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Abstract: Considering the complexity of entity pair relations and the information contained in the
target neighborhood in few-shot knowledge graphs (KG), existing few-shot KG completion methods
generally suffer from insufficient relation representation learning capabilities and neglecting the
contextual semantics of entities. To tackle the above problems, we propose a Few-shot Relation
Learning-based Knowledge Graph Completion model (FRL-KGC). First, a gating mechanism is
introduced during the aggregation of higher-order neighborhoods of entities in formation, enriching
the central entity representation while reducing the adverse effects of noisy neighbors. Second, during
the relation representation learning stage, a more accurate relation representation is learned by using
the correlation between entity pairs in the reference set. Finally, an LSTM structure is incorporated
into the Transformer learner to enhance its ability to learn the contextual semantics of entities and
relations and predict new factual knowledge. We conducted comparative experiments on the publicly
available NELL-One and Wiki-One datasets, comparing FRL-KGC with six few-shot knowledge
graph completion models and five traditional knowledge graph completion models for five-shot link
prediction. The results showed that FRL-KGC outperformed all comparison models in terms of MRR,
Hits@10, Hits@5, and Hits@1 metrics.

Keywords: knowledge graph; complete the knowledge graph; few-shot relation; neighborhood
aggregation; link prediction

1. Introduction

The Knowledge Graph (KG) is a concept introduced by Google in 2012 to improve the
speed of search engines [1]. It contains rich and diverse relational data and is widely used
in various production tasks in society. Existing knowledge graphs include Freebase [2],
YAGO [3], NELL [4], and Wikidata [5]. They all contain many triples formed by facts, which
are usually represented in the form of (head entity, relation, tail entity), i.e., (h, r, t).

In the real world, this graph-structured knowledge plays an important role in many
downstream applications, such as semantic search [6], intelligent question answering [7],
and personalized recommendations [8]. However, knowledge graphs still suffer from the
issue of incomplete facts. To address this problem, it is necessary to use Knowledge Graph
Completion (KGC) to automatically infer and fill in missing facts, further enhancing the
value of knowledge graphs.

In recent years, researchers have proposed many knowledge graph completion mod-
els based on knowledge graph embedding techniques [9] for the KGC task, including
TransE [10], TransH [11], DistMult [12], ComplEx [13], and ConvE [14]. These models have
partially addressed the incomplete entity and relation problem in knowledge graphs. How-
ever, these embedding models usually focus on a small proportion of frequent relations,
while in real-world knowledge graphs, most relations exhibit long-tailed distributions [15].
For example, in Wikidata, approximately 10% of relations have fewer than 10 triples.
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Furthermore, in most practical applications, such as recommendation systems and social
media networks, knowledge graphs undergo dynamic changes over time. That is, a relation
typically contains thousands of associated triples, while most relations only contain a few
triples. In the practical context with only a few entities and relations, the performance of
traditional knowledge graph completion models significantly declines.

To address the knowledge graph completion problem for uncommon entities and
relations, researchers have proposed a variety of Few-Shot Knowledge Graph Completion
(FKGC) methods. The GMatching model [16] was the first to be proposed for solving
FKGC. It enhances entity embeddings using one-hop neighbor structures to improve the
referenced semantic representation and employs a Long Short-Term Memory network
(LSTM) to match the embedding representations with the target, obtaining similarity scores
for relation prediction. Building on this, the FSRL model [17] and the FAAN model [18]
use attention mechanisms to improve neighbor encoders. The MetaR model [19] solves
this problem by passing meta information specific to the relations. The GANA model [20]
addresses this issue by designing a gated and attention-based neighborhood aggregator
and constructing a global-to-local framework to handle complex relations simultaneously.

In the FKGC task, the aforementioned models have achieved good results. However,
these methods still have some limitations: (1) FAAN fails to effectively utilize the valuable
information from high-order neighboring entities (the most relevant high-order neigh-
borhood set in nonlocal graphs [21]) and cannot discern the importance of information
for different neighbors, leading to noise-related issues. (2) FSRL simply uses a recurrent
autoencoder to aggregate a small reference set. However, during the training process, the
FSRL model tends to depend excessively on entity embeddings, leading to overfitting of
relations and a decline in the generalization capability of the model. (3) FSRL does not
consider the translational property of the TransE model during matching queries, which
can lead to a decline in matching accuracy. (4) Previous models have not adequately
considered the impact of entity pairs on contextual semantics [21], resulting in reduced
accuracy in link prediction. To overcome the limitations of existing methods, we propose
utilizing high-order neighborhood entity information to represent each few-shot relation.
By considering relations, our FKGC model can infer missing facts more effectively. This
approach enhances the model’s generalization capability and allows for the utilization of
more contextual semantics to handle few-shot relations.

To improve the accuracy of link prediction, this paper proposes a few-shot knowledge
graph completion model (FRL-KGC), which makes the following contributions:

(1) We introduce the FRL-KGC model, which incorporates a gating mechanism to extract
valuable contextual semantics from the head entity, tail entity, and neighborhood
information, specifically addressing high-order neighborhood information in the
knowledge graph. Furthermore, we leverage the correlation between entity pairs in
the reference set to represent relations, reducing the dependency of relation embed-
dings on the central entity.

(2) We effectively utilize both the structural and textual information of the knowledge
graph to capture features related to few-shot relations.

(3) Experimental evaluations are conducted on two publicly available datasets, and
the results demonstrate that our proposed model outperforms other KGC models.
Additionally, ablation experiments validate the effectiveness of each key module in
our model.

