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Featured Application: Applications can be found in industries, finance, economics, health sci-
ences, and other sectors where the interest is centered on detecting a systematic difference in
positive quantities, variables, or measures. This concerns many situations occurring in natural
sciences, social sciences, and others. Some examples of real-life applications are presented in the
introductory part of this text.

Abstract: This paper presents a simulation-based testing procedure that can be easily applied by
practitioners who try to determine whether two gamma-distributed variables have the same expected
values. From both theoretical and practical points of view, the gamma distribution and the testing in
question have been of interest for some time given the many applications they can be used for, which
include problems in the fields of economics, industrial statistics, life sciences, and others. The efforts
to achieve the stated statistical objective have been focused throughout the years either on performing
nontrivial, approximating mathematical steps or on simulations based on resampling techniques
of various kinds. This text works with simulations that try to get closer to the true distributions of
the quantities of interest so that a test can be designed rather than using samples generated out of
samples, as the resampling techniques perform this by taking the initial samples for an approximation
of the populations. The results presented in this text were validated, and they were also compared to
other methods where possible. The resulting technique was looked upon as a complement to all the
techniques that have been presented on this subject. The major advantage of the proposed procedure
is seen in its simplicity. Since simulations are the basis for the presented conclusions, the results are
unsurprisingly not as general as what could be achieved by exact mathematical deduction, but they
do cover a reasonable range of situations that can serve as a basis on which to analogously build
further research if desired.

Keywords: gamma distribution; two-sample test for means; simulation; type I and II errors

1. Introduction

In many areas of human presence, situations arise when a subject is interested in
comparing different scenarios they can choose from, the scenarios being related to their
activity. The objective is to opt for the right scenario to ensure that a proper strategy is
pursued in the future. The output of each scenario is often expressed by a measure that can
take on only positive values. The measure allows one to reflect on the consequences of the
scenarios so that a proper decision can ultimately be made in advance. However, making
that right decision is often not a straightforward task despite the introduced measure
because each scenario manifests itself in the end with more than one value of the measure
due to its dependence on random events, and so a more rigorous, statistical approach
should be adopted prior to making the selection. Let us look at some important real-life
examples of such situations.

In industries, a quality characteristic of a product can be monitored, for instance,
and two different production technologies might be capable of fabricating the product.
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The company’s management wants to know which technology leads to a more reliable
output as far as the stability of the observed characteristic is concerned. To tackle this
problem, a variability of the characteristic can be measured for each production batch to
assess the reliability or stability in question. The variability will generally be different for
each batch and can therefore be regarded as a random variable, variable X for production
technology 1 and variable Y for production technology 2. The question then is whether
the two production reliabilities are the same in the sense that their expected values are the
same: E(X) = E(Y). If this is true, the company’s management can go for the cheaper of
the two technologies since the more expensive one will not bring anything new regarding
reliability. The ultimate result of this decision will then be financial savings.

In finance, an insurance company may strive to decide which of two specific and
different insurance products it should offer to its customers. It will naturally prefer the one
that exposes it to lesser risk, the risk being measured by how much money it may need to
pay out within its insurance coverage liabilities. Here, the amount paid out due to an event
covered by an insurance product represents a positive random variable, the value of which
differs from one event to another, and so the company can ask itself the question, “Do we
spend, on average, the same amount of money on the two insurances?”

An investor cares about the yield of a financial investment of a certain type; the yield is
always observed after a specified period of time. The yield history has so far been positive
values for the investments. Such an investor may look at the past yields to decide which
investment to go for by answering the question “Do the various investments provide the
same average yield for the observed time period?”

In seismology, the strength of tremor is certainly one of many positive variables of
interest, and it can be accompanied by the question: “Do the two analyzed geographic
regions experience earthquakes of the same magnitude, on average?”

The examples above work with two positive random variables X and Y, and it could
also be said without assuming too much that one of their distinctive features is that they
take on lower values probably more often than very high values. This is true for all
the given examples. Thus, a right-skewed probability distribution, such as the gamma
distribution [1], might be an appropriate probabilistic model for the description of the
variables. If such a model is acceptable, the uttered questions come down to comparing the
expected values of two gamma-distributed random variables. The standard procedure that
usually follows in these cases takes the form of an assessment of whether the expression
X − Y, or a transformation thereof, is too far from a set constant, usually zero. This is
known in statistics as the two-sample test of the hypothesis Ho : E(X) = E(Y). Such a
technique, however, is no simple task when the two averages are calculated from samples
drawn from gamma populations because for the procedure to be applicable, the probability
distribution of X − Y must be known under Ho so that the important judgment can be
made on whether X−Y has happened to take on a value that is very unlikely under Ho.

