate instances can be solved with this policy [11–16]. Since the learned policy
does not need to search large solution spaces, new train schedules are quickly provided,
and previous studies showed that, if properly learned, the quality of the solution provided
by reinforcement learning is compatible with the optimal one. Adopting reinforcement
learning for TTR has been further extended to the setting of multi-agent reinforcement
learning [17,18], in which each train is regarded as an independent agent. In this paper,
however, we are interested in the setting of single-agent reinforcement learning.

S̆emrov et al. [11] proposed a reinforcement learning approach for TTR in which
the state, the input of the policy, is defined as the train location over blocks; the action,
the output of the policy, represents the go or stop signal installed at each block; the
transitions of the state with respect to the selected action are made with a “customized”
simulation tool. The proposed method was tested on a simple railway network with
no junctions.

In TTR, the schedule of a train is likely to affect those of other trains. Some previous
studies [12,14] considered this aspect by defining the state as the occupancy information
of several or all blocks. More specifically, the occupancy information of each block is
represented as the congestion level of that block computed using the number of trains
running on the block. However, this representation of states lacks the entry/exit timing and
order of trains at each block, which are important in deciding a good schedule, especially
for a railway network with junctions.

The current literature defines a policy as the decision rule of a local dispatcher who is
responsible for determining the schedule of a single or multiple trains over a small area
in a railway network. To directly consider the possible propagation of a delay over the
entire network, the arrival and departure times of all trains can be considered as a state [13].
However, this approach was only tested on a simple railway network, where one-way
trains run in a single line.

Overall, all of the above studies have limitations in applying their reinforcement learn-
ing to more-realistic railway networks with multi-aspect signals or junctions where two
trains may converge or diverge. To overcome these limitations, we propose a reinforcement
learning approach in which the alternative graph is used for defining the states and actions.
More specifically, we define the state using the current topology of the alternative graph
and the action for the selection of an alternative arc on the alternative graph. This enables
our model to reflect train movement and conflicts between trains at the microscopic level.
Furthermore, the proposed method is also applicable to local areas with high traffic density
and complex infrastructures such as signaling systems and junctions.
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The remainder of this paper is organized as follows. This section continues with a
formal statement of the TTR problem based on the alternative graph and the necessary
notations. The proposed framework of reinforcement learning is described in Section 2.
In Section 3, we demonstrate the numerical results, which verify the performance of the
proposed method. Finally, in Section 4, we give some concluding remarks.

1.1. Preliminary TTR Based on Alternative Graph

We considered a TTR problem on a single- or double-track unidirectional railway,
where T and B are the sets of trains and blocks in the railway network, respectively. We
assumed that every train has its own fixed route, that is a sequence of blocks from the entry
point to the exit point, and also has its own planned arrival time and departure time at
each block that it traverses. We denote the arrival time and departure time of train k ∈ T at
block b ∈ B as Ak

b and Dk
b, respectively.

To develop an algorithm based on reinforcement learning for the TTR problem, we
used the alternative graph formulation [4], a graphical methodology to deal with the job
shop problem. In the alternative graph formulation for the TTR problem, a train is regarded
as a job and a block that a train must traverse as a machine, and then, the operational rules
and objectives of the TTR problem are expressed as the attributes of the alternative graph.
In general, an alternative graph is defined as a triple G = (N ,F ,A), where N is the set of
nodes, F is a set of fixed directed arcs, and A is a set of pairs of alternative directed arcs.

In a TTR problem, N is composed of nodes corresponding to operations representing
the block occupancy of trains and two dummy nodes, denoted by 0 and n, representing the
network entry and exit of each train. Here, we denote the train and the block associated
with the node i as T(i) and B(i), respectively. A fixed directed arc represents the block
occupation order on the route of a train. For example, a fixed directed arc (i, j) ∈ F
indicates that B(i) is the block just before block B(j) of train T(i)(= T(j)). For a pair of
nodes, x and w, associated with two trains sharing the same block section B(x)(= B(w)),
let z and y be their previous operations, respectively. Then, the alternative arcs (x, y) and
(w, z) are introduced to represent the order and spacing between two trains T(x) and
T(w) to occupy B(x). Therefore, given a pair [(x, y), (w, z)] ∈ A, only one arc of (x, y) and
(w, z) must be alternatively selected to avoid the conflict of two trains trying to occupy the
common block.