2. Related Work

Knowledge graph completion is the task of filling in missing entities, relations, and
attributes in a knowledge graph through automatic inference and learning. In recent years,
researchers have attempted to solve this problem from various perspectives. In traditional
knowledge graph completion research, the mainstream approach is based on representation
learning of knowledge graphs, which embeds the knowledge graph containing entities
and relations into a low dimensional vector space, and represents their semantic features
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through spatial relations between vectors to discover potential connections [9]. Currently,
knowledge graph completion methods based on knowledge graph embeddings can be
divided into translation-based methods, semantic matching-based methods, and neural
network-based methods.

2.1. Translation-Based Methods

The approach based on translation methods treats relations as translation operations
between entity pairs, where modeling relations is viewed as a form of translation in a
low-dimensional entity representation space. The existence of associations between entities
and relations is determined using a distance scoring function. TransE [10] is a popular
translation model that regards a relation as a translation from the head entity to the tail
entity. It can handle large-scale knowledge graph completion tasks but struggles with
complex relation types. Therefore, researchers have proposed several improved translation
models to address the “1–N”, “N–1” and “N–N” problems, such as TransH [11], TransR [22],
TransD [23], and TransG [24]. Among them, TransH embeds each entity into different,
relation-specific hyperplanes to address the complex relation representation problem;
TransR first projects entities into the corresponding relation spaces and then establishes
translation relations from head entities to tail entities. These improved methods have
enhanced the performance and scalability of translation models.

2.2. Semantic Matching-Based Methods

Semantic matching-based methods use similarity-based scoring functions to mine the
potential semantics between entities and relations, aiming to solve the knowledge graph
completion task. Among them, the RESCAL model [25] represents entities as vectors and
relations as matrices, using a bilinear function as the scoring function and obtaining predic-
tion scores through tensor decomposition. However, as the embedding dimension increases,
RESCAL faces the issues of parameter explosion and increased model complexity. To ad-
dress these problems, the DistMult model [12] constrains the relation matrix to be diagonal,
thereby simplifying the model, but this also results in an inability to handle asymmetric
relations. The ComplEx model [13] uses complex vectors to represent entities and relations,
which can effectively model various binary relations such as symmetric and asymmetric
relations. Compared to translation-based methods, semantic matching-based methods
have higher complexity, lower model-training efficiency, and weaker generalization ability,
but they can better capture the implicit semantics between entities.

2.3. Neural Network-Based Methods

Neural network-based methods rely on the powerful learning and expressive capabili-
ties of neural networks for modeling. ConvE, first introduced in [14], applies convolutional
neural networks to knowledge graph completion, using two-dimensional convolution to
vectorize entities and relations to concatenate them, ultimately obtaining the final embed-
dings through a fully connected layer and pooling. Compared to DistMult [12], ConvE
achieves higher performance with fewer parameters. However, semantic information in
knowledge graphs propagates along paths, and ConvE does not consider the importance
of path information. RSN [26] takes into account path information in knowledge graphs,
combining recurrent neural networks and residual learning, and captures relations between
entities through random walks to improve inference effectiveness. With the continuous
expansion of the deep learning field and the popularity of graph neural networks, GATs [27]
capture information by aggregating graph structured data in knowledge graphs, using the
attention mechanism of graph attention networks to assign different weights to different
neighboring nodes, thus capturing the most crucial neighboring node information.

2.4. Few-Shot Learning

Traditional knowledge graph completion methods require a large number of training
instances to improve model accuracy. However, in the real world, there are numerous
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new facts, and knowledge graphs are constantly changing dynamically. When knowledge
graphs cannot provide sufficient training instances for these new facts, the model’s training
process is greatly limited. Therefore, researchers have begun to explore knowledge graph
completion tasks with only a small number of instances. In metric-learning-based methods,
GMatching [16] was the first to propose the few-shot knowledge graph completion problem,
obtaining embedding representations from one-hop neighbor structures in the neighbor-
hood and using LSTM networks to match embeddings with targets, yielding similarity
scores to measure the similarity between query triples and the reference set. However,
GMatching does not distinguish between neighboring information in the neighborhood.
FSRL [17] can effectively capture knowledge from heterogeneous graph structures, ag-
gregate representations of a small number of samples, and assign different weights to
neighborhood information using a heterogeneous neighbor decoder. Compared to the
first two models, FAAN [18] considers the dynamic attributes of entities and relations and
captures dynamic features that change in different tasks through attention mechanisms,
thereby improving their fine-grained semantic representations. MetaR [19], in contrast to
the above methods, which utilize neighborhood information to enhance entity embeddings,
adopts a meta learning framework including gradient meta and relation meta for few-shot
knowledge graph completion tasks, effectively improving the model’s learning ability.
GANA [20] improves upon MetaR, using a global local framework to accurately filter out
noise information in the neighborhood and addressing the complex relation problems of
one-to-many (1–N), many-to-one (N–1), and many-to-many (N–N) in knowledge graphs.

3. Preliminaries

In response to the mentioned problems, this paper proposes a Few-shot Relation
Learning-based Knowledge Graph Completion model (FRL-KGC). For clarity, Table 1
presents common symbols used in this paper and their corresponding meanings.

Table 1. Symbol explanation table.