If X = (X1, X2, . . . , Xn) is a random sample from the Γ(k = shape, θ = scale) gamma
distribution, the characteristic function of each Xj is

ψXj(t) = (1− iθt)−k, (1)

and so
ψ∑ Xj(t) = (1− iθt)−kn, (2)

ψX(t) = (1− itθ/n)−kn, (3)

as is known from the theory of characteristic functions [2–4]. In other words, X follows
the distribution Γ(kn, θ/n ). Taking the analogous result for Y, X − Y is the difference of
two independent gamma-distributed random variables if the two samples are independent.
When the assumption of independence holds, it is straightforward to derive the characteris-
tic function of the difference, but it is not clear anymore what distribution it belongs to. The
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problem of how the difference is distributed under Ho could also be solved by deriving
the density of −Y, applying the transformation theorem [5], since the general form of the
density of Y is known, and then one can use the convolution theorem [3,6] to derive the
density of X +

(
−Y
)

and hence its distribution. But the result for this density in the form
of an integral containing two nontrivial densities and their multiplication is too complex to
evaluate in practice, even in theory. This means it is difficult to derive an exact test for the
stated purpose since the distribution of X−Y under Ho derived from its complex density
is not very clear. On the other hand, it is certainly possible to analyze the distribution of
X − Y under Ho through simulations and, based on the simulation results, to formulate
recommendations on how Ho : E(X) = E(Y) could be tested. This is especially beneficial
when dealing with smaller data samples since for very large data sets, the problem of
evaluating the significance of the difference X− Y can be resolved with the central limit
theorems and the associated higher-precision normality approximations.

The parameters of the gamma distribution have been under the spotlight for quite
some time now given the increasing practical importance of this stochastic model. Yet the
interest has not always been focused on two-sample testing, and when it was, as well as
when it was not, the scientific output either bore greater complexity for practitioners or
did not always deliver precise results simply because the form of the gamma distribution
was too involved to do so. To provide some excursion into the past in this regard, Grice
and Bain [7] proposed an approximate test for the mean of a gamma distribution with both
its parameters unknown, which is a different problem than the one analyzed in this text.
Shiue and Bain [8] then proposed an approximate test for testing the equality of the scale
parameters of two gamma distributions with unknown and equal shape parameters. Shiue
et al. [9] also proposed an approximate test for testing the equality of the means of two
gamma distributions with unknown and unequal shape parameters. In the 1990s, Tripathi
et al. [10] suggested an asymptotic test, that is, only an approximate procedure for many
small-sample situations for the parameters of two gamma distributions. Bhaumik et al. [11]
proposed testing procedures for each parameter of the gamma distribution individually,
that is, for the scale parameter, shape parameter, and also the mean of the distribution (a
different problem). Chang, Lin, and Pal [12] presented a bootstrap-based procedure to test
the equality of more gamma distribution means. This is a paper of interest that will be
used for comparative analysis in this text. Other mentions can also include the possibility
of using nonparametric tests for the subject of interest, such as the Wilcoxon rank-sum
test, approximate in nature for small samples, however, or Thiagarajah’s [13] test of the
homogeneity of gamma distributions, based on combining the likelihood ratio and score
statistics: Their behavior is yet again known only for large samples.

It seems that some theoretical outcomes are available even though they result either
from mathematical approximations or resampling techniques [12,14], such as the bootstrap.
It is worth noting that resampling techniques also rely on large-sample properties. It can
also be seen that the two-sample testing of means has not always been the subject matter
under scrutiny.

