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Abstract: Stevia rebaudiana Bertoni Morita II, a perennial plant native to Paraguay and Brazil, is also
widely cultivated in the state of Colima, Mexico, for its use as a sweetener in food and beverages. The
optimization of soil parameters is crucial for maximizing biomass production and stevioside levels in
stevia crops. This research presents the development and implementation of a monitoring system to
track essential soil parameters, including pH, temperature, humidity, electrical conductivity, nitrogen,
phosphorus, and potassium. The system employs a wireless sensor network to collect quasi-real-time
data, which are transmitted and stored in a web-based platform. A Mamdani-type fuzzy logic model
is utilized to process the collected data and provide farmers an integrated assessment of soil quality.
By comparing the quality data output of the fuzzy logic model with a linear regression model, the
system demonstrated acceptable performance, with a determination coefficient of 0.532 for random
data and 0.906 for gathered measurements. The system enables farmers to gain insights into the soil
quality of their stevia crops and empowers them to take preventive and corrective actions to improve
the soil quality specifically for stevia crops.

Keywords: stevia cultivation; soil assessment; precision agriculture; LoRa; web platform; Mamdani
fuzzy inference system

1. Introduction

Stevia, scientifically known as Stevia rebaudiana Bertoni, is a perennial plant that has
been used for centuries as a natural sweetener and for medicinal purposes. It belongs to the
Asteraceae family and is native to the northern regions of Paraguay and southern Brazil [1].
Stevia Morita II, a specific variety of Stevia rebaudiana Bertoni, was initially cultivated in
Japan by Toyosigue Morita. This variant is characterized by its higher production of dried
leaves and improved chemical composition, making it highly desirable for being up to
300 times sweeter than sucrose [2–4].

Stevia’s importance lies in its potential as a non-caloric sweetener and its use as a
natural medicine. Its cultivation and usage have not only garnered attention for its eco-
nomic value but also for its potential contribution to healthier dietary choices and the fight
against chronic noncommunicable diseases such as obesity, diabetes, and cardiovascular
diseases [3]. The chemical composition and steviol glycoside content in stevia leaves can
vary depending on the country of cultivation, making it crucial to compare and understand
these variations [1].

Stevia holds significant economic significance globally, with the projected market
size estimated to reach between 1.4 billion and 1.6 billion USD by the year 2030. The
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market for stevia is segmented by regions, with North America currently dominating the
largest revenue share as of 2021. However, regions such as Asia Pacific, Europe, and Latin
America are expected to experience rapid growth due to the increasing demand for stevia
in the food, beverages, and baking sectors [5,6]. It is worth noting that stevia is primarily
commercialized in powder form, followed by liquid, and lastly as dried leaves.

The cultivation process of stevia can vary depending on the region and country. It
generally consists of growth and pruning cycles that last for approximately 3 to 4 months.
A common method of propagation is through asexual reproduction, where cuttings are
taken from healthy stevia stems and used to replace older or diseased plants. When the
stevia plant reaches a specific height or brix level, indicating its desired level of sweetness,
it is harvested. The harvested plants are dried to remove moisture before undergoing
further processing. The dried stevia leaves can be processed into various commercial forms,
including powder, liquid extracts, or dried leaves [7].

The fertility of the soil plays a crucial role in the cultivation of stevia as it directly
influences the yield and biomass production of the plant. To optimize the soil conditions
and enhance stevia yield, it is recommended to maintain optimal levels of macro-nutrients,
particularly nitrogen, phosphorus, potassium, and organic matter. Fertilization practices,
such as applying organic matter and ensuring an adequate supply of nitrogen, phosphorus,
and potassium, are essential for promoting increased stevia yield (stevioside concentration)
and improving soil fertility [8–10].

Additionally, several factors have a significant impact on the plant yield and chemical
composition of stevia, including temperature, pH levels, sunlight exposure, macronu-
trient concentration (through fertilization), planting density, and other environmental
variables [3,11,12]. These factors can influence the perceived sweetness of stevia, which
depends on rebaudioside A concentration, therefore changing the amount of leaf mass
required to produce powdered or liquid forms of the plant [11].

The aforementioned soil factors in stevia cultivation play a crucial role in determining
the quality and characteristics of the final product, which has significant economic impli-
cations for producers. It is essential to monitor and maintain these parameters within the
desired range to ensure optimal conditions for stevia yield and stevioside concentration.
This study specifically focuses on monitoring and interpreting these soil parameters to
provide an assessment of the overall soil quality (SQ).

Monitoring systems, often referred to as internet of things (IoT) or precision agricul-
ture systems, have emerged as a common solution for collecting data on various variables
of interest. These systems enable the gathering of environmental variables [13–17], soil
parameters [18–22], and water parameters [23]. Typically, such systems comprise electronic
sensors designed to measure specific variables, along with microcontrollers or intercon-
nected microcontrollers that interpret the sensor data and transmit it wirelessly as a wireless
sensor network (WSN). In the case of a networked system, a dedicated device receives the
transmitted data and stores them in a database, such as structured query language (SQL),
either by sending requests to a cloud server or utilizing IoT services like ThingSpeak [15,18].
To facilitate data analysis, these monitoring systems often include a graphical interface that
allows users to access and visualize the collected data. Moreover, the interface may support
data export for further processing and analysis [13,14,16,17,19–23].

When implementing a monitoring system, selecting the appropriate technologies and
tools is crucial. Among the commonly used microcontrollers, Espressif Systems Processor 32
(ESP32) and 8266 (ESP8266) are popular choices. These microcontrollers are often integrated
into embedded development boards such as node microcontroller units (NodeMCUs) and
TTGO boards made by LILYGO. Their popularity stems from their user-friendly nature
and support for the Institute of Electrical and Electronics Engineers (IEEE) 802.11 protocol,
also known as WIFI, enabling wireless communication and internet access when connected
to compatible networks [14,15,17,18,22].

Wireless data transmission in monitoring systems can be achieved through various
protocols, including radio frequency modules, long-range radio (LoRa), and IEEE 802.11.
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Each protocol offers distinct advantages, such as range, data rate, bandwidth, and module
cost [22,24]. In the literature, LoRa and IEEE 802.11 have been frequently mentioned and
used. LoRa is known for its long-distance transmission capability, although at a lower data
rate compared to WIFI. It also has lower power consumption during its operation, which is
particularly beneficial for WSNs that rely on battery power [19,24].