Symbol Description

G knowledge graph
G ′ background knowledge graph (G removes all subgraphs of task relations)
ε,R entity and relation of a knowledge graph
Sr reference set corresponding to relation r
Qr query set corresponding to relation r
Q−r negative query set corresponding to relation r
Rbr the relation set of background knowledge graph G ′
Rtask task relation set
Chj ,r candidate set for the potential tail entity of (hj, r, ?)
Tmtr set of meta train
Tmte set of meta test
h, r, t embedding features of fact triplets h,r,t
N o

h the higher-order neighbor set of entity h
e entity representation updated by neighborhood entity encoder
r′ task relation representation updated by relation encoder
zk

i representation of triples corresponding to relation r
L loss function

3.1. Problem Formulation

A knowledge graph G is composed of various facts, each of which can be represented
as a set of triples in the form G = {(h, r, t) ⊆ ε×R× ε}, where ε and R represent the
entity set and relation set, respectively. The problem of knowledge graph completion
is to infer one fact by giving two facts in a triple. The focus of this study is predicting
the tail entity t by giving the head entity h and relation r, which involves determining
whether (h, r, ?) holds true. Different from general knowledge graph completion problems,
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few-shot knowledge graph completion problems are performed with a limited number of
reference samples.

In summary, we provide the definition of a few-shot KGC problem as follows.

Definition 1. Given a problem relation r and its reference set Sr = { (hi, ti)|(hi, r, ti) ∈ ε×R× ε}i,
the tail entity tj is predicted based on the information provided by the knowledge graph G and Sr,
as well as the connection between the head entity hj and the problem relation r in the query
triple

(
hj, r, ?

)
. In this case, |Sr| = K, where K is typically a small value, hence the term few-shot

knowledge graph completion.

3.2. Few-Shot Learning Settings

According to Definition 1, few-shot knowledge graph completion is a relation-specific
task. In the knowledge graph G = {(h, r, t) ⊆ ε×R× ε}, the relationR is divided intoRbr
andRtask. Rbr represents the relation set in the background knowledge graph G ′, which
is a subgraph of the knowledge graph G obtained by removing all task relations. Rtask
represents the task relation set includingRtrain,Rvalidation, andRtest, which are used in the
meta training, meta validation, and meta testing stages of the FKGC task, respectively.

In the meta training stage, for each training task r ∈ Rtrain, the associated triplets
are randomly divided into a reference set Sr, a query set Qr, and a set Dr = {Sr,Qr}.
The reference set Sr = { (hi, ti)|(hi, r, ti) ∈ G}i contains K entity pairs (hi, ti). The query

set Qr =
{(

hj, ttrue/Chj ,r

)}
j

consists of the true tail entity ttrue of the query triplet and a

candidate tail entity set Chj ,r. The candidate tail entities for each triplet in the query set are
constructed based on entity type constraints [18]. This construction method ensures that
the query triplets will be matched with semantically similar candidate tail entities. Finally,
all the query tasks are combined into a set Tmtr = {Dr}. For each query triplet (h, r, ?) ∈ Qr,
the similarity scores between the candidate entity pairs (hj, Chj ,r) and all reference entity
pairs (hi, ti)i ∈ Sr are computed. The candidate entity with the highest-ranking score is
selected as the training result.

In the meta testing stage, the overall procedure is similar to the meta training stage.
Firstly, the associated triplets of the test task r′ ∈ Rtest(Rtrain ∩Rtest = ∅) are randomly
divided into a reference set S ′r and a query set Q′r to define D′r = {S ′r,Q′r}. Secondly, all
the test query tasks are combined into a meta test set, denoted as Tmte = {D′r}. Finally, the
candidate entities are scored, and the candidate entity with the highest score is selected as
the predicted result of the model. In summary, the FKGC task involves ranking the true tail
entity tj and candidate tail entity t′ ∈ Chj ,r of a triple

(
hj, r, ?

)
. Given the task relations in

set r, the information provided by the knowledge graph G, and the reference set Sr, the
objective is to ensure that the rank of tj is higher than that of all the candidate entities.

Figure 1 illustrates an example of a five-shot KGC task. In the few-shot KGC task,
the reference set for the query triplet (Windows, ProducedBy, ?) consists of five associated
triplets. The goal is to use the reference set to match the correct tail entity for the query
triplet (Windows, ProducedBy, ?). In this case, the true tail entity “Microsoft” should be
ranked higher than other entities. The core of the FKGC task lies in predicting new facts
with minimal reference information.
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Figure 1. An example of a five-shot KGC task.

4. Model

FRL-KGC is a model that utilizes the background knowledge graph G ′ and the struc-
tural information of the knowledge graph to train and learn for the task of few-shot tail
entity prediction for relations. The overall framework of FRL-KGC is illustrated in Figure 2,
and includes:

(a) High-order neighborhood entity encoder based on gate mechanism, which adaptively
aggregates neighborhood information for entities.

(b) Relation representation encoder, which utilizes the relation information of reference
entity pairs’ neighbors to reduce the dependency of relations on entity embeddings
and improve generalization.

(c) Transformer learner, which combines LSTM units and Transformer modules to further
learn the representation of task relations.

(d) Matching process computation, which utilizes the semantic embeddings of relations
outputted by the Transformer learner to calculate the similarity with the query relation,
predicting new triplets.