This text adopts a different and more “hands-on” approach compared to the two just
mentioned and focuses on smaller- and medium-sized data samples for which the testing
problem is more pressing. The findings presented in this text are based on simulations
that try to identify properties of the true distribution of X−Y under Ho, striving to avoid
various approximations that result either from complicated mathematical operations or
potentially also from resampling techniques. Additionally, one of the major objectives
of this paper is to provide as simple a testing technique as possible so that it can be
used by practitioners without the need to code ad-hoc simulations or comprehend and
evaluate more complex mathematical theories and the implied algorithms. As with any
simulation-based research, the limitation of the presented technique lies in the fact that not
all theoretically conceivable combinations of the gamma parameters can be handled while
deriving the testing procedure, naturally, since there is an infinite number of them, but
many of them are handled in this text. Regarding the number of parameter combinations



Appl. Sci. 2023, 13, 9497 4 of 18

covered in this text, a certain aggregation of the results had to be adopted in the end
when formulating the final recommendations due to a large number of simulation-based
outcomes. The individual results are available in the attached datasets, however. The
logic of the entire procedure is discussed below in the methodology section. Although
the aggregation of results can be looked at as a way to blur back the detailed and more
precise simulation outcomes, the resulting testing procedure based on the aggregation is
still subject to verification so that its potential is indicated.

Last but not least, the aim of the paper is not to criticize the techniques presented so
far in the literature—quite the opposite. This paper is regarded as their complement, which,
after all, will be obvious once the method is validated, as it shows good potential in many
situations, while in others, it may be less desirable.

In summary, a simpler method with desirable statistical properties for many smaller-
and medium-sized samples and a reasonable range of the gamma-distribution parameters
is the objective of this paper.

2. Materials and Methods

To design the required test for a number of situations, it is not necessary to know
the true probability distribution of the test statistic X − Y under H0 : E(X) = E(Y) in
full. All that is necessary is a proper percentile, or percentiles, of that distribution for
accepting or rejecting the null hypothesis. This is in line with the theory of hypothesis
testing, the percentiles being also known as the “critical values”. The methodology used in
this text therefore aims at running R-coded simulations that try to identify the necessary
percentiles of the distribution of X − Y under H0 for various sample sizes and gamma
distributions from which many realizations of the sample averages X, Y must be calculated.
The distributions do not necessarily have the same parameters, but their expected values
are the same for the null hypothesis to hold. Further, since it is inconvenient to have a
lot of percentile estimates for different set-ups of the two gamma distributions, a simple
formula is also pursued, which could be used in practice to calculate back the percentiles
identified by the simulations so that the testing can be performed. However, since the
formula at first relies on an unknown population quantity, the suitability of such a formula
must be verified once the unknown quantity is replaced with an appropriate estimate. This
verification is implemented in this text and takes the form of estimating the type I error
probability of the formula-based procedure, as well as its test power. Hence, the entire
analysis consists of several steps.

In the first step, the analysis focuses on detecting the 2.5% and 97.5% percentiles p1
and p2 of the distribution that X−Y follows under H0. This can be performed with large
enough simulations that lead, for each considered set-up of the two gamma distributions
and each considered sample size, to many realized values of the difference under H0, giving
a good estimate of the X − Y distribution and its percentiles under the null hypothesis.
Now, if it was known in practice that the found p1, p2 values are the two percentiles of
interest under H0, the null hypothesis could be tested: If x− y calculated in practice from a
single realization of the sample averages is below p1 or above p2, the hypothesis is rejected.
In all other cases, it is accepted. The problem is that this is never known because the true
gamma distributions are unknown, and so the question arises which pair p1, p2 of all the
pairs found through the simulations should be actually used for the test.

To answer this pressing question, one could think and proceed as follows: The normal
and other distributions are known for the two-sigma rule or a similar rule that states
that once the population standard deviation is multiplied by two and minus two or by a
different number and these multiples are added to the population mean, two percentiles
are obtained with the property so that it is almost certain that the random variable will
take on a value lying between the two percentiles. These rules can be described by the
following formula:



Appl. Sci. 2023, 13, 9497 5 of 18

p = d·var1/2, (4)

where var is the population variance, and d is the proper multiple. Applying this formula
to the distribution of X−Y under H0, var is known by design, while the percentiles p are
obtained via the simulations, so the multiple(s) d can be calculated from (4) through the
simulations, as well. Of course, using Formula (4) to calculate the percentiles in practice
based on such research will at the moment still not help since not knowing the gamma
distributions the samples came from means not knowing which d to choose, let alone the
fact that var is also unknown. The problem here would just be shifted from the unknown
p to the unknown d even if var was known. This situation can be helped, however, if it
turns out that the multiple d happens to manifest a certain stability across various gamma-
distribution set-ups and/or various sample sizes. If this property is present, the knowledge
of what distributions the samples came from is not so relevant anymore since d is more or
less the same regardless of the distributions. In this fortuitous instance, the only remaining
problem is then the unknown population variance var, which must be estimated. This logic
leads to the suggestion of using the formula p = d·v̂ar1/2 for testing purposes as long as d
does have the property just described. Finding the ds for various situations and examining
their stability ends the second part of the analysis.

Since v̂ar is used instead of var in the percentile-generating formula, the potential of
this method should be verified as well even if d is relatively stable. This constitutes the
final stage of the analysis. The verification takes the form of analyzing the error rates of the
method [15] and comparing it with other procedures.

Regarding the technical details, using the common symbols Γ(k1, θ1) and Γ(k2, θ2)
for the two gamma distributions worked with, the distribution of the variable X − Y is
analyzed under Ho : E(X) = E(Y) or equivalently [1]:

Ho : k1θ1 = k2θ2. (5)

The following distribution set-ups are analyzed with the distribution parameter com-
binations grouped into several “scenarios”:

scenario 1− k1, k2 ∈ K = {1, 2, . . . , 10}, θ1 ∈ M = {1, 2, . . . , 30}, (6)

scenario 2− k1, k2 ∈ L = {11, 12, . . . , 20}, θ1 ∈ M, (7)

scenario 3− k1, k2 ∈ N = {21, 22, . . . , 30}, θ1 ∈ M, (8)

scenario 4− k1 ∈ K, k2 ∈ L, θ1 ∈ M, (9)

scenario 5− k1 ∈ K, k2 ∈ N, θ1 ∈ M, (10)

scenario 6− k1 ∈ L, k2 ∈ N, θ1 ∈ M. (11)

All parameter combinations work with all sample sizes from the set n ∈ {30, 40, ..., 80}.
Both samples always have the same size. This is usually not a problem to achieve in practice
as long as a controlled experiment is possible. Since the focus is on the percentiles of X−Y
under Ho, a specific sample size is chosen and scenario-based k1, k2, θ1 parameters are set
up, determining also θ2 = k1θ1/k2 so that the null hypothesis holds whereupon thousands
of realizations of the statistic X−Y are generated from two independent random samples
drawn from the set-up gamma distributions. This experiment suggests to an acceptable
level of detail the distribution of the difference under Ho. Once the distribution is detected,
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its 2.5% and 97.5% p percentiles are calculated and hence also the multiples d = p·var−1/2

where
var = var

(
X
)
+ var

(
Y
)
= n−1

(
k1θ2

1 + k2θ2
2

)
(12)

is calculated directly since its form is known within the given parameter setting [1].
At the end of these calculations, one should rather talk about entire distributions of

the identified ds, one d having been calculated for the 2.5% percentile and the other for the
97.5% percentile, because each d is generally different for each parameter set-up and sample
size. Therefore, the findings presented in this text are in the form of “the average lower
d” and “the average upper d”, each average calculated for a given scenario and sample
size. The average results from the aggregation of the within-scenario results. At this stage,
the averaging, which by its very nature always hides a large amount of information, is not
an imprecision in the whole procedure, as this stage of analysis aims primarily to suggest
which multiple d could be used in the testing. Its suitability is only scrutinized later.

Once the average ds are identified, the focus can be shifted to the formula

d·v̂ar1/2, (13)

where
v̂ar = n−1(v̂ar(X) + v̂ar(Y)), (14)

and
v̂ar(X) = (n + 1)−1∑i

(
Xi − X

)2, v̂ar(Y) = (n + 1)−1∑i

(
Yi −Y

)2. (15)

The term (n + 1)−1 is used instead of the usual (n− 1)−1 since it gives the sample
variance that optimizes (minimizes) the general MSE criterion [16] of estimate quality. As
outlined, the property of interest will then be the frequency of cases when the testing
procedure, based on the percentiles calculated from (13)–(15), incorrectly rejects Ho. This
type I error frequency depends again on the specific set-up of k1, k2, θ1, as well as the
selected sample size. Hence again, within the given scenario and sample size, the average
type I error probability is identified but this time also together with the 2.5% and 97.5%
percentiles of the observed k1, k2, θ1-dependent type I error probabilities so that the spread
of the probabilities is seen, and the scenario-based aggregation does not mask the suitability
of the test when it comes to its type I error. Each type I error is identified through thousands
of employed tests.