Data collected from monitoring systems can be stored in various ways. One common
option is to send measurements over the internet to an IoT platform, such as ThingSpeak,
Adafruit input–output (IO), clouds, or the IBM Watson IoT Platform [15,17,18]. These
platforms provide convenient and scalable solutions for storing and managing sensor
data. Another approach is to implement a custom cloud server. This can be achieved
by setting up a message queuing telemetry transport (MQTT) broker, which allows for
efficient and reliable data transfer between devices and the server. Alternatively, data
can be received through hypertext transfer protocol (HTTP) requests, processed, and then
stored in a database [16,20]. Implementing a custom cloud server provides more flexibility
and control over the data storage and management process.

In some monitoring systems, data processing techniques such as artificial intelligence
(AI) models, including neural networks and fuzzy systems, are employed to create valu-
able insights about the observed variables. These AI models analyze the collected data
and generate results that provide a more comprehensive understanding of the variable
status and behavior. By using AI-interpreted data, monitoring systems can offer a more
accessible and user-friendly approach to gaining meaningful insights and making informed
decisions [25–28].

Fuzzy logic systems have been a useful tool since their creation in 1988 [29]. These
systems have various variants that fulfill different approaches, such as expert-based knowl-
edge systems like Mamdani [30–32]; Takagi–Sugeno systems [33] which combine fuzzy
rules with linear equations; and hybrid models like Adaptive Neuro-Fuzzy Inference Sys-
tems (ANFIS), which combine neural networks with fuzzy logic [34]. Each variant offers
unique advantages and applications in different domains.

After the aforementioned information, it can be established that stevia is an important
plant and product worldwide, and during its cultivation process, many variables affect
stevia’s biomass and stevioside production, such as soil variables. In order to supervise
these parameters, a monitoring system can be implemented, and many solutions provide
a feasible option using a WSN and a cloud server as main components. To provide a
concise answer for the SQ, a data processing technique such as fuzzy logic model can
be implemented, which leads to the hypothesis that implementing a Mamdani fuzzy
logic model that uses the pH, temperature, humidity, electrical conductivity, nitrogen,
phosphorus, and potassium of the stevia crop soil as inputs, gathered from a monitoring
system, can determine the SQ with a statistically significant determination coefficient (r2).

By obtaining insights into the SQ of the stevia crop, producers can make informed
decisions and implement necessary measures to enhance stevia crop production. Never-
theless, another crucial factor to consider is the adoption of technology, a topic addressed
in [35]. Several barriers to technology adoption exist, potentially preventing farmers or
stakeholders from integrating technological innovations into their processes. These barriers
might encompass social or cultural norms, the migration costs of technology, insufficient
dissemination or diffusion, limited operational or technical knowledge, and a need for
continuous education about emerging technologies.

Using these barriers as a foundation, various strategies can be proposed to overcome
them and consequently boost technology adoption. These strategies may be focused on
enhancing farmers’ understanding through effective communication about the application
of agronomic innovations and their potential impacts on production quality. Another
approach could involve providing demonstrations or samples showcasing the capabilities
of the innovation [36].

In this study, as emphasized by [37], it is important to disseminate the proposed
monitoring system to farmers through effective communication. This includes conveying
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the range of variables it can measure, enhancing their understanding of their stevia crop soil,
demonstrating the user-friendly nature of the web platform for data access, highlighting
the straightforward and swift maintenance process, discussing the potential for expanding
measurements to other variables if needed and emphasizing the benefits of informed
decisions for irrigation and fertilization. If feasible, a practical demonstration of the system’s
operation could further enhance the communication process.

The contributions of this work can be summarized as follows: (a) the design and
implementation of an effective Mamdani fuzzy inference system that accurately determines
physicochemical qualities, macronutrient concentration, and overall SQ using seven es-
sential soil parameters of a Stevia Morita II crop; (b) the development of a WSN utilizing
ESP32-based boards with embedded LoRa communication for efficient collection of the soil
parameters using recommended standard 485(RS-485)-based sensors; and (c) the integra-
tion of the WSN with a custom web platform, enabling data storage and processing and
providing an intuitive user interface for easy access, visualization, and data export.

2. Materials and Methods

The proposed solution, as depicted in Figure 1, entails the implementation of a moni-
toring system. This system consists of a WSN responsible for measuring soil parameters.
The measured data are then transmitted to the developed web-based system, where they
are stored in a structured query language (SQL) database. The gathered data are processed
by a fuzzy logic model (FLM), which generates a numerical value representing SQ.
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Figure 1. Block diagram of the implemented monitoring system.

As mentioned in the previous section, in order to determine the SQ of a stevia crop it is
necessary to measure soil parameters and check if these are inside an optimal range [1,2,8].
For this study, seven soil parameters were selected: pH, humidity, temperature, electric
conductivity, nitrogen, phosphorus, and potassium. These correspond to the physicochemi-
cal quality and macronutrient concentration of the soil, and by using these indicators, an
overall SQ can be determined.

2.1. Wireless Sensor Network

This section contains the hardware, data transmission, storage, and implementation
aspects of the WSN. These components are essential for the efficient operation of the
network. The hardware includes the master node, sensor node, and sensors, which are
responsible for collecting data from the environment. Data transmission is facilitated
through technologies like LoRa and IEEE 802.11 protocols [14,15,24], enabling effective
communication between nodes and the web platform. Additionally, the implementation
aspect of a WSN involves the position where the components, such as sensor nodes and
repeaters, are physically deployed. This section provides a comprehensive overview of
these key components that contribute to the successful functioning of the wireless sensor
network.
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2.1.1. Hardware and Software

The WSN is composed of a single master node, many sensor nodes, and their respec-
tive sensors. The master node is a TTGO board that contains an ESP32 microcontroller, an
organic light emitting diode (OLED) display connected using the inter-integrated circuit
(I2C) protocol, very useful for debugging applications as well as showing important infor-
mation about the system status on screen, and a LoRa antenna that is interfaced through
the serial peripheral interface (SPI) protocol. It is powered by a connected battery power
bank, ensuring continuous operation for up to five consecutive days.