4.1. Entity Encoder Based on Gate Mechanism

In knowledge graphs, heterogeneous neighbors of entities have different impacts
on the representation of the entities. Adaptively aggregating neighboring information
according to the task relation r can improve the quality of the central entity’s represen-
tation [18]. However, this method does not aggregate higher-order neighborhood entity
information into the central entity and overlooks the effect of the ratio between useful
neighbors and useless neighbors on the encoding of the central entity. Based on this, we
designed a gated higher-order neighborhood entity encoder that extends the “adaptive
neighborhood encoder” of the FAAN model and expands it to higher-order neighborhoods
with the addition of a gating mechanism. This approach enhances the expressiveness of
entities while reducing the impact of noisy neighbors on the updating of central entity
encoding. The main structure of the gated higher-order neighborhood entity encoder is
shown in Figure 3.
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Given a task triplet (h, r, t), assuming entity h is the target entity, its encoding is up-
dated through the higher-order neighborhood entity encoder. The higher-order neighbor-
hood of entity h is defined as N o

h =
{
( ro

i , to
i )
∣∣(h, ro

i , to
i
)
∈ G ′

}
, where G ′ is the background

knowledge graph, and ro
i and to

i represent the i-th higher-order neighbor relation and the
corresponding tail entity of entity h, respectively. To quantify the features of entity h, we
first use the metric function ϕo(·) to calculate the similarity between the reference relation r
and the adjacent higher order relation ro

i of entity h, as shown in Equation (1).

ϕo(r, ro
i
)
= rT(Wro

i + b
)

(1)
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where r represents the initial feature of task relation r; ro
i represents the pre-trained embed-

ding of higher-order adjacent relation ro
i ∈ N o

h ; W ∈ Rd×d and b ∈ Rd×1 are the weight
matrix and bias parameters, respectively; and ϕo(·) is the bilinear dot product function.

Next, based on the similarity score ϕo(·) of the higher-order neighborhood encoding,
the attention mechanism is employed to assign higher attention scores to those entities to

i
with higher scores. To further improve the representation quality of entity h and reduce
the impact of noisy neighbors, higher weights are allocated to more important neighbors.
The “Gating Mechanism” is introduced in the process of calculating neighbor weights to
adaptively compute weight αi, as shown in Equations (2) and (3):

G
(
ho, eo

i
)
=

n
∑

o=1

(
ho · eo

i
)
· ro

i (2)

αi = so f tmax(G(ho, eo
i )) (3)

The gating mechanism function G(·) calculates the inner product of the central entity
and neighboring entities, performs matrix multiplication using the task relation ro

i , and
sums the results. Here, n is the maximum neighboring order between the central entity ho

and neighboring entity eo
i , and o represents the order number. It takes the central entity

ho and related neighboring entities eo
i as inputs, and outputs a metric representing the

relevance between the neighborhood and the central entity. so f tmax(·) converts the input
into a probability distribution of neighbors.

To better capture the specific task relation, a learnable task relation matrix R is in-
troduced, which is used to update task relation ro

i . The calculation process is shown
in Equation (4):

r′oi = R · ro
i (4)

where r′oi is the updated task relation.
With this, the neighborhood encoding ch of the central entity h can be obtained, as

shown in Equation (5):

ch = GLU
(

n
∑

o=1
so f tmax

(
G
(
ho, eo

i
))
· eo

i · r′
o
i

)
(5)

where the function GLU(·) is the gated linear unit activation function.
Finally, the output of the neighborhood encoder and the initial feature of the central

entity are used to adaptively update the entity representation, as shown in Equation (6):

e = σ(w1 · ch + w2 · eh) (6)

where σ(·) represents the sigmoid activation function, h represents the initial feature of the
central entity, w1, w2 ∈ Rd×d represent learnable parameters, and e ∈ Rd×1 represents the
updated entity embedding of the central entity h.

This entity update step is applied to all entities in the reference set and query set. The
proposed higher-order neighborhood entity encoder in this paper takes into account the
information implied by the neighbors of higher-order neighborhood entities and introduces
a gating mechanism to filter noisy neighbors for specific task relations. The range of high-
order neighborhoods is set to 3 in this method, as a range that is too low would lead to a
loss of a significant amount of hidden information, while a range that is too high would
cause a decrease in the model’s performance.

4.2. Relation Representation Encoder

Through the above steps, the entities of the reference set and the query set are encoded
to obtain their representations h and t. Following the method in the FAAN paper [18], we
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can express the prototype relation rs of the reference set by connecting hs and ts. As shown
in Equation (7):

rs ≈ hs + ts (7)

MetaR [19] only represents few-shot relations by averaging the embeddings of all
entity pairs in the support set, without considering the correlation between entity pairs
in the reference set. Additionally, in previous methods, FSRL [17] simply used a cyclic
autoencoder to aggregate a small reference set. However, as training deepens, the model’s
relation embeddings become overly reliant on entities, leading to relation overfitting and
reduced generalization capability.

In this paper, we utilize the neighbor relations of entity pairs in the reference set to
enrich the semantic representation of the current relation and reduce the reliance on relation
embeddings for entities, thereby enhancing the model’s generalization ability. The main
structure of the relation representation encoder is shown in Figure 4.
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In order to represent the neighbor relations of the head entity hi and tail entity ei of the
i-th entity pair (hi, ei) in the reference set, we define the reference set entity pair neighbor
relation set R′r = Sr{ r|(hi, r, ?), (ei, r, ?) ∈ G}. To enhance clarity, we represent the relation
r in the set of neighbor relations as a vector, as shown in Equation (8):

Ers,i = {r, r ∈ Sr} (8)

where Ers,i represents the vectorized representation of the i-th neighbor relation rs in the
set R′r.

To enrich the semantic expression of the current relation while reducing the impact
of noise, the dot product similarity of feature vectors is used to calculate the similarity
between Ers,i and the reference set prototype relation rs. The calculation process is shown
in Equation (9):

Esim(i) = rs · Ers,i
T (9)

where Esim(i) represents the vector similarity score of the i-th neighbor relation rs.
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In this paper, we only retain the T neighbor relations with the highest similarity scores.
Therefore, a noise filtering method is used to filter out vectors with lower similarity scores,
as shown in Equation (10):

E′sim(i) =
{

1, if Esim(i) ∈ Top(Esim(i), T)
0, Otherwise

(10)

where the function Top(·) returns the T neighbor relation vectors with the highest simi-
larity scores in Esim(i) (T is set to 3). E′sim(i) represents the neighbor relation vector after
noise filtering.