At the final stage, the power of the test using the estimated percentiles is also the
subject of interest. The six scenarios and the sample sizes are used again, but now, the null
hypothesis does not hold, which is conveyed by introducing a constant to differentiate
E(X) from E(Y): k2θ2 = k1θ1+ const. Since the test power differs within a scenario due
to different parameter combinations, given the sample size and constant, the average per-
scenario and sample size power is considered. For each scenario–sample size combination,
a specific and fixed constant is used. More interestingly, however, the method is also
compared to another methodology regarding its test power. This is performed for specific
parameter set-ups and sample sizes, and no averaging is involved.

If the method proves to be viable, the resulting algorithm can be described as follows:

1. Calculate the sample averages and variances for the two obtained random samples
where the sample variances are evaluated according to (15).

2. Calculate k̂1, k̂2, θ̂1 estimates: For instance, by estimating E(X) = kθ with x and
var(X) = kθ2 with the sample variance s2, the common estimates θ̂ = s2/x and
k̂ = x2/s2 are obtained for both samples. This helps detect which scenario is worked with.

3. Evaluate the expression dv̂ar1/2
X−Y where v̂arX−Y = n−1(v̂ar(X) + v̂ar(Y)) using the

two MSE-minimizing sample variances from step 1. n is the size of any of the two
equally large samples; the dv̂ar1/2

X−Y is calculated twice with two generally different

multiples d and the same v̂ar1/2
X−Y so that two percentile estimates p̂2.5 and p̂97.5 are
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obtained. The multiples d are selected from the tables below according to the k1, k2, θ1
scenario the practitioner is in, as suggested by the k̂1, k̂2, θ̂1 estimates.

4. Perform the test: If p̂2.5 < x− y < p̂97.5, the hypothesis of equal means is accepted;
otherwise, it is rejected.

The next section shows the results. Where necessary, a comment is attached, although
the contents are self-explanatory through the table headlines. The computer code for
the simulations is in Appendix A of this paper, and the underlying data are stored in a
referenced public depository.

3. Results

Given the findings contained in Tables 1–4, which show that the multiple d is stable
across sample sizes and also across scenarios, as well as within each scenario, based on the
underlying data that show the multiple moves within one-tenth to the left or right of its
average, it can be selected to be used in the d·v̂ar1/2-based testing procedure. Once such
a procedure is designed, its type I error should be analyzed. Before doing so, due to the
stability of d, a further simplification of the testing procedure can be performed as follows:
For the first 3 parameter scenarios, the lower d = −1.96 and the upper d = 1.96 are selected;
for the fourth scenario, the lower d = −1.92 and the upper d = 2.00 (see Table 2) are used; for
the fifth scenario, the lower d = −1.91 and the upper d = 2.01 (see Table 3) are selected; and
for the sixth scenario, the lower d = −1.95 and the upper d = 1.97 (see Table 4) are chosen.
The error probabilities of this procedure are contained in Tables 5–10.

Table 1. Averaged ds giving the 2.5%, 97.5% percentiles (k1, k2, θ1 from scenario 1 here; for scenarios
2 and 3, the results are identical).

Sample Size n Average Lower d Average Upper d

30 −1.96 1.96
40 −1.96 1.96
50 −1.96 1.96
60 −1.96 1.96
70 −1.96 1.96
80 −1.96 1.96

Table 2. Average ds giving the 2.5%, 97.5% percentiles (k1, k2, θ1 from scenario 4).

Sample Size n Average Lower d Average Upper d

30 −1.90 2.01
40 −1.91 2.01
50 −1.92 2.00
60 −1.92 2.00
70 −1.92 2.00
80 −1.93 1.99

Table 3. Average ds leading to the 2.5%, 97.5% percentiles (k1, k2, θ1 from scenario 5).