Finally, if the entry time of the block corresponding to node i, j is ti, tj, respectively,
arc (i, j) also implies a precedence relation such as tj ≥ ti + bij, where bij, the length of

arc (i, j), means the runtime on the block B(i) equal to DT(i)
B(i) − AT(i)

B(i) when (i, j) is a fixed
arc, and the setup time of block B(i)(= B(j)) to ensure a minimum headway between two
trains, T(i) and T(j), in the case of an alternative arc.

Figure 1 shows a small railway network, with five blocks and two trains running in
the same direction, and its alternative graph. In this situation, two trains share Blocks 3, 4,
and 5, at which conflicts can occur. Fixed arcs and alternative arcs are indicated by solid
arrows and dashed arrows, respectively.

Figure 1. Example railway network, trains, and alternative graph.
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Given S, a set of alternative arcs called a selection, G(S) is defined as the graph
G(S) = (N ,F ∪ S) in which N and F ∪ S are sets of nodes and arcs, respectively. For a
conflict- and deadlock-free schedule, S should be made up by choosing only one of two
alternative arcs from every pair in A in such a way that the graph G(S) has no positive
directed cycles.

We denote the length of the longest path from node i to node j in G(S) as lS(i, j).
If the length of the arcs originating from 0 is set as the first entry time of the train and the
length of the arcs terminating at n is the negative value of the planned exit time of the train,
lS(0, n) corresponds to a maximum consecutive delay propagated by the initial delay. We
refer to [7] for a more-detailed description of the alternative graph model. Therefore, our
problem can be formally stated as the problem of finding a selection that minimizes lS(0, n)
in G(S), i.e., a revised train schedule, formulated as a mixed-integer linear programming
(MILP) problem as proposed by [19] as follows:
MILP:

min lS(0, n) (1)

s.t. tj − ti ≥ bij, for (i, j) ∈ F (2)

ty − tx + M(1− xxywz) ≥ bxy, for [(x, y), (w, z)] ∈ A (3)

tz − tw + M(xxywz) ≥ bwz, for [(x, y), (w, z)] ∈ A (4)

x ∈ {0, 1}|A| (5)

where:

• xxywz = 1 if alternative arc (x, y) is selected and xxywz = 0 otherwise, i.e., (w, z)
is selected;

• ti is the entry time block B(i) of train T(i);
• M has a sufficiently large positive value.

Based on the alternative graph model, we reformulated our problem as a sequential
decision-making problem such that we determined the alternative arc to add selection
S as trains progress along their routes. This sequential decision-making problem can be
modeled as a Markov decision process (MDP) in which the state space, the action space,
the transition function, and the reward are defined in the next section.

1.2. Preliminary: Reinforcement Learning

Many multi-stage or sequential decision problems can be formulated as interactions
between the environment and agent (decision-maker). In these interactions, the information
being used by the agent to make a decision is referred to as the state, and the agent receives
a reward for his/her action (or decision) at a particular state. At the next decision time,
the agent will encounter new information, which might depend on the previous state and
action he/she chooses.

Generally, the next state of the environment depends on the entire history of pairs
of states and actions. In the Markov decision process (MDP), however, it is assumed that
the next state depends only on the current state and action. For a given MDP problem,
Bellman optimality conditions [20] are usually derived, and the dynamic programming
relying on these optimality conditions can be applied to find an optimal solution. Dynamic
programming, however, is an enumerative solution approach that relies on searching for
solutions in the entire solution space, such that it suffers from the so-called “curse of
dimensionality” problem [21].

Reinforcement learning is one way to mitigate the computational limitations of an
enumerative search of the solution space, by relaxing the goal of finding any exact optimal
solutions. To do this, instead of searching all possible pairs of states and actions, a relatively
small samples of states and actions is simulated and an optimal or near-optimal solution
for the problem with respect to these samples is deduced. One of the central concepts in
reinforcement learning is the optimal value function of a state, or pair of states, and an
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action, which specifies the long-term cumulative reward achievable when the agent follows
(possibly unknown) an optimal decision after the given state or the given pair of states and
action. For a given sample, we can estimate the optimal value function, and the estimated
value function can be used directly or indirectly to specify the decisions the agent makes.
In the recent development of reinforcement learning, deep neural networks [22] have
been used for estimating the value function or a function, i.e., policy, which outputs an
optimal action for a given state as an input, which achieves state-of-the-art results for many
benchmark problems [23,24].