Next, the noise filtered neighbor relation vector E′sim(i) is encoded, as shown in
Equations (11) and (12):

r′s,i = ∑ Wrs,i ·E
′
sim(i) (11)

Wrs,i =
exp(λ·σ(E′sim(i)))

∑rs,i∈R′r
exp(λ·σ(E′sim(iT))) (12)

where r′s,i represents the representation after integrating the neighbor relation vector with
the least noise in the reference set entity pairs; Wrs,i represents the weight during the encod-
ing process; E′sim(i

T) is the vector representation of each neighbor relation in the reference
set entity pairs; λ is a learning parameter; and σ(·) represents the activation function.

Finally, the prototype relations rs and r′s,i of the reference set are merged, as shown
in Equation (13):

r′ = σ
(

w1 · rs + w2 · r′s,i

)
(13)

where σ(·) represents the activation function, and w1, w2 denote the learnable parameters.

4.3. Transformer Learning Framework

In the FKGC task, the core objective is to incorporate as much semantic information as
possible into the final output relation representation R, thereby enhancing the fine-grained
semantics of different entity pairs in the few-shot reference set. Due to the powerful
learning capability of Transformers [28], this paper utilizes a Transformer as a learner to
further learn the relation representation of triplets. In order to obtain more accurate relation
representations, the FRL-KGC model takes the entity embeddings from the high-order
neighborhood entity encoder and the task relation embeddings from the relation represen-
tation encoder as inputs to the Transformer learner, enabling further learning of relation
representations. Inspired by R-TLM (Recurrence Transformer Language Model) [29], this
paper optimizes the learner based on a simplified R-TLM module. The main structure of
the Transformer learner is illustrated in Figure 5.

The task relation r and its corresponding entity pair (h, t) are represented as a sequence
X = {x1, x2, x3}, where x1 and x3 represent the head and tail entities, and x2 represents the
task relation. Firstly, the input of the Transformer is defined as zk

i , and for an element xi in
the sequence X, it is represented as Equation (14):

zk
i = xemb

i + xpos
i (14)

where xemb
i represents the embedding of the element and xpos

i represents the positional
embedding. The entity embeddings xemb

1 and xemb
3 are the updated entity representations

from the high-order neighborhood entity encoder (Equation (6)), and the relation embed-
ding xemb

2 is obtained from the relation representation encoder (Equation (13)). Firstly, z0
i is

inputted into the LSTM Block, and the hidden state is z1
i . Next, the z0

i and z1
i are connected

through a residual connection, serving as the input to the Transformer module. Within
the Transformer module, the Multi-Head Attention layer and Add&Norm layers are first
utilized for learning. Then, the Feed-Forward layer, composed of fully connected layers
and ReLU activation functions, along with the subsequent Add&Norm layers, introduce
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nonlinearity into the module. This approach aims to enhance the learning process, ulti-
mately yielding the output of the Transformer learner. The specific computation steps are
shown in Equations (15)–(17):

z1
i = LSTM

(
z0

i
)

(15)

z2
i = Fusion

(
z0

i + z1
i

)
(16)

z3
i = Trans f ormer

(
z2

i
)

(17)
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The output z3
i from the Transformer block learner serves as the final relation represen-

tation for the task triplet (h, r, t), denoted as z(h, r, t). In the end, for each few-shot relation
r and its corresponding task triplet (h, r, t) ∈ Sr/Qr, there exists a corresponding final
relation representation.

4.4. Matching Process Computation

After being processed by the Transformer learner, each entity in the reference set
and query set obtains its corresponding relation representation. Similar to previous meth-
ods [20], FRL-KGC calculates the semantic similarity between the query triplet and the
reference set using a metric-based approach, and selects the triplet with the highest similar-
ity score as the model’s prediction. The main structure of the matching process computation
is illustrated in Figure 6.
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However, during the matching computation, each reference set contains different
information [30], and it is important to dynamically learn the representation of the reference
relation r for different query triplets. Inspired by the work in reference [31], FRL-KGC
generates a dynamic query relation representation rm for each query entity pair. The
computation process is shown in Equations (18) and (19):

rm = ∑Sri∈Sr λi · Sri (18)

λi = so f tmax(cos(Sri , qr)) =
exp(cos(Sri ,qr))

∑Srj∈Sr exp(cos(Srj ,qr)) (19)

where λi denotes the so f tmax(·) attention weights for the representation of each reference
relation; Sri represents the relation representation of the i-th entity pair in the reference set
obtained through the Transformer learner (Equation (18)); qr represents the relation repre-
sentation of the query entity pair obtained through the Transformer learner (Equation (18));
cos(·) represents the cosine similarity; and j represents the size of the reference set.

Next, the dynamic query relation representation rm and the semantic similarity
score(rm, qr) between rm and the query qr are computed as shown in Equation (20):

score(rm, qr) = rm · qr (20)

where the higher the value of score(·), the greater the semantic similarity between the query
entity pair (h, t) under the reference relation r and the few-shot reference set, indicating a
higher possibility of the query triplet being valid. Conversely, a lower score(·) suggests a
smaller possibility.