The sensor node utilizes a TTGO board, similar to the master node, but requires
additional electronic components due to the specific requirements of the sensor used to
measure the considered soil parameters. The sensor has an RS-485 interface and requires a
12-volt (V) power supply, while the power bank only provides 5 V of direct current (DC).
To address this, a MAX-485 module is employed to convert the serial signals to the RS-485
protocol. Furthermore, an XL6009 DC-DC step-up module converter is employed to boost
the 5 V power from the source to the required 12 V for the sensor. Additionally, a 5 V to
3.3 V level shifter is used to reduce the voltage of the signals, ensuring the protection of the
ESP32 microcontroller [14]. For a visual representation of the interconnected components,
see Figure 2.
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The selection of the JXBS-3001 sensor for this application was based on its comprehen-
sive capabilities in measuring temperature, humidity, pH, electrical conductivity, nitrogen,
phosphorus, and potassium (NPK) values from the soil, all within a single device [38]. The
manufacturer states that the device has a precision of ±0.5 ◦C for temperature, ±3% for
humidity inside a 0–53% range and ±5% for 53–100%, ±0.3 for pH, and ±2% full scale
for NPK (from 0 to 1999 mg/kg range, which is approximately 40 mg/kg). Precision for
electric conductivity was not provided.

To obtain measurements using a microcontroller, a simplified serial request–answer
communication protocol is established, and it is also defined by the manufacturer [38]. The
microcontroller sends a single message containing specific information: the sensor’s address
code, function code (typically for reading or writing), start register address, data length,
and two cyclic redundancy check (CRC) bytes. Upon receiving the request, the sensor
responds with a packet containing its own address, the sent function code, the number
of data bytes, the requested data, and two CRC bytes. This process allows efficient data
exchange between the microcontroller and the sensor, facilitating reliable measurements
without relying on external software and complex connections.

2.1.2. Data Transmission

The WSN utilizes LoRa technology for message transmission. Each node in the
network is equipped with a TTGO board featuring an embedded LoRa antenna, eliminating
the need for additional electronics and wiring to establish communication between nodes.
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Due to the substantial number of variables contained in a single measurement, high
transmission speeds are not required, especially considering that each message consists of
approximately 120 bytes.

The WSN implements a custom media access control (MAC) protocol on a star topol-
ogy, which utilizes a message structure based on JavaScript object notation (JSON) strings.
These JSON messages contain vital information such as transmitter address and receiver
address, as well as message types, enabling effective communication and status monitoring
within the network.

In terms of the WSN operation, a master-controlled communication approach is
followed. When the master node is powered up, it fetches the configuration from the
web platform, which includes the sensor node address list and the time intervals between
measurements. Upon reaching the scheduled time, the master node initiates a broadcast
message to trigger the sensor nodes to take soil measurements using the JXBS-3001 sensor.

After a 5 s interval, the master node iterates through the node address list, sending data
request commands to collect the recently obtained data. To ensure reliable data retrieval,
if a sensor node fails to respond, the data request command is sent up to four additional
times with a 1 s timeout for each attempt. Each received measurement from the sensor
nodes is appended to a list.

The master node, which is connected to the internet, sends all the accumulated data to
an endpoint on the web platform using an HTTP-POST request. The payload of this request
is in JSON format, containing all the measurements as the request body, and includes an
application/JSON header to specify the data type.

The developed MAC protocol offers scalability, allowing the WSN to accommodate
up to 252 sensor nodes. Additionally, it provides the flexibility to incorporate various
types of sensor nodes, expanding beyond soil parameter measurements. This opens
up opportunities to integrate sensors for air temperature, humidity, water pH, electrical
conductivity, and other environmental factors.

2.1.3. Data Storage

The master node plays a crucial role in sending all the collected measurements to the
web platform for storage. These data are transmitted using a POST request to a designated
endpoint on the platform.

Upon receiving an incoming request, the web platform follows a sequence of steps. It
starts by processing the content and confirming its compatibility with the correct method.
If the content is in JSON format, it is sanitized for any potential issues. Then, the credentials
of the master node are verified, and the incoming measurements are assessed.

If a measurement is beyond the acceptable range (where any parameter contains 0 or
65,535 or is outside the sensor’s measuring range), it is disregarded because it is considered
an outlier. Concurrently, the metadata of the sensor node are updated to reflect an online
status, along with an indication of a “bad measurement” and a timestamp. This information
is useful for troubleshooting purposes. When all checks pass successfully, the measurement
is stored in the database. The node’s metadata are adjusted accordingly, and this process
continues for the remaining measurements.

At the end of the process, the web platform acknowledges the successful receipt of the
data by sending a confirmation message back to the master node, ensuring data integrity
and reliable transmission.

This systematic approach ensures that data remain accessible for future retrieval and
in-depth analysis. It guarantees secure storage in a centralized database, accessible from
anywhere and at any time.

2.1.4. Implementation

The system underwent an initial laboratory testing phase lasting three weeks. This
rigorous testing confirmed the system’s stability, ensuring a consistent connection and the
continuous monitoring of soil parameters. Additionally, the microcontroller programs
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implemented a watchdog feature, which automatically resets the nodes in the event of
unexpected errors. This proactive approach effectively resolves a significant portion of
potential issues, demonstrating the system’s readiness for field implementation.

The WSN implementation was performed on a Stevia Morita II crop, owned by Rancho
Tajeli. Figure 3 provides a satellite view of the node layout within the stevia crop. The blue
circles represent the sensor nodes, while the red square represents the master node. It is
worth noting that the master node is positioned near a building with an available internet
connection. The layout also demonstrates that the maximum distance between any sensor
node and the master node does not exceed 150 m, enabling stable communication without
the need for repeaters or signal amplification.
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For deployment in the stevia crop, sensor nodes were strategically installed. The sensor
probes were placed following the manufacturer’s instructions at a depth of 0.25 m, inserting
the steel probes horizontally, close to the roots of individual plants, as depicted in Figure 4.
The JXBS-3001 sensor has a T90 of less than 10 s, this represents that it only requires that
time to reach 90% of its final stable reading, therefore, any monitoring period should be
above this timespan. For this study, a 5 min interval for measuring soil parameters was
selected, so a total of 288 measurements per day could be collected [38]. The power banks
powering the sensor nodes were replaced with other fully charged power banks every two
to three days, ensuring uninterrupted monitoring routines and maintaining the system’s
reliability.
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Overall, the successful laboratory testing, coupled with the well-planned node layout
and the strategic placement of sensor nodes, establishes the system’s robustness and
suitability for field implementation.

2.2. Web-Based Platform

The web-based platform plays a crucial role in the overall functionality of the monitor-
ing system. It serves as a foundational pillar, offering a comprehensive suite of tools for
data storage, information retrieval, and visualization. Additionally, the platform provides
the capability to export data, enabling its utilization in diverse applications as needed. The
significance and functionality of the web-based platform will be explored in greater detail
in the following subsections.

2.2.1. Web-Platform Functionality (Use Cases)

In order to develop a comprehensive and functional web platform, a thorough analysis
of use cases was conducted. This involved identifying the key actors and the actions they
would perform. To enhance the process, interviews were conducted with stevia farmers,
allowing for valuable insights into their needs and experiences with similar technologies.