Sample Size n Average Lower d Average Upper d

30 −1.89 2.03
40 −1.90 2.02
50 −1.91 2.01
60 −1.91 2.01
70 −1.92 2.00
80 −1.92 2.00
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Table 4. Average ds leading to the 2.5%, 97.5% percentiles (k1, k2, θ1 from scenario 6).

Sample Size n Average Lower d Average Upper d

30 −1.95 1.97
40 −1.95 1.97
50 −1.95 1.97
60 −1.95 1.97
70 −1.95 1.97
80 −1.95 1.97

Table 5. Type I error probability alpha for the test (lower d = −1.96, upper d = 1.96): average alpha
(averaged across k1, k2, θ1 from scenario 1) and the percentiles for alpha.

Sample Size n Average Alpha 2.5%; 97.5% Percentiles

30 0.064 0.057; 0.070
40 0.059 0.053; 0.066
50 0.057 0.052; 0.064
60 0.057 0.050; 0.063
70 0.056 0.049; 0.062
80 0.055 0.049; 0.061

Table 6. Type I error probability alpha for the test (lower d = −1.96, upper d = 1.96): average alpha
(averaged across k1, k2, θ1 from scenario 2) and percentiles for alpha.

Sample Size n Average Alpha 2.5%; 97.5% Percentiles

30 0.063 0.056; 0.069
40 0.059 0.053; 0.066
50 0.058 0.051; 0.064
60 0.056 0.050; 0.062
70 0.055 0.049; 0.062
80 0.050 0.049; 0.061

Table 7. Type I error probability alpha for the test (lower d = −1.96, upper d = 1.96): average alpha
(averaged across k1, k2, θ1 from scenario 3) and percentiles for alpha.

Sample Size n Average Alpha 2.5%; 97.5% Percentiles

30 0.063 0.056; 0.069
40 0.060 0.053; 0.066
50 0.058 0.051; 0.064
60 0.056 0.050; 0.063
70 0.055 0.049; 0.062
80 0.055 0.048; 0.061

Table 8. Type I error probability alpha for the test (lower d = −1.92 upper d = 2.00): average alpha
(averaged across k1, k2, θ1 from scenario 4), and percentiles for alpha.

Sample Size n Average Alpha 2.5%; 97.5% Percentiles

30 0.069 0.059; 0.090
40 0.064 0.055; 0.081
50 0.061 0.053; 0.076
60 0.060 0.052; 0.073
70 0.058 0.051; 0.070
80 0.058 0.050; 0.068
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Table 9. Type I error probability alpha for the test (lower d = −1.91 upper d = 2.01): average alpha
(averaged across k1, k2, θ1 from scenario 5) and percentiles for alpha.

Sample Size n Average Alpha 2.5%; 97.5% Percentiles

30 0.070 0.060; 0.092
40 0.066 0.056; 0.084
50 0.063 0.054; 0.078
60 0.061 0.053; 0.074
70 0.060 0.052 0.071
80 0.059 0.051; 0.069

Table 10. Type I error probability alpha for the test (lower d = −1.95 upper d = 1.97): average alpha
(averaged across k1, k2, θ1 from scenario 6) and percentiles for alpha.

Sample Size n Average Alpha 2.5%; 97.5% Percentiles

30 0.064 0.057; 0.070
40 0.060 0.053; 0.067
50 0.058 0.051; 0.065
60 0.057 0.050; 0.063
70 0.056 0.049; 0.062
80 0.055 0.049; 0.061

It can be seen from Table 5 that for any considered sample size and almost (95%) any
within-scenario 1 set-up of k1, k2, θ1, the error probability is between the reasonable levels
of 0.049 and 0.07. The average alpha is also not far from 0.05. Similar results follow.

The tables clearly suggest that in a majority of the analyzed situations (in 95% of them),
the testing procedure returns a probability of type I error between approximately 0.05 and
0.09. In light of these probabilities, the method is quite usable. The average alphas also
circle almost always around 0.06 regardless of the scenario and sample size and regardless
of the specific within-scenario parameter combination.

Another set of results in Table 11 suggests which data sample sizes might be sought
in order for the procedure to have a reasonable power of at least 0.7. Nevertheless, the
table shows the average test power given the sample size, scenario, and constant c in
H1 : k2θ2 = k1θ1+ c, the constant being fixed within a scenario. The power is averaged
across different within-scenario k1, k2, θ1 set-ups.