However, in translational models like TransE [10], it is important to consider the trans-
lational property for the expectation of h + r ≈ t. According to Equation (18),

(
z3

h, z3
r , z3

t
)

represents the output sequence of the query entity pair
(
hq, tq

)
after passing through the

Transformer learner. The translation score s is defined as shown in Equation (21):

s
(
hq, tq

)
= ‖z3

h + z3
r − z3

t ‖2 (21)
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where ‖z3
i ‖2 represents the L2 norm of vector z3

i , and s represents the distance between
z3

h + z3
r and z3

t . Therefore, the smaller the value of s, the higher the possibility of the query
triplet being valid.

Therefore, considering both the values of score(·) and s(·), the calculation of the final
matching score′(·) for the query entity pair

(
hq, tq

)
is determined as shown in Equation (22):

score′
(
hq, tq

)
= score(rm, qr)− δs

(
hq, tq

)
(22)

where δ is an adjustment factor. The final score′(·) is calculated for all the query triplets
and sorted accordingly.

4.5. Loss Function

This paper follows the model training settings of other FKGC methods [16]. Given a task
relation r ∈ Rtrain and its corresponding triplets, a reference set Sr = { (hi, ti)|(hi, r, ti) ∈ G}i
is constructed by randomly sampling K triplets from the triplet set, while B (batch_size)
triplets are randomly sampled from the remaining triplets as the positive query set
Qr =

{(
hq, tq

)∣∣(hq, r, tq
)
∈ G

}
. As there are no negative triplets in the knowledge graph

itself, a corresponding negative query set Q−r =
{(

hq, t−q
)∣∣∣(hq, r, tq

)
∈ G,

(
hq, r, t−q

)
/∈ G

}
is constructed by replacing the tail entity of the triplets in Qr. The hinge loss function is
used for training, as shown in Equation (23):

L = ∑r ∑(hq ,tq)∈Qr ∑(hq ,t−q )∈Q−r [γ + score′
(

hq, t−q
)
− score′

(
hq, tq

)
]
+

(23)

where [·]+ = max(0, x) represents the standard hinge loss function, and γ is a margin
hyperparameter used to separate positive and negative query triplets.

Finally, this paper adopts the batch sampling-based meta training strategy proposed
in Reference [17], which minimizes L while optimizing the model parameter set. L2
regularization is applied to the model parameter set to avoid overfitting, and the Adam
optimizer [32] is used to optimize the model.

In summary, the training process of the model is shown in Algorithm 1.

Algorithm 1 The Training Process of FRL-KGC Model

Input: Training Task Set Tmeta−training, TransE knowledge graph embedding vector, Initialization
parameter θ of matrix model, Reference sample size;
Output: Optimization parameters of the model WC,λc,θ
1 For epoch in 1 to M do
2 Shuffle(Tmeta−training) // Disrupt tasks in Tmeta−training
3 For Tr in Tmeta−training do
4 Sr = Sample(r, K, G) // Extract entity pairs of relation r from K G as a small sample
reference set Sr
5 For k in K do
6 Enhance the embedding vector representation of head and tail entities, and update
the representation of few-show relations.
7 End For
8 Process triples through Transformer learners
9 Qr = Sample(r,G)− Sr // Build a regular triplet query set Qr
10 Q−r = Pollute(Qr) // Pollute the tail entity of a positive triplet to obtain a negative
triplet
11 Calculate matching scores
12 Accumulate the batch loss L
13 Update θ // Update θ using the Adam optimizer
14 End for
15 End For
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5. Experiments

In this section, link prediction experiments are conducted on the NELL-One and
Wiki-One datasets, which are constructed with reference to [16], and the FRL-KGC model
is compared with six few-shot knowledge graph completion models and five traditional
models. Meanwhile, the performance of the models is evaluated on the basis of MRR,
Hits@10, Hits@5 and Hits@1.

5.1. Datasets and Evaluation Indicators

The two benchmark datasets used in this paper, NELL-One and Wiki-One, are com-
monly used datasets for few-shot knowledge graph completion tasks. NELL-One is con-
structed using the NELL dataset [4], which is a system that extracts structured information
from web text and automatically expands and extends the knowledge graph. Wiki-One is a
subset extracted from the Wikidata knowledge base [5]. In both datasets, relations with
more than 50 but fewer than 500 associated triples are defined as few-shot relations (task re-
lationRtask), while the remaining relations related to these triples constitute the background
knowledge graph G ′. Following the FKGC task setup, the task relations in NELL-One
and Wiki-One are divided into training relationsRtrain, validation relationsRvalidation, and
test relations Rtest in the proportions of 51/5/11 and 133/16/34, respectively. Detailed
statistics of the datasets are presented in Table 2.

Table 2. Statistics of datasets. # Ent. denotes the number of unique entities. # Rel. denotes the number
of few-shot relations. Rtask denotes the number of relations we use as few-shot tasks.

Dataset # Ent. # Rel. # Triples Rtask Rtrain Rvalidation Rtest

NELL-One 68,545 58 181,109 67 51 5 11
Wiki-One 4,838,244 22 5,859,240 183 133 16 34

In this study, the Mean Reciprocal Rank (MRR) and Hits@n are used as evaluation
metrics. MRR calculates the average of the reciprocals of the ranks of the correct answers.
Higher MRR values indicate better model performance. Hits@n measures the proportion
of correct answers appearing in the top n ranks. Similarly, higher Hits@n values indicate
better model performance. In this experiment, n is set to 1, 5, and 10. Moreover, the size
of the reference set (K) is set to 5, which means all models are evaluated on a five-shot
knowledge graph completion task.

5.2. Baseline Methods

To evaluate the effectiveness of the FRL-KGC model, two categories of benchmark
models are selected for comparison: traditional knowledge graph embedding methods and
FKGC methods.