The identified actors within the system are as follows: the stevia farmer (user), the
administrator, the central nodes, and the backend itself. The user has the ability to au-
thenticate and access the platform’s information. They can conveniently review the latest
measurements through a spatial map, which displays data node by node. Additionally, the
user can visualize historical data using a line chart, with the flexibility to adjust the time
range and select specific nodes for visualization. Furthermore, users have the option to
export data, allowing for sorting by timestamps and exporting either all nodes or specific
ones.

The administrator possesses the same capabilities as the user, with additional admin-
istrative privileges. In addition to the user actions, the administrator can create, disable,
or upgrade user accounts to administrator status. They have the authority to create and
modify sensor node information, including address, alias, map coordinates, and sensor
type (in this case, soil sensors). The administrator is also responsible for adding central
nodes and managing their authentication credentials for secure server communication.

The master node, a central node in the network, has the ability to securely post
measurements to the server via HTTP requests. Authentication credentials are required to
ensure data security and integrity.

The backend serves as the core component of the web platform, receiving and process-
ing all user interactions and system actions. It plays a crucial role in executing validation
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checks to ensure the integrity and security of the data. This includes verifying user au-
thentication, validating input data, and enforcing access control policies. The backend also
facilitates seamless communication with the database, allowing for the efficient storage and
retrieval of information. It handles complex operations such as data aggregation, analysis,
and generating relevant visualizations. Overall, the backend acts as the engine that drives
the functionality of the web platform, ensuring smooth and reliable operation for all users
and system components.

2.2.2. Structure

The web platform’s structure was carefully designed to accommodate the specific
aforementioned functionalities. The implemented design, illustrated in Figure 5, provides
a comprehensive framework for seamless user interaction.
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Upon accessing the platform, users are presented with the landing page, which serves
as an informative gateway, offering an overview of the system’s functionality and purpose.
Once users successfully log in, they gain access to the main menu, which acts as a central
hub for navigating through different sections tailored to their needs.

The current data section offers users a real-time visualization of the stevia crop field
through an interactive map. Active elements, represented by sensor nodes, are displayed
on the map. By hovering the cursor over or tapping on a node icon, a pop-up window
appears, providing detailed information about the node’s parameters. Additionally, the
window prominently showcases numeric values that convey the general quality of the
stevia crop.

In the historical data section, users are empowered to delve into the past performance
of the stevia crop. This section features an insightful plot accompanied by a control menu.
The control menu enables users to search and select specific date ranges and sensor nodes,
facilitating the examination of the crop soil variables over time. The plot can be exported
as a PNG file, granting users the ability to generate reports utilizing these valuable data.
The plotting functionality leverages the Chart.js open-source library, seamlessly integrated
through dynamic JavaScript implementation. By fetching data through query parameters
passed as JSON strings to designated endpoints, the webpage dynamically updates the
existing plot without requiring a full page reload.

The export data section offers users the capability to extract and analyze data for
further investigation. Using a menu similar to the historical data section, users can refine
their data selection based on specific date ranges and sensor nodes. The chosen data are
presented in a preview table on the website. JavaScript, employed for document object
model (DOM) manipulation and HTTP requests to the platform’s endpoints, facilitates
the creation of a dynamic table, similar to the functionality provided in the historical data
section.
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The configuration section grants users the flexibility to update their account settings,
including password and email information, providing them with autonomy over their
profiles.

The administration section is exclusively accessible to administrators, endowing them
with privileged control and management capabilities. Within this section, administrators
can create and configure sensor nodes, defining aliases, addresses, and coordinates for the
map representation, and sensor types. Furthermore, administrators have the authority
to disable sensor nodes as needed. Additionally, administrators possess the ability to
add master nodes, which have assigned aliases and pass keys for enhanced application
programming interface (API) security. The administration section also empowers admin-
istrators to create new user accounts, modify email addresses, reset passwords, disable
accounts, and elevate user accounts to administrator status.

The API section serves as a vital component within the web platform, catering exclu-
sively to the WSN. Consequently, it incorporates specific endpoints designed to facilitate
seamless communication and ensure optimal operation. To maintain robust security mea-
sures, the API endpoints implement validation mechanisms for HTTP verbs, ensuring that
only authorized actions are executed. Furthermore, to safeguard sensitive data, the API
mandates the use of HTTPS connections, boosting the platform’s overall security posture.

In line with best practices for web application security, all data transmitted via the API
is thoroughly sanitized, significantly reducing the risk of potential attacks, such as SQL
injections. By diligently sanitizing the data, the platform minimizes the vulnerability to
malicious manipulation and enhances the integrity of the system.

This meticulously structured web platform not only facilitates seamless user naviga-
tion but also ensures that each user, whether a farmer or an administrator, has access to the
precise functionalities and tools required for efficient data analysis, decision-making, and
system management.

2.2.3. Database

Data storage plays a critical role within the monitoring system’s web platform, encom-
passing sessions, user information, node configuration, and, most notably, the measure-
ments themselves. To effectively meet this requirement, a deliberate approach was adopted,
taking into account the limited number of sensor node types involved. Specifically, the
system focuses on monitoring seven soil parameters, which allows for a fixed number of
columns in the database. This deliberate design simplifies data management processes and
ensures consistent storage practices.

To leverage the advantages inherent in a relational database management system
like MySQL, the platform was structured accordingly. The structured nature of the data
eliminates the need for dynamic schema modifications, streamlining data management
procedures. Additionally, the adoption of a relational database approach enhances the
system’s scalability, enabling the seamless integration of new sensor node types through
the creation of additional tables.

By choosing a relational database approach, the platform ensures the efficient storage
and retrieval of measurements. It can effectively handle large volumes of data while
maintaining data integrity. Moreover, this design choice provides flexibility for future
expansions, facilitating the smooth integration of new sensor node types through the
creation of dedicated tables.

2.2.4. API Endpoints

As discussed in previous sections, the web platform incorporates an API that serves
as a communication interface between the WSN and the backend. This communication is
facilitated through HTTP requests initiated by the master node and handled by the web
server. It is important to note that conventional IoT techniques, such as implementing
MQTT servers, were not employed in this system. The decision to minimize implementa-
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tion costs led to the adoption of shared hosting, which supports MySQL database, PHP:
hypertext preprocessor, and the ability to install dependencies using a composer.