More background information on reinforcement learning can be found in [20,21].

2. Materials and Methods

Our objective is to find the selection S that represents a set of alternative arcs to
minimize the train delays in a given alternative graph. The framework of the proposed
model is presented in Figure 2. The proposed framework follows the general process of
general reinforcement learning; however, it can be distinguished in two key aspects. Firstly,
the agent of the proposed framework first obtains the information used in the state from
the current alternative graph. Secondly, he/she executes state transitions by performing
updates that involve adding the selected alternative arc to the alternative graph during the
action phase.

Figure 2. Overview of framework for reinforcement learning.

The proposed method is applicable, in principle, given the availability of a physical
railway network and timetable for the target railway lines. More specifically, it requires
information on the connectivity between blocks and the expected arrival and departure
times of trains for each block they traverse. Generally, train-operating companies maintain
the real-time management of the aforementioned information at their control centers.

In the remaining part of this section, we present the rationale of our method. We first
explain the proposed Markov decision process model of train conflict resolution based
on the alternative graph. Then, we apply the method of deep Q-learning to find the
optimal policy.

2.1. MDP Formulation

An alternative graph enables the detection of train conflict on a microscopic level,
in addition to the ability to explicitly model the operation constraints such as the minimum
speed, stop, and departure, and connections. As explained previously, the MDP model
we propose interprets the train conflict resolution as sequential decision-making, in which
an alternative arc is selected at each stage. Therefore, for each step t, it is required for the
decision-maker, the agent in the MDP, to have information on all nodes and fixed arcs
and the alternative arc up to step t. The size of the alternative graph changes, however,
depending on the number of trains and their routes. Since the dimension or size of the state
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is assumed to be fixed, it is challenging to manage two different instances with different
numbers of trains on the same railway network with a single policy. This suggests that we
need a way to design the state of the MDP independent of the number of trains. To address
this challenge, we introduce a mapping from train to block, denoted by ft : T → B at
decision step t. For each block b ∈ B, let f−1

t (b) be the train on block b at decision step t.
Recall that the state space depicts the information given to the agent as the basis for

decision-making regarding which action to select. In this respect, the state st at decision
step t is designed to consist of 12 features, as shown in Table 1.

Table 1. Components of a state.

Features Dimension Type

The number of total trains (NT) 1 Static
Physical network (PN) |B| × |B| Static
Junction indicator (J I) |B| Static

Occupation indicator (OI) |B| Dynamic
Next occupation indicator (NI) |B| Dynamic

Upward direction (UD) |B| Dynamic
Downward direction (DD) |B| Dynamic

Occupation beginning time (OB) |B| Dynamic
Occupation ending time (OE) |B| Dynamic

AG node in-degree (ID) |B| Dynamic
AG node out-degree (OD) |B| Dynamic

AG cost (AC) 1 Dynamic

The components of the state are categorized into two types: static and dynamic.
The number of total trains (NT), the physical network (PN) represented as a 0–1 adjacent
matrix, and the junction indicator (J I) are of the static type. The physical network PNij is 1
if blocks i and j are connected, or 0 otherwise. Junction indicator J Ib is 1 if block b has a
junction, or 0 otherwise.