Table 11. Average test power per scenario “sc” and constant c: sc1~c = 20, sc2~c = 30, sc3~c = 38,
sc4~c = 14, sc5~c = 16, sc6~c = 28. The average taken across within-scenario combinations of k1, k2, θ1.

Sample Size n Avg. Power (sc1; sc2; sc3) Avg. Power (sc4; sc5; sc6)

30 0.59; 0.56; 0.56 0.60; 0.68; 0.59
40 0.64; 0.62; 0.61 0.65; 0.72; 0.65
50 0.68; 0.66; 0.66 0.69; 0.76; 0.69
60 0.72; 0.70; 0.70 0.72; 0.79; 0.73
70 0.74; 0.73; 0.73 0.75; 0.82; 0.76
80 0.77; 0.76; 0.76 0.77; 0.84; 0.79

It can be seen that for sample sizes of around 60 and the listed scenario-dependent
values of the constant c, the average power equals or exceeds 0.7. Examples of situ-
ations when the mean difference equals the scenario-specific constant are for scenario
1 . . . [k 1, θ1] = [2, 3] and [k 2, θ2] = [4, 6.5] or [k 1, θ1] = [4, 2] and [k 2, θ2] = [5, 5.6];
for scenario 2 . . . [k 1, θ1] = [12, 14] and [k 2, θ2] = [13, 15.3] or [k 1, θ1] = [16, 11] and
[k 2, θ2] = [16, 12.9]; for scenario 3 . . . [k 1, θ1] = [21, 25] and [k 2, θ2] = [21.5, 26.2]; and for
scenario 6 . . . [k 1, θ1] = [23, 21], [k 2, θ2] = [23, 22.3].

To conclude the results so far, a few remarks are due. First, when the shape parameter
exceeds thirty, the normality approximation of the gamma distribution is generally expected
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to perform. Therefore, the scenarios when both the shape parameters exceed thirty were
not analyzed. Normality-based testing could be used instead. Secondly, in situations
when the first scale parameter is above thirty, a change in the physical units in which the
variables are observed to a higher order of magnitude squeezes this parameter for the
transformed variable, so the results of the analysis expressed in different units may be
applicable after the transformation as well. Thirdly, the sample sizes used range from
thirty to eighty. Sample sizes of one hundred and more were not analyzed due to the
possibility of a central limit-based normality approximation in the testing [17]. To check
this possibility, an experiment was run: The Shapiro–Wilk test [18,19] was carried out for
the sample average difference normality using all the considered combinations of k, theta,
and the combinations set up so that H0 held. For each combination, the p-value of the test
was stored. Figure 1 shows the distribution of the p-values, a majority of them leading to
accepting normality. Specifically, 95 percent of them are 0.011 or higher. In other words,
for samples of n = 100, the test in a majority of k–theta cases accepted the normality of
the sample average difference at the 1% sig. level when the samples came from gamma
distributions with the same expected values. It seems that for samples of at least n = 100,
the central limit theorem [20] can be used to test Ho instead.
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Figure 1. The Shapiro–Wilk test p-value distribution when testing normality of X − Y under H0 :
E(X) = E(Y); sample sizes of n = 100 used.

When it comes to comparing the method with others, a good place seems to be the
methodology suggested by [12], which claims that it gives results “as good as, if not better
than, the other methods discussed in (its) literature. . .”. Even though a direct comparison
is usually not possible in this case, since the cited paper uses mostly different parameter
set-ups and smaller sample sizes, the sizes also being mostly unequal unlike the cases
covered in this paper, a similar set-up can in some instances be detected. This allows us to
shed some light on the functionality of the procedure suggested in this text. The authors
of [12] use the delta symbol as the shape parameter (which equals k in this text) and the
lambda letter as the scale parameter (here, the equivalent is the theta symbol). For the
comparisons, the test power Table 1 published in [12], page 64, was selected, specifically
the row where both sample sizes are equal to 25. This is the number closest to the sample
sizes of 30 analyzed in this paper. The reproduction of their results is below in Table 12.
Their methodology was also validated with simulations.
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Table 12. A simulation-based estimate of the test power of the procedure proposed in [12]. Both
samples have the same size of 25 datapoints, θ1 = 1. The table is taken from [12].

k1 = k2 θ2 = 1.25 θ2 = 2.0 θ2 = 5.0

2.5 0.243 0.969 1.0
5.0 0.417 0.999 1.0
7.5 0.566 1.000 1.0
10 0.688 1.000 1.0

Table 13 below is an equivalent of Table 12 constructed for the method proposed in
this text. It contains a simulation-based estimate of its test power. The only difference in
the design of the table is its second column where θ2 = 1.5 is used instead of θ2 = 1.25; the
difference is explained below the table.