The primary endpoint utilized by the master node is “/API/getConfig.” It utilizes a
GET request with a JSON payload in the request body. If the provided credentials match
those stored in the database, the configuration is returned in JSON format. This endpoint
serves the purpose of retrieving the necessary configuration parameters required for the
WSN’s operation.

The second crucial endpoint is “/API/addMeasurements.” As the name implies, this
endpoint is responsible for capturing and adding the measurements obtained from the
WSN. The data are received in a POST request in JSON format, following the structure
depicted in Figure 6. The payload includes the node ID and passkey, with the timestamp
being optional but preferred. The data field consists of a list of JSON objects that carry
information from the WSN, including addresses, sensor types, and the corresponding
parameter values encapsulated under the data key.

By utilizing these endpoints, the web platform establishes a seamless connection
between the WSN and the backend, ensuring the secure transfer of configuration data and
measurements. This architecture guarantees the integrity and reliability of the collected
information, enabling the platform to effectively process and analyze the data captured by
the WSN.
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2.3. Fuzzy Logic Model (FLM)

The third main component of the monitoring system is the FLM. In this subsection, we
will present the structure of the FLM, including its inputs, which are pH, soil temperature,
electric conductivity, soil humidity, and NPK nutrients, the output of the FLM (soil quality)
and sub-outputs (physicochemical quality and macronutrient concentration), its rules, and
how it was implemented for integration into the web platform.

A Mamdani-type fuzzy inference system (FIS) was chosen for the FLM due to its
ability to incorporate expert knowledge [25,31]. This is particularly useful when dealing
with the value range classifications of linguistic variables, such as low temperature, optimal
temperature, etc. It also allows for the creation of custom outputs, such as medium-
quality, medium-high-quality, or high-quality. Mamdani-type FISs are widely used in
various domains, including performance assessment, the prediction of variables, and
classification [26,31,39].

To effectively assess SQ, it was determined that the FLM should consider the influence
of seven key soil parameters: pH, temperature, humidity, electric conductivity, nitrogen,
phosphorus, and potassium. These parameters collectively provide valuable insights into
the physical, chemical, and nutrient characteristics of the soil [10,40]. Recognizing that SQ
encompasses multiple aspects, the FLM aims to decompose it into three primary outputs:
physicochemical quality, macronutrient concentration, and overall SQ.

Physicochemical quality (PQ) captures the overall status of the soil’s physical and
chemical properties, while macronutrient concentration (MC) focuses on the availability
and balance of essential macronutrients [41,42], which are considered to be implemented
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as outputs of the FIS. Figure 7 provides a comprehensive overview of the fuzzy models
developed to address each output.
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2.3.1. Inputs

As discussed earlier, the quality of crop soil plays a significant role in determining yield
production, including the concentrations of stevioside and rebaudioside in stevia [3,11].
For this study, seven parameters were selected: soil pH, temperature, humidity, electrical
conductivity, nitrogen, phosphorus, and potassium. These parameters represent the physi-
cal, chemical, and nutrient composition of the soil, which, according to [12], can be used to
determine soil quality.

Other variables, including biological processes, could also contribute to assessing soil
quality, but measuring each variable, as shown in the literature, can be expensive and not
easily automated using a WSN due to the need for human intervention. Therefore, the
aforementioned seven parameters were chosen as they represent different aspects of the soil
and encompass the most important nutrients [3,11]. Additionally, this choice aligns with
the number of parameters that the JXBS-3001 soil sensor can measure, making it a practical
selection for the monitoring system. Importantly, input values were not normalized as they
did not display significant dispersion among them.

These parameters play a crucial role in determining SQ and have a direct impact on
crop health and productivity. For a more comprehensive understanding of the fuzzy inputs
of the model for each parameter, refer to Table 1. This table provides a detailed description
of the linguistic variables used in the FLM and their corresponding membership functions
(MF). It is worth noting that all the membership functions (MFs) in the model inputs are
represented using trapezoidal functions. This decision was based on the work of [43],
which highlights how trapezoidal functions are convenient for representing fuzzy ranges.
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Table 1. Fuzzy model inputs.

Soil Parameter Universe of
Disclosure

Linguistic Term MF * Type MF * Parameters
a b c d

pH

Extra acidic Trapezoidal 0 0 4.9 5.1
Very acidic Trapezoidal 4.9 5.1 5.4 5.6

Moderately acidic Trapezoidal 5.4 5.6 5.9 6.1
0–14 Slightly acidic Trapezoidal 5.9 6.1 6.4 6.6

Neutral Trapezoidal 6.4 6.6 7.2 7.4
Alkaline Trapezoidal 7.2 7.4 7.9 8.1

Very alkaline Trapezoidal 7.9 8.1 14 14

Temperature (◦C)
Cold Trapezoidal 0 0 15 20

0–50 Optimal Trapezoidal 15 20 25 30
Hot Trapezoidal 25 30 50 50

Humidity (%)
Dry Trapezoidal 0 0 65 75

0–100 Optimal Trapezoidal 65 75 85 95
Wet Trapezoidal 85 95 100 100

Electric
conductivity

(uS/cm)

Low Trapezoidal 0 0 450 550
0–1500 Medium Trapezoidal 450 550 950 1050

High Trapezoidal 950 1050 1500 1500

Nitrogen (mg/kg)
Low Trapezoidal 0 0 106.6 126.6

0–300 Medium Trapezoidal 106.6 126.6 177.5 197.5
High Trapezoidal 177.5 197.5 300 300

Phosphorus
(mg/kg)

Low Trapezoidal 0 0 4.2 4.8
0–20 Medium Trapezoidal 4.2 4.8 8.8 9.4

High Trapezoidal 8.8 9.4 20 20

Potassium (mg/kg)
Low Trapezoidal 0 0 44.1 54.1

0–180 Medium Trapezoidal 44.1 54.1 111.6 121.6
High Trapezoidal 111.6 121.6 180 180

Parameter ranges were obtained from different authors, pH crisp ranges are retrieved from [44], NPK values
from [45], temperature from [46], electric conductivity from [47], and humidity from [48]. * MF is the abbreviation
of membership function.

The MFs of each input in the fuzzy model can be visually represented by plotting the
functions using their respective parameters. In Figure 8, two input plots are displayed. In
(a), the pH input is shown with seven MFs, each representing a different linguistic term. It
can be observed that there is an overlap of 0.1 units before and after each limit of the MFs.
For instance, if the pH value is considered extra acidic until a limit of 5, the transition from
extra acidic to very acidic begins at a pH value of 4.9 and continues until reaching 5.1. In
(b), the temperature input is depicted with three MFs. The transitions between linguistic
terms are noticeably smaller, with only a 2.5 ◦C overlap before and after each crisp limit.
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2.3.2. Outputs

The fuzzy model produces three distinct outputs: SQ, PQ, and MC. To determine SQ,
the model requires the calculation of PQ and MC, which are then fed back into the fuzzy
system, as discussed in detail in the rules section. It is important to emphasize that SQ is
not solely determined by either PQ or MC individually, but rather by the integration and
combination of both factors.