For the dynamic type, occupation indicator OIb is 1 if block b is occupied by any train,
or 0 otherwise. The next occupation indicator NIb is 1 if train f−1

t (b) could be moved to its
next block at the next time step, or 0 otherwise. The upward (downward) direction UDb
(DDb) is 1 if the direction of the train f−1

t (b) is upward (downward), and is 0 otherwise.
OBb and OEb are the beginning and ending time of occupation for a block b by train f−1

t (b),
respectively. Next, the in-degree and out-degree of the alternative graph denoted by IDb
and ODb with respect to block b is defined as the number of incoming or outgoing arcs to
the nodes associated with block b in the alternative graph G(S), which can be computed
as ∑{i:B(i)=b} ∑{j:(j,i)∈F∪S} δji and ∑{i:B(i)=b} ∑{j:(i,j)∈F∪S} δij, respectively, where δij or δji
equals 1 if arc (i, j) or (j, i) is contained in the alternative graph, and is 0 otherwise.
Finally, AC is defined as the longest path cost of the alternative graph G(S), denoted by
lS(0, n). The values of the non-binary state are normalized to lie in [0, 1]. More specifically,
for each block b ∈ B, we update OBb, OEb, IDb, ODb, and AC to OBb

maxb∈B{OBb}
, OEb

maxb∈B{OEb}
,

IDb
maxb∈B{IDb ,ODb}

, ODb
maxb∈B{IDb ,ODb}

, and AC
M , respectively, where M is a sufficiently large

positive constant.
In short, state st at step t is defined as

st =
(

NT, {(PNij)}i∈B,j∈B , {(J Ib, OIb, NIb, UDb, DDb, OBb, OEb, IDb, ODb)}b∈B , AC
)
. (6)

The size of state st is |B|2 + 9|B|+ 2, where |B| is the total number of blocks in the
railway network.

For a given state st at step t, the action at chosen by the agent is interpreted as the
choice of the alternative arc. More specifically, the choice of the alternative arc is defined as
the choice of blocks that satisfies the following condition. Whenever the agent is requested,
he/she chooses one of the available blocks, say b, which is currently occupied by a train, i.e.,
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OIb = 1, and the next block b′ of train f−1
t (b) is not occupied by any trains, i.e., NIb′ = 1.

This means that the agent decides to move the train f−1
t (b) forward from block b to its

next block b′. Note that only one train can be selected to move at each step. If there is no
available block for the action, then the agent selects the dummy action denoted by 0, and
the episode is terminated. Therefore, the size of the possible action is |B|+ 1.

We proceed further with the alternative graph to select an action at for the transition
from the current state st to the next state st+1. Whenever the agent is requested, he/she
chooses one of the available blocks occupied by a train, i.e., OIb = 1, and the next block of
f−1
t (b) not occupied by any trains, i.e., NIb = 1. Let A(st) be the available action set at st.

Action at ∈ A(st) means that the agent decides to move the train f−1
t (at) forward from the

current block at to its next block at
′. Note that only one train is selected to move at each

time step. If there is no available block, then the agent selects the dummy action denoted
by 0 and the episode is terminated. Therefore, |A(st)| is at most |B|+ 1.

Once the agent determines the action at, we first find the corresponding train f−1
t (at)

and the next block at
′; the train moves forward. If at

′ is used only by the train f−1
t (at), G(S)

does not change, but the occupancy information of the next state st+1 only changes when
the train f−1

t (at) moves forward one block.
If the next block at

′ is commonly used by more than one train, we can specify the
alternative arcs that determine the occupancy order with other trains using at

′ in com-
mon. Then, the alternative arcs are added to selection S and the updated alternative
graph G(S) is used for the next state st+1. More specifically, dynamic features are up-

dated as follows: OBb = lS(0, ( f−1(b), b))− (D f−1(b)
b − A f−1(b)

b ), OEb = lS(0, ( f−1(b), b)),
and AC = lS(0, n).

The reward function plays the role of directing the agent’s behavior toward the optimal
policy. Recall that the goal of TTR is to minimize the length of the longest path from Node
0 to node n in the alternative graph by choosing the alternative arcs. Since the length of the
longest path is finally determined when the dummy action is chosen, we define the reward
rt at each step t as follows:

rt =

{
0, at ∈ B
−lS(0, n), at = 0.

(7)

By setting the reward rt as the negative value of lS(0, n) when at = 0, maximizing the
cumulative total reward is identical to minimizing lS(0, n). If the graph G(S) has positive
length cycles, we define lS(0, n) as M, a sufficiently large positive constant.