For the traditional knowledge graph embedding models, five models are chosen as
control models: TransE [10], DistMult [12], ComplEx [13], SimplE [33], and RotatE [34].
During the training process of traditional knowledge graph embedding models, all triples
from the background knowledge graph G ′ and the task relation set Rtask are used for
training. The task relation setRtask also includes the reference triples used in the validation
and testing phases of the FKGC task.

The FKGC models chosen for comparison in this study include GMatching [16],
MetaR [19], FSRL [17], FAAN [18], and GANA [20]. Among them, GMatching is compared
using GMatching (MaxP), which includes a neighborhood encoder and a matching pro-
cessor and performs few-shot reasoning tasks through max pooling. MetaR is divided
into two scenarios: MetaR (Pre-train) and MetaR (In-train). MetaR (Pre-train) trains entity
embeddings using only the background knowledge graph, while MetaR (In-train) samples
triples from the background knowledge graph and the original training set and includes
them in the model training process.
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In the comparative experiments, both traditional knowledge graph embedding models
and few-shot knowledge graph completion models were evaluated using their respective
optimal parameter settings. The five-shot knowledge graph completion experiments
were conducted five times, and the average of the results was taken as the final result.
This approach ensures a fair comparison and provides a more reliable evaluation of the
models’ performance.

5.3. Implementation Details

The FRL-KGC model is implemented using the PyTorch framework and the exper-
iments are conducted on a single NVIDIA GeForce RTX 4090 GPU. The pretrained em-
bedding model selected is the TransE model [10]. The relevant parameters for training
on NELL-One and Wiki-One are as follows: entity and relation embedding dimensions
are set to 100 and 50, respectively; batch size is set to 128; the initial learning rates (lr) are
set to 5 × 10−5 and 6 × 10−5 for NELL-One and Wiki-One, respectively; the maximum
number of neighbors (M) is fixed at 150; the hyperparameter γ is set to 5; and the Adam
optimizer is used. In the first 10,000 steps of the training process, the model gradually
increases the learning rate and then linearly decreases it. Model validation is performed
every 10,000 training steps, and the maximum number of training steps is set to 300,000.
During the model validation process, the model parameters with the highest MRR value
are selected as the optimal training result for the FRL-KGC model.

5.4. Results

The five-shot link prediction results of all models on the NELL-One and Wiki-One
datasets are shown in Table 3. It can be observed from Table 3 that:

(1) Compared with traditional knowledge graph embedding methods, FRL-KGC achieves
the best performance on both datasets. The experimental results demonstrate that
FRL-KGC can effectively predict missing entities in few-shot relations.

(2) On both datasets, the FRL-KGC model outperforms the best results of the baseline
models on four evaluation metrics. Compared with the best-performing MetaR (In-
train) model on the NELL-One dataset, the FRL-KGC model improves the MRR,
Hits@10, Hits@5, and Hits@1 metrics by 2.9%, 1.9%, 3.1%, and 4.3%, respectively.
The performance improvements on the Wiki-One dataset are 3.3%, 4.3%, 3.4%, and
3.2%, respectively. It is worth noting that only one setting in either Pre-train or In-
train performs well on a single dataset. This indicates that our model has better
generalization ability across different datasets. Furthermore, FRL-KGC can leverage
the contextual semantics and structural information of entities in KG to improve the
performance of few-shot knowledge graph completion.

5.5. Ablation Study

The framework of the FRL-KGC model consists of three key components: (a) a high-
order neighborhood entity encoder based on a gating mechanism; (b) a relation representa-
tion encoder; and (c) a Transformer learner. To assess the impact of each component on the
overall performance of FRL-KGC, in this paper, ablation experiments are conducted on the
Wiki-One dataset for five-shot link prediction.

(a) To investigate the effectiveness of the high-order neighborhood entity encoder based
on a gating mechanism, modifications are made as follows: A1_a encodes only first-
order neighborhood entities for output; A1_b removes the gating mechanism and
uses the average embedding of neighborhood entities instead of ch.

(b) To study the effectiveness of the relation representation encoder, modifications are
made as follows: A2_a simply uses the average embedding of the reference entity
pairs as the representation of the relation.

(c) To examine the effectiveness of the Transformer learner, modifications are made as
follows: A3_a removes the LSTM module; A3_b removes the Transformer module.
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Table 3. Results of five-link prediction on NELL-One and Wiki-One. Bold numbers denote the best
results, and underlined numbers indicate suboptimal results.

Model
NELL-One Wiki-One

MRR Hits@10 Hits@5 Hits@1 MRR Hits@10 Hits@5 Hits@1

Traditional models

TransE 0.176 0.316 0.234 0.109 0.134 0.188 0.158 0.106
DistMult 0.211 0.312 0.256 0.135 0.076 0.154 0.101 0.024
ComplEx 0.186 0.299 0.231 0.119 0.081 0.182 0.121 0.032
SimplE 0.156 0.284 0.225 0.094 0.097 0.181 0.125 0.045
RotatE 0.176 0.331 0.245 0.109 0.052 0.091 0.065 0.026

Few-shot models

GMatching (MaxP) 0.176 0.294 0.233 0.113 0.263 0.387 0.337 0.197
MetaR (Pre-train) 0.162 0.282 0.233 0.101 0.320 0.443 0.397 0.262
MetaR (In-train) 0.308 0.502 0.423 0.210 0.229 0.323 0.289 0.197

FSRL 0.269 0.482 0.369 0.178 0.221 0.269 0.183 0.163
FAAN 0.265 0.416 0.347 0.187 0.314 0.451 0.384 0.245
GANA 0.296 0.497 0.412 0.194 0.324 0.437 0.375 0.264

FRL-KGC (ours) 0.337 0.521 0.454 0.253 0.357 0.494 0.431 0.296

Table 4 presents the comparative experimental results after removing each component.