Physicochemical quality represents the physical and chemical characteristics of the
soil that influence its suitability for plant growth. Parameters such as pH, temperature,
humidity, and electric conductivity are taken into account [41]. By evaluating the input
values and their corresponding linguistic variables, the fuzzy model assigns a degree of
PQ to the soil. This assessment includes linguistic terms such as low, medium, and high,
allowing for the classification of the soil’s PQ based on the input parameters.

On the other hand, MC focuses on the levels of essential macronutrients, namely
nitrogen, phosphorus, and potassium, in the soil. These nutrients are crucial for plant
growth and development [42]. The fuzzy model assesses the input values of these nutrients
and assigns a degree of MC, utilizing linguistic terms such as low, medium, and high.

The outputs of the FLM utilize triangular MFs for each linguistic term. This choice
was made based on [43], which suggests that using triangular MFs is more appropriate for
fuzzy numbers, which is the case for estimating each output.

The details of these MFs, including their linguistic terms and parameters, can be found
in Table 2. This comprehensive table enhances the reproducibility of the fuzzy model,
allowing others to accurately replicate and understand the implementation of the MFs for
each output.

It is worth mentioning that the scale used for SQ and PQ ranges from 0 to 10. Both SQ
and PQ employ a five-membership-function approach, including linguistic terms such as
low, medium-low, medium, medium-high, and high. However, MC does not implement
the medium linguistic term.

The determination of the number of MFs for each output variable is based on the
combinations of the related input variables. In order to assign equal importance to each
input, a binary simplification approach is applied. For example, in the case of PQ, which
depends on four input variables, the resulting combinations are represented using zeros and
ones. Although there are sixteen possible combinations, they can be grouped based on the
number of ones in each row and then ordered into five groups. These groups represent the
different levels of PQ, ranging from none being good to all being good. Similarly, for MC,
which depends on three input variables, the same principle is applied. The combinations
are grouped into four required groups, representing the different levels of MC. SQ, unlike
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MC and PQ, follows a different approach to determining the number of MFs. While MC
and PQ have four and five MFs, respectively, resulting in 20 possible combinations, the
assignment of MFs for SQ is based on expert knowledge.

Table 2. Fuzzy Model Outputs.

Output Name Universe of
Disclosure

Linguistic
Term

MF Type MF Parameters
a b c

Soil Quality

Low Triangular 0 0 1.5
Medium-low Triangular 1 2.5 4

0–10 Medium Triangular 3.5 5 6.5
Medium-high Triangular 6 7.5 9

High Triangular 8.5 10 10

Macronutrient
Concentration

Low Triangular 0 0 2

0–10
Medium-low Triangular 1 3.5 6
Medium-high Triangular 4 6.5 9

High Triangular 8 10 10

Physicochemical
Quality

Low Triangular 0 0 1.5
Medium-low Triangular 1 2.5 4

0–10 Medium Triangular 3.5 5 6.5
Medium-high Triangular 6 7.5 9

High Triangular 8.5 10 10

MF is the abbreviation of membership function.

The plotted MFs in Figure 9 demonstrate overlapping triangular shapes, enabling a
smooth transition between linguistic terms. This design ensures a comprehensive assess-
ment of SQ and MC, accounting for the gradual changes in input parameter values. The
well-defined MFs play a crucial role in capturing the inherent uncertainty and providing
accurate evaluations within the FIS [25,31].
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2.3.3. Rules

The rules of the FLM are derived from the Mamdani algorithm, adhering to an IF-
THEN structure. These rules serve as a meaningful representation of the universe of
knowledge [29]. An example of a defined rule is

IF pH IS neutral AND temperature IS optimal AND humidity IS optimal AND EC IS
low, THEN the PQ IS high.
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Although theoretically feasible, defining a total of 5103 rules to cover all possible
input combinations is impractical due to the significant time and effort required, as well as
the potential for human error. Manual rule definition using graphical user interfaces like
MATLAB’s fuzzy logic toolbox or coding in Python would not be a viable solution. As a
result, an alternative approach was adopted, employing a binary simplification technique
where parameters are categorized as either good or bad. This simplification resulted in a
substantial reduction in the number of rules, bringing it down to just 128. To implement
this binary simplification, the MFs of the input parameters were mapped to the good or
bad classifications. For instance, in the case of nitrogen concentration, a low concentration
was classified as bad, while medium and high concentrations were classified as good.

To organize and simplify the rule structure, the rules were categorized based on the
desired outputs they aimed to determine. For instance, the determination of PQ focused on
the inputs of pH, temperature, humidity, and electric conductivity. MC, on the other hand,
relied on the inputs of nitrogen, phosphorus, and potassium. Lastly, the calculation of the
SQ output considered the feedback obtained from the other two calculated outputs.

Through the process of categorization and binary simplification, the total number of
rules in the system was significantly reduced. For PQ and MC, the binary simplification
technique led to a reduction in the number of rules. However, for SQ, the same MFs as
PQ and MC are considered as inputs. As a result, there are now 16 rules for determining
PQ, 8 rules for MC, and 20 rules for SQ, totaling 44 rules that govern the fuzzy inference
process.

It is noteworthy that the FLM consists of three sub-fuzzy models, as depicted in
Figure 1. The first two sub-models calculate the PQ and MC based on the input variables.
These intermediate results are then fed into the third sub-model, which determines the
overall SQ. Despite its modular structure, it is important to understand that the FLM as a
whole is treated as a single model. The outputs of the intermediate sub-models serve as
inputs for the final sub-model, allowing for a comprehensive evaluation of the SQ. This
integrated approach ensures that the relationships between the different components of SQ
are properly considered and accounted for in the overall assessment.

Table 3 provides an extract of these rules. It is important to note that the activation
of MC’s MF depends on the pre-mapped values of nitrogen, phosphorus, and potassium,
which are classified as either good (1) or bad (0).

Table 3. Fuzzy model rule list for macronutrient concentration.