Example 1. In this subsection, we illustrate the corresponding MDP model in Figure 1. We assume
that the weights of all fixed and alternative arcs are 5 and 2, respectively. First, the static features
are defined as follows:

PN =


0 0 1 0 0
0 0 1 0 0
1 1 0 1 0
0 0 1 0 1
0 0 0 1 0

, and JI = (0, 0, 1, 0, 0).

Then, we consider the dynamic features. At the beginning, dynamic features (features in Table 1
types as “dynamic”) of s0 are constructed by concatenating OI = (1, 1, 0, 0, 0), NI = (1, 1, 0, 0, 0),
UD = (1, 1, 0, 0, 0), DD = (0, 0, 0, 0, 0), OB = (0, 0, 0, 0, 0), OE = (5/5, 5/5, 0, 0, 0),
ID = (1/2, 1/2, 2/2, 2/2, 2/2), OD = (1/2, 1/2, 2/2, 2/2, 2/2), and AC = 20

M . The le-
gitimate actions correspond to Block 1 and Block 2. If the agent selects action 1, then Train A moves
forward, from Block 1 to Block 3. This implies that the alternative arc ((A, 3), (B, 2)) is added to
the current selection S, as illustrated in Figure 3a. If the agent selects Action 2, then Train B moves
from Block 2 to Block 3, which implies the addition of the alternative arc ((B, 3), (A, 1)) to S.

At t = 1, the dynamic features of s1 are updated as follows: OI = (0, 1, 1, 0, 0),
NI = (0, 0, 1, 0, 0), UD = (0, 1, 1, 0, 0), DD = (0, 0, 0, 0, 0), OB = (0, 7/12, 5/12, 0, 0),
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OE = (0, 12/12, 10/12, 0, 0), ID = (1/3, 2/3, 2/3, 2/3, 2/3), OD = (1/3, 1/3, 3/3, 2/3, 2/3),
and AC = 27

M . Then, the only legitimate action corresponds to block 3, i.e., OI3 = 1 and NI3 = 1.
Therefore, we add the alternative arc ((A, 4), (B, 3)) to the current selection S. Figure 3b shows the
block occupation and alternative graph at t = 1.

Figure 3. (a) Example of state transition at t = 0; (b) Example of state transition at t = 1.

2.2. Deep Q-Learning

In reinforcement learning, instead of directly considering policies, a policy can be
derived from the so-called action value function or the Q-value function. For each policy π,
the action value function Qπ(st, at) is the expected total return given an action at at state st
assuming the agent follows the policy π. The optimal action value function is then defined
as Q∗(st, at) = maxπ(st, at).

Q-learning [25] maintains a lookup table of Q(s, a) for every state–action pair (s, a).
To estimate the optimal action-value function Q∗(s, a), the Q-learning approach uses the
following updates:

Q(s, a)← Q(s, a) + α

(
rt + γ max

at+1
Q(st+1, at+1)−Q(st, at))

)
(8)

where α ∈ [0, 1] is the learning rate.
However, Q-learning suffers the curse of dimensionality in maintaining the look-up

table when the number of states and/or actions is large. One way to address this challenge
is to approximate the Q-value function as a neural network. In particular, Mnih et al. [26]
proposed the DQN method, which uses a deep neural network as a function approximation
of the Q-value function. The neural network, called the deep Q-network, is modeled as a
parameterized function Q(st, at|θ) and is determined by adjusting the parameter θ in the
direction of minimizing the following loss function:

L(θ) :=
([

rt + γ max
at+1

Q(st+1, at+1|θ)
]
−Q(st, at|θ)

)2
. (9)

To learn the optimal parameters and scenarios, the alternate sequences of states,
actions, and rewards are randomly generated. To generate each scenario, an action is
chosen from the current state st via the ε-greedy policy in which the agent chooses the
action maximizing the Q(a, st), but there exists a small chance that ε will choose a random
action. In this way, we obtain a set of (st, at, rt, st+1), which constitutes the loss function L(θ).
The trained Q-network is used to make a decision by selecting the action that maximizes
the Q-value. The pseudocode of the training phase of the proposed method is shown in
Algorithm 1.
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Algorithm 1: Train timetable rescheduling with Q-network.