Table 4. Ablation study of FRL-KGC under five-shot settings on Wiki-One. Bold numbers denote
the best.

Ablation on Model
Five-Shot on Wiki-One

MRR Hits@10 Hits@5 Hits@1

A1_a 0.314 0.443 0.386 0.258
A1_b 0.336 0.469 0.395 0.272
A2_a 0.343 0.483 0.425 0.267
A3_a 0.331 0.453 0.383 0.279
A3_b 0.301 0.432 0.371 0.264

FRL-KGC (ours) 0.357 0.494 0.431 0.296

The results in Table 4 demonstrate that the performance of the complete FRL-KGC
model outperforms all of its variants. This indicates that: (a) the high-order neighbor-
hood entity encoder based on the gate mechanism can effectively enhance the information
contained in the center entity, and the gate mechanism can filter out the impact of noisy
neighbors; (b) by introducing the neighborhood relation representation of entity pairs in the
reference set, FRL-KGC can improve the quality of relation embeddings, facilitate relation
prediction, and reduce dependence on entity pairs, thus improving the model’s generaliza-
tion ability; (c) the combined structure of the LSTM network and the Transformer module
in the Transformer learner is better than using them separately, where the LSTM network
can effectively enhance fine grained contextual semantic representation, and combined
with the powerful Transformer module can improve the accuracy of link prediction.

5.6. Impact of Few-Shot Size

To illustrate the impact of the few-shot size on the model’s performance, impact of
few-shot size experiments were conducted on the Wiki-One dataset, as shown in Figure 7.
The horizontal axis represents the size K of the reference set, and the vertical axis represents
the evaluation index.



Appl. Sci. 2023, 13, 9513 17 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 21 
 

 
Figure 7. Impact of few-shot size K in the performance of FKGC methods on Wiki-One dataset. 

6. Conclusions and Future Work 
This study proposes a Few-shot Relation Learning-based Knowledge Graph Com-

pletion model (FRL-KGC), specifically designed for few-shot knowledge graph comple-
tion tasks. FRL-KGC incorporates a gating mechanism during the aggregation of high-
order neighborhood entity information, effectively filtering out noise from neighboring 
entities and improving the quality of entity encoding. In the process of learning relation 
representations, FRL-KGC leverages the information embedded in the neighborhood re-
lations of entity pairs in the reference set, enhancing the quality of relation embeddings 
and reducing reliance on specific entity pairs, thus improving the model’s generalization 
ability. Furthermore, the introduction of an LSTM network in the Transformer learner 
further improves the quality of few-shot relations. The experimental results indicate that 
the FRL-KGC model outperforms existing FKGC models in terms of link prediction accu-
racy. However, the design of the dataset does not fully capture the dynamic nature of few-
shot knowledge graphs. If the knowledge graph undergoes real-time changes, ensuring 
the model’s inference accuracy becomes a challenging problem. In our future work, we 
plan to explore the use of timestamps to enhance the model’s representation capacity of 
the knowledge graph and maintain inference accuracy in dynamic few-shot knowledge 
graph learning. Additionally, we will investigate the use of external knowledge sources 
to augment the representations of entities and relations, such as leveraging textual de-
scriptions of entities and relations. 
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Figure 7. Impact of few-shot size K in the performance of FKGC methods on Wiki-One dataset.

As shown in Figure 7, as the number of instances in the reference set K increases,
the MRR and Hits@1 values of FRL-KGC gradually increase, and the overall prediction
accuracy of all models improves. However, after reaching a certain level, the performance
improvement tends to flatten and then decreases again. This indicates that the size of the
reference set is a crucial factor affecting the accuracy of link prediction when predicting
new triplets. With a larger reference set, there is more reference information for the query
triplet, which can improve the accuracy of link prediction. However, when the reference
set is too large, the prediction accuracy may decrease. This is due to the fact that the model
may learn more irrelevant information when learning the relation representation with more
reference information, leading to a decrease in prediction accuracy. Additionally, with more
reference information, entities may have more meanings, which increases the complexity
of relation learning, leading to a decrease in prediction accuracy.

6. Conclusions and Future Work

This study proposes a Few-shot Relation Learning-based Knowledge Graph Comple-
tion model (FRL-KGC), specifically designed for few-shot knowledge graph completion
tasks. FRL-KGC incorporates a gating mechanism during the aggregation of high-order
neighborhood entity information, effectively filtering out noise from neighboring entities
and improving the quality of entity encoding. In the process of learning relation represen-
tations, FRL-KGC leverages the information embedded in the neighborhood relations of
entity pairs in the reference set, enhancing the quality of relation embeddings and reducing
reliance on specific entity pairs, thus improving the model’s generalization ability. Further-
more, the introduction of an LSTM network in the Transformer learner further improves the
quality of few-shot relations. The experimental results indicate that the FRL-KGC model
outperforms existing FKGC models in terms of link prediction accuracy. However, the
design of the dataset does not fully capture the dynamic nature of few-shot knowledge
graphs. If the knowledge graph undergoes real-time changes, ensuring the model’s in-
ference accuracy becomes a challenging problem. In our future work, we plan to explore
the use of timestamps to enhance the model’s representation capacity of the knowledge
graph and maintain inference accuracy in dynamic few-shot knowledge graph learning.
Additionally, we will investigate the use of external knowledge sources to augment the
representations of entities and relations, such as leveraging textual descriptions of entities
and relations.
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