Nitrogen Phosphorus Potassium Output’s Activated MF * Corresponding Output

0 0 0 Low

Macronutrient concentration

0 0 1 Medium-low
0 1 0 Medium-low
1 0 0 Medium-low
0 1 1 Medium-high
1 0 1 Medium-high
1 1 0 Medium-high
1 1 1 High

* MF is the abbreviation of membership function.

The rest of the fuzzy rules are in Appendix A, Tables A1 and A2.

2.3.4. Implementation of the FLM

The implementation of the Mamdani FLM was facilitated by utilizing the Skfuzzy
library, which is specifically designed for Python. This library provided a convenient and
efficient solution for implementing all components of the fuzzy model, including inputs,
outputs, rules, and visualizations of MF.

The declaration process for other inputs and outputs follows a similar structure, with
outputs being declared as consequents instead of antecedents. Notably, both “FQ” and
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“MC” are declared twice, once as an output and again as an auxiliary input, allowing for
the reuse of MFs and their parameters.

When declaring the rules for the fuzzy system, an empty list is initially created and
then populated using the established binary simplification technique. Logical operations
such as AND (represented by “&”) and OR (represented by “|”) are utilized to combine
the conditions.

After thorough testing, the fuzzy model was encapsulated within a class to facilitate
its usage. Upon the instantiation of the class, the methods for defining variables, rules,
and the fuzzy inference system are executed in a sequential manner. This ensures that
the model is properly set up and ready for evaluation. The evaluation process is initiated
by calling the calculate method, which requires all necessary parameters as arguments.
Initially, the model is evaluated using default PQ and MC values. Subsequently, the model
is re-evaluated using the resulting PQ and MC values from the initial evaluation. Once the
second evaluation is complete, all output values are encapsulated into a dictionary and
returned, including SQ.

Additionally, a show method is implemented to enable the visualization of the MF of
the selected input or output variables. This method allows for a visual representation of
the MF, aiding in the interpretation and understanding of the fuzzy model.

3. Results

The results section is divided into four subsections: web platform results, wireless sen-
sor network performance, gathered data insights, and model validation. These subsections
present evidence of implementation and development, including pictures, screenshots,
plots, and tables. They showcase the functionality of the web platform, the reliability of the
sensor network, trends in the collected data, and the validation of the fuzzy model.

3.1. Web Platform Results

The web platform was developed using plain PHP, hypertext preprocessor, Hypertext
Markup Language, JavaScript (JS), and Cascade Style Sheets (CSS), as discussed in its
respective subsection. It comprises various modules or sections, such as current data,
historical data, export data, configuration, management, and the API utilized by the WSN.
The web platform consists of approximately 7600 lines of code, encompassing HTML, CSS,
JS, and PHP files. Figure 10 showcases two screenshots of the user interface, (a) displays
the main menu featuring buttons for each section. Clicking on a button redirects users
to their respective sections. (b) depicts a plot that retrieves captured data by querying a
specific date and a selected stevia node, in this case it shows the progression of all seven
soil parameters, each with a different color, through time range.
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Figure 11 showcases another screenshot of the web platform, specifically the export
data section. This section provides users with the functionality to export data from the
measurements table. Users have the flexibility to create queries based on date range
and sensor node, allowing for customized data retrieval. Additionally, the export data
section offers three quick buttons for relative timestamps, enabling users to easily access
measurements from today, the last seven days, or the last 30 days.
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Figure 11. (a) Export data section of the web platform, showing the query menu that allows for date
range selection and node selection. (b) CSV file downloaded using the data export section of the web
platform.

The second image demonstrates the exported data in comma-separated values (CSV)
format. This exemplifies the platform’s capability to interact with external software, facili-
tating data analysis and further processing outside of the web platform itself.

3.2. Wireless Sensor Network Results

In Section 2.1.1, an overview of the main components of the WSN is provided. The
WSN was successfully deployed in the field for a duration of approximately 36 days, during
which a substantial amount of data was collected. A total of 5432 measurements were made
by the sensor nodes, and these measurements were securely transmitted and stored in the
web platform for further analysis.

To illustrate the captured data, Figure 12 shows a plot representing one day of mon-
itoring. The plot reveals interesting insights regarding the dynamics of the monitored
variables. Notably, at around 9:00 a.m., there was an irrigation event, which is evident
from the increase in the humidity levels in the crop. Throughout the day, the humidity
gradually decreased, indicating the gradual water loss due to environmental factors. On the
other hand, variables such as macronutrients remained relatively stable, showing minimal
fluctuations during the observed day. According to public weather data, for that day, the
temperature was 22–32 ◦C and the sky was sunny; therefore, there was no precipitation,
and the temperature matches our measurements.

This snapshot of data provides a glimpse into the temporal dynamics and patterns
of the monitored variables within the stevia crop. It demonstrates the effectiveness of
the WSN in capturing and recording these measurements, enabling a comprehensive
understanding of the crop’s environmental conditions and their potential impact on its
growth and development.
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3.3. Collected Data

In the analysis of the collected data, a total of 5432 measurements were recorded
during the active phase of the monitoring system. Figure 13 presents the initial findings,
utilizing histograms to depict the distribution of certain parameters. It is evident that some
parameters, such as temperature, pH, and humidity, exhibit variations within a specific
range over time. On the other hand, the levels of NPK macronutrients show relatively
minimal fluctuations.
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The assessment of SQ in the stevia crop where the monitoring system was implemented
reveals a low-quality status. The pH values indicate strong acidity rather than being
close to neutral. While the temperature remains within acceptable limits, the humidity
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levels predominantly remained low, only reaching optimal conditions temporarily during
irrigation. The electrical conductivity of the soil remained consistently low, indicating
favorable conditions. However, the concentration of macronutrients, specifically nitrogen,
phosphorus, and potassium, was consistently low throughout the monitoring period.
Consequently, the overall SQ is estimated to be low at 2.5 out of 10.

These findings have been shared with the owners and farmers of the stevia crop, along
with recommended actions to improve SQ based on the identified deficiencies.

3.4. Fuzzy Model Validation

Fuzzy model validations are commonly conducted using various metrics, among
which the determination coefficient or r2 is widely utilized [10,40,49,50]. The r2 can be
interpreted as the proportion of the variance in the dependent variable can be predicted
from the independent variables. It can also be used to compare the outputs of two models,
then observe if there is some linearity. Ranging from 0 to 1, a value of 0 indicates a nonlinear
relationship between variables and 1 indicates a perfect linear relationship [50,51]. It is
important to note that an r2 value above 0.5 is considered statistically acceptable [33,52]
and also considered the best metric to evaluate regression models, even better than mean
squared error (MSE), mean absolute error (MAE), mean absolute percentage error (MAPE),
and symmetric absolute percentage error (SMAPE) [51].