Input: Alternative graph G = (N ,F )
Output: Q-network, selection S

1 Initialization: Set network Q with random weight θ, target network Q′ with
θ′ = θ, replay buffer B = ∅, and S = ∅.

2 for episode = 1, 2, . . . , NE do
3 Initialize alternative graph G(S) = (N ,F ∪ S);
4 time-step t← 0;
5 while at 6= 0 do
6 Get st using G(S), and execute action at according to the ε-greedy policy

using the Q-network with θ;
7 Observe rt, and find the train k← f−1

t (at);
8 Add alternative arcs {(i, j) ∈ F : T(i) = k, B(i) = at} to selection S;
9 Updated alternative graph G(S);

10 Obtain the next state st using G(S);
11 Store a set (st, at, rt, st+1) in B;
12 Sample (su, au, ru, su+1)’s ∈ B;
13 Calculate loss L(θ′) from (9);
14 Perform a gradient descent step on L with respect to θ′;
15 Replace θ′ = θ every NR episodes
16 end
17 end

In Algorithm 1, to mitigate the issue of instabilities during learning, the following
techniques are typically incorporated [26]:

• Experience replay: In its basic setting, Q-learning is on-policy, which means we generate
scenarios and learn parameters simultaneously. When we consider the loss function
with (st, at, rt, st+1) obtained from a set of scenarios, there exists autocorrelation among
different (st, at, rt, st+1). However, most algorithms used for training deep neural
networks assume that training samples are independently and identically distributed.
Therefore, instead of on-policy learning, off-policy learning is incorporated, in which
(st, at, rt, st+1) is stored in the so-called replay memory and a minibatch of a set of
random samples from this memory forms the loss function.

• Target network: In both Q-learning and deep Q-learning, scenarios are generated
with the policy derived by the current Q-value function being updated. This has
been identified as one of the reasons for unstable learning. To overcome this prob-
lem, Mnih et al. [26] used two separate neural networks, Q(st, at|θ) and Q′(st, at|θ′).
The former network is used to generate random scenarios, and the latter, called the
target network, is used to set the target in the loss function L(θ). The parameter θ is
updated in the same way introduced previously, and the parameter θ′ of the target
network is kept unchanged during a predefined number of steps and updated to the
parameter θ.

3. Experimental Results

This section reports the computational results obtained by applying the approaches in
Section 2. All codes were implemented in the Python language. In particular, the neural
network and its training algorithm were implemented in the Keras library with the Tensor-
Flow backend. All experiments were performed with a personal computer with an Intel
Core TM i7-12700 CPU processor (2.1 GHz). In Table 2, we summarize the hyperparameters
for the DQN agent introduced in Section 2.2.
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Table 2. Hyperparameters for the DQN agent.

Hyperparameters Values

The number of hidden layers 4
The numbers of nodes in each hidden layer 1024, 512, 256, 128

Decay factor of ε per episode 0.9999
Replay buffer size 20,000,000

Minibatch size 256
Discount factor 0.9

Target Q-network update frequency 16
M 99,999

The performance of the proposed DQN was compared with an exact method, the MILP
model in Section 1.1, by applying the commercial software package GUROBI 10.0.2. The per-
formance of each solution approach was evaluated via GAP, defined as

GAP =
DQN−MILP

MILP
× 100. (10)

where “DQN” and “MILP” denote the lS(0, n) value obtained from the trainedagent (DQN)
and the optimum value of the MILP model, respectively.

In order to evaluate the performance of the DQN agent, experiments were carried out
on a simple and complex network. First, we trained and tested our model on the simple
railway network proposed in [27]. Next, the performance was evaluated for the study area
inside Seoul station in Korea.

3.1. Results on a Simple Network

Figure 4 shows a simple railway network with 10 blocks (denoted as 1, 2, . . . , 10) and
three trains (denoted as A, B, and C). Train A enters from Block 1 and exits from Block 10,
passing through Blocks 2, 3, 5, 6, and 8. Train B travels from Block 9 to Block 1, passing through
Blocks 8, 6, 5, 4, and 2. Similarly, Train C enters from Block 7 and exits to Block 1, passing
through Blocks 6, 5, 4, and 2. We set the travel time of each block as 300 s, except Blocks 3 and
4, which were platforms in the station that each required 420 s. The safety headway between
two consecutive trains on each block was set to 120 s, including switching and signaling time.
Therefore, the weight of all alternative arcs was 120 s.