In the context of this particular study, it is not possible to compare the results of the
fuzzy model with a quality standard due to the model’s nature, which is expert knowledge-
based and developed using data ranges. As an alternative approach, a linear model was
fitted to the processed dataset following the application of the fuzzy model, enabling a
comparative analysis.

To validate the model’s performance, a sample was extracted from the complete
dataset. The sample size was determined using a 95% confidence level and a 5% margin of
error, resulting in a total of 359 rows. The model’s effectiveness was assessed by calculating
the r2 value, which obtained a value of 0.906, indicating a high degree of linearity between
the linear model and the fuzzy model. However, it is important to acknowledge that
the results exhibit limited variation, as evidenced by the data distribution depicted in
Figure 14a. It has two main clusters of the predicted outputs, one centered at 2.5 and the
other at 5 on the SQ scale.
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In order to evaluate the model’s generalization capabilities, it was further assessed
using a completely random dataset generated using Python programming libraries for
the input variables inside the universe of disclosure of each one. The random dataset was
processed by the fuzzy model, a linear model was fitted based on the results, and the r2

value was calculated. The obtained r2 value was 0.532, lower than the r2 value obtained
from the collected data but still considered acceptable because it exceeds the threshold of
0.5. Notably, the values in the random dataset are now grouped into four different clusters
instead of two, with more transition values observed between these clusters, as depicted
in Figure 14. The data distribution of the randomly generated dataset is illustrated in
Figure 15, where the SQ histogram visually highlights the aforementioned clusters.
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4. Discussion

The results of this study demonstrate that the developed monitoring system effectively
measures and analyzes key soil parameters, such as pH, temperature, humidity, electrical
conductivity, nitrogen, phosphorus, and potassium, to assess SQ in stevia crops. The
findings align with our initial hypotheses, indicating that the model can determine SQ
effectively by using the seven aforementioned soil parameters because the obtained r2

was 0.906 for measured data, and a value of 0.532 was obtained for randomly generated
data, surpassing the threshold of 0.5 when compared to a linear model, indicating in both
cases a statistically significant result. Furthermore, the observed relationships between
the measured parameters and the fuzzy model outputs provide valuable insights into the
physicochemical quality and macronutrient concentration of the soil. Once the monitoring
system has been tested in the field, is accepted by farmers, and is statistically significant,
it is ready for replication for Stevia Morita II crops and other types of crops, under the
consideration that some range adjustments for variables and even rules have to be made.

No other work was found that also focused on assessing soil quality for a Stevia Morita
II crop using a Mamdani fuzzy model; however, in the literature, different monitoring
systems are presented, which, like this one, use wireless sensor networks to measure, trans-
port, and store data. LoRa and WIFI protocols were common choices as well. Other works
also implement fuzzy models. These are valid for their intended purpose such as predicting
the chance of the propagation of plant diseases or assessing students’ performance.

The implications of these findings are significant for stevia producers. This innovation
was effectively introduced in a Mexican stevia plantation, made possible by employing
strategies to overcome adoption barriers. Effective communication played a vital role in
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demonstrating how the system addressed the technical requirement for assessing the crop’s
soil quality. The system’s user-friendly and visually engaging interface also enhanced its
utility for farmers. The monitoring system provides periodic data and historical access,
enabling informed decisions about soil management and crop health. Monitoring SQ
indicators allows for optimizing nutrient application, irrigation strategies, and overall crop
productivity. Furthermore, the system’s continuous operation, coupled with a reliable web
server, ensures uninterrupted data collection and analysis, enhancing its practicality and
usefulness in the field.

Based on the findings of this study, several promising avenues for future research
emerge. Expanding the monitoring system to other crop systems would provide valuable
insights into the generalizability of the developed approach. Additionally, incorporating
additional parameters and variables, such as organic matter content or microbial activity,
could enhance the comprehensiveness and accuracy of the SQ assessment. Furthermore,
exploring alternative FISs, such as Takagi–Sugeno–Kang or other artificial intelligence
techniques, would be beneficial to further improve the precision and predictive capabilities
of the monitoring system.

5. Conclusions

This study underscores how the developed monitoring system, coupled with a
fuzzy logic module, effectively evaluates essential soil parameters that impact soil quality.
Through our analysis, we proved our hypothesis that a comprehensive evaluation of soil
quality for stevia cultivation can be achieved by assessing pH, temperature, humidity,
electrical conductivity, nitrogen, phosphorus, and potassium together using a Mamdani
fuzzy inference model by using the determination coefficient as metric obtaining a value of
0.906 for real measured data and 0.532 for a randomly generated dataset, both surpassing
the 0.5 threshold for acceptance.

The novelty of this work can be seen as the integration of a wireless sensor network
using LoRa and WIFI protocols, a web-based platform for data storage and data access, and
a statistically valid Mamdani fuzzy inference system to assess the soil quality of a Stevia
Morita II crop using the aforementioned seven soil parameters.
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Appendix A

In Table A1, the rule list of PQ is shown. It can be noted that it is a total of 16 rules. In
Table A2, the rule list of SQ is displayed, with a total of 20 rules.
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Table A1. Fuzzy model rule list for physicochemical quality.

pH Temperature Humidity EC Output’s Activated MF Corresponding
Output

0 0 0 0 Low

Physicochemical
Quality

0 0 0 1 Medium-low
0 0 1 0 Medium-low
0 1 0 0 Medium-low
1 0 0 0 Medium-low
0 0 1 1 Medium
0 1 0 1 Medium
0 1 1 0 Medium
1 0 0 1 Medium
1 0 1 0 Medium
1 1 0 0 Medium
0 1 1 1 Medium-high
1 0 1 1 Medium-high
1 1 0 1 Medium-high
1 1 1 0 Medium-high
1 1 1 1 High

Table A2. Fuzzy model rule list for soil quality.

PQ MC Output’s Activated MF Corresponding Output

Low Low Low

Soil Quality

Low Medium-low Low
Low Medium-high Medium-low
Low High Medium-low

Medium-low Low Medium-low
Medium-low Medium-low Medium-low
Medium-low Medium-high Medium-low

Medium Low Medium-low
Medium-high Low Medium-low
Medium-low High Medium

Medium Medium-low Medium
Medium Medium-high Medium
Medium High Medium

Medium-high Medium-low Medium
Medium-high Medium-high Medium-high
Medium-high High Medium-high

High Low Medium-high
High Medium-low Medium-high
High Medium-high High
High High High
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