Figure 4. Simple network.

All trains were scheduled to arrive at their entry blocks at 07:00:00. To train a
Q-network, the entry delay time of each train was randomly generated from a uniform
distribution [0, U] in seconds and added to the planned times for each episode. This
enables the trained Q-network to accommodate the various train rescheduling problems
in the training phase. In Figure 5, we present the convergence performance for up to
48,000 episodes with U = 600 in the training phase. In the plots shown in Figure 5, the x
and y axes indicate the cumulative number of episodes and the simple moving average of
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the previous 100 reward values, respectively. As shown in Figure 5, fluctuations caused by
the ε-greedy policy were observed.

Figure 5. Training results with respect to the cumulative number of episodes with U = 600.

We performed testing on the generated instances with respect to the maximum entry
delay time (U = {300, 600, 900, 1200}). We generated 100 instances for each U, and thus,
a total 400 instances were tested. Table 3 summarizes the performance of the DQN with
respect to three dimensions: the number of instances finding an optimal solution, the
average CPU runtime (in seconds), and the average GAP value obtained by Equation (10).
Column 1 indicates the category of instances; Columns 2–3 contain the performance of the
exact method; Columns 4–6 report the performance of the DQN. The exact method finds the
optimal solutions for all instances in 0.005 s. Tested on instances with U = 300, the DQN
also finds the optimal solutions for all instances, although it takes more time to compute
the solutions. The number of times that DQN finds the optimal solution decreases to 93, 80,
and 71 when U = 600, U = 900, and U = 1200, respectively. However, the GAP values are
less than 0.25% on average, and the runtime of the DQN does not vary significantly.

Table 3. Average runtime and GAP values for instances of a simple network.

U
MILP DQN

# of Optimal Avg. Runtime # of Optimal Avg. Runtime Avg. GAP

300 100 0.005 s 100 0.740 s 0.00
600 100 0.005 s 93 0.747 s 0.01
900 100 0.005 s 80 0.744 s 0.14

1200 100 0.005 s 71 0.770 s 0.25

3.2. Results for Seoul Station

The performance of the RL was tested in the Seoul station area, as shown in Figure 6.
This area consists of 49 blocks, containing 29 junctions and 14 platforms, making it cur-
rently the most-complex area in Korea. The network was considered with microscopic
detail, considering switches, signals, etc. In the actual train timetable, there are 12 trains
driving on this network between 7 a.m. and 8 a.m. Therefore, the DQN was trained using
these 12 trains with uniform entry delay time [0, 600]. The DQN was tested on these
instances, varying the maximum entry delay time and the number of trains, denoted as
U = {300, 600, 900, 1200} and NT = {10, 12, 14, 16, 18}, respectively. We generated 100
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instances for each category, denoted (U, NT). Therefore, a total of 2000 instances were
tested. Note that we forced our DQN to face novel scenarios by increasing the number
of trains with different departure times or destination platforms compared with those of
previous trains.

Figure 6. Seoul station railway network.

Figure 7 shows the alternative graph with a feasible selection obtained by the DQN for
an instance with (300, 12). The fixed arcs generated by 12 trains are indicated as black bold
arrows, and 125 alternative arcs are indicated as blue dashed arrows. Lastly, red dashed
arrows indicate edges connected to two dummy nodes: entry and exit.

Figure 7. Feasible selection and its alternative graph obtained by the DQN for an instance with (300, 12).

Table 4 summarizes the comparisons of MILP and the DQN with respect to three
dimensions: number of instances that succeed in finding an optimal solution, average
runtime, and average GAP values. Tested on instances with U = 300, the MILP model
finds optimal solutions for all instances, and the average CPU times tend to increase with
respect to the number of trains. The DQN also succeeds in finding an optimal solution for
all instances except for NT = 10.
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Table 4. Average runtime and GAP values for instances at Seoul station.

(U, NT)
MILP DQN

# of Optimal Avg. Runtime # of Optimal Avg. Runtime Avg. GAP

(300, 10) 100 0.035 s 82 4.582 s 0.04
(300, 12) 100 0.043 s 100 5.020 s 0.00
(300, 14) 100 0.061 s 100 6.268 s 0.00
(300, 16) 100 0.077 s 100 7.083 s 0.00
(300, 18) 100 0.091 s 100 8.005 s 0.00

(600, 10) 100 0.035 s 75 4.543 s 0.11
(600, 12) 100 0.042 s 100 5.154 s 0.00
(600, 14) 100 0.054 s 98 5.818 s 0.00
(600, 16) 100 0.069 s 94 6.669 s 0.01
(600, 18) 100 0.078 s 100 7.498 s 0.00

(900, 10) 100 0.033 s 58 4.278 s 0.25
(900, 12) 100 0.044 s 100 5.182 s 0.00
(900, 14) 100 0.057 s 93 5.957 s 0.02
(900, 16) 100 0.067 s 87 6.645 s 0.05
(900, 18) 100 0.078 s 98 7.354 s 0.00

(1200, 10) 100 0.031 s 71 4.019 s 0.23
(1200, 12) 100 0.044 s 98 5.180 s 0.01
(1200, 14) 100 0.051 s 85 5.619 s 0.10
(1200, 16) 100 0.063 s 81 6.352 s 0.07
(1200, 18) 100 0.073 s 88 7.184 s 0.06

Tested on instances with U = 600, the MILP model showed similar results for the
instances with U = 300. The DQN failed to find the optimal solutions for all instances
except for NT = 12 and NT = 18. However, the GAP values were less than 0.11, which
shows that the quality of solutions was comparable to that of the exact method. Tested
on instances with U = 900 and U = 1200, the GAP values obtained by the DQN were
maintained under 0.10 for all instances except for NT = 10. However, by increasing the
value of U, the average number of instances to obtain the optimal solution decreased from
96.7 in U = 300 to 88.5 in U = 1200.

Overall, the experiments carried out using real-world cases showed that the perfor-
mance of the exact method was superior to that of the proposed DQN with respect to
the quality of solutions and the computation time. However, the increasing rate of the
computation time of the DQN was significantly less than that of MILP with respect to
the increase in the number of trains. One of the advantages of the DQN is that it shows
great scalability. Furthermore, considering the extension and generalization of the problem,
such as including nonlinear terms in the objective and/or constraints, the proposed DQN
represents a practical method to replace the exact method based on the MILP model on
complex railway networks with high traffic density.

4. Conclusions and Discussion

This paper considered a train timetable rescheduling problem at the microscopic level
using an alternative graph model. The objective was to minimize the maximum consecutive
delay, expressed as the cost of the longest path on an alternative graph.

First, we developed a Markov decision process model with an alternative graph model.
This enabled us to more explicitly handle various operational constraints without a train
operation simulator. In addition, the state of the MDP was designed to be independent
of train operation planning, which makes the proposed MDP more applicable to diverse
instances. Then, the proposed model was tested on a simple, real-world railway network
in the Seoul station area. By evaluating the performance of the DQN through numerical
experiments, we concluded that the proposed DQN is comparable to exact methods based
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on the MILP model with respect to the quality of the solutions. However, the computation
time needs to be further improved.

Reinforcement learning issues arise in almost every area of railway operation: train
timetabling, trajectory optimization, and control equipment such as the pantograph. MDP-
based reinforcement learning using the alternative graph model is a potential area of study
for train dispatch or conflict resolution algorithms. Obtaining actual train operation data
is exceedingly challenging. Therefore, in order to generate training data using train op-
eration simulators such as OpenTrack, significant costs and time are required, including
the implementation of the APIs. We observed that the alternative graph model can poten-
tially replace train operation simulators and facilitate the more-convenient collection of
microscopic-level training data. The computational complexity of the proposed method
is proportional to the size of the alternative graph and, more specifically, the number of
alternative arcs. These findings suggest that timetable rescheduling requires an MDP model
that implements immediate selection, as proposed by [4] for computational complexity.

In this paper, similar to previous papers [11–15], the reinforcement learning model
was assumed to be a DQN model. For future work, it would be interesting to find more
proper alternative reinforcement learning models, such as the deep deterministic policy
gradient (DDPG) employed by [28].
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