Table 13. A simulation-based estimate of the test power of the procedure proposed in this text.
Both samples have the same size of 25 datapoints; θ1 = 1. The simulations resulting in Table 13 can
be viewed in their running mode at the address https://doi.org/10.6084/m9.figshare.23920197.v1
(accessed on 16 August 2023), the code applied is an extract of the code shown on the lower half of
page 15. Major differences between Tables 12 and 13 are highlighted with bold lettering.

k1 = k2 θ2 = 1.5 θ2 = 2.0 θ2 = 5.0

2.5 0.05 0.41 99
5.0 0.25 0.91 1.0
7.5 0.51 0.99 1.0
10 0.73 1.00 1.0

Given that E(X) = k1θ1 6= E(Y) = k2θ2 in the test power simulations, the comparison
of Tables 12 and 13 shows that the method of [12] is better when the differences in the
means E(X), E(Y) of the two gamma distributions are rather small because the method
of [12] is able to detect smaller differences in the means more often with its greater power
as long as the simulation results in [12] are correct. In such instances, the method proposed
here needs a somewhat larger difference in the means to reach similar test powers (for
instance, the levels 0.51 and 0.73). For medium- and larger-sized differences, however, the
methods seem to have the same test power—the best possible, nearing the level of 1. This is
the case for population mean differences of the magnitude given by θ2 ≥ 2 and k1 = k2 ≥ 5,
as the figures show. As an example, related to smaller differences, for k1 = k2 = 7.5 and
θ2 = 1.25, the difference in the means is |k1θ1 − k2θ2| = |7.5·1− 7.5·1.25| = 1.875, whereas
with θ2 = 1.5, the difference is 3.75. These differences lead to similar test powers between
0.5 and 0.6 for both methods, as the tables show. This suggests that for not too small of
differences in the means (a difference of at least five based on the tables), the occurrence
of which can be assessed with parameter estimates, the method proposed here is quite
usable, as its test power seems similar to other methods; it is very high, yet the proposed
procedure is far simpler. Regarding small differences, they must be admittedly to some
degree more discernible for the proposed method to be more competitive. Otherwise, the
only limitation of the proposed method, as already outlined in the methodology section, is
that its properties relate at the moment only to the parameter scenarios considered in the
analysis of this paper. This is not the case for methods based on mathematical derivation,
the validity of which is universal, unless mathematical restrictions are placed on them
too. However, the presented methodology coupled with the attached computer code may
be used for researching other scenarios as well, including even smaller sample sizes than
thirty datapoints.

Another comparison using the same computer code may be performed for cases
when the scale parameters k1, k2 differ, which is also considered in [12], in Table 5. The
comparison, shown in Table 14 below, is again not direct, as the samples in [12] are
equal to 10 for both data samples, whereas the smallest sample size considered in this
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text is 30. Thus, the comparison puts the method of [12] at a disadvantage. Even so,
the results in Table 14 show two facts: (a) the method of [12] unsurprisingly does not
always shine despite its sophistication (test powers well below 0.8), and (b) the simple
method proposed here can still perform well as long as the differences in the means are not
diminutive. Further, the performance of any method measured by its power will depend
on the parameter combination, which is why the resulting per-scenario average power of
the method proposed here is not in the range of, say, 0.8–0.9 but is around 0.7 or slightly
more for a distinct enough mean difference and not too small of sample sizes, as shown in
Table 11. Clearly, there are parameter combinations within each scenario that bring trouble
to the proposed method. The methodology in [12], unfortunately, does not employ the
number of parameter combinations worked with in this paper to show how its method
performs in more situations. Nevertheless, as shown in Table 14, there will be parameter
combinations that do not particularly please the method proposed in [12] either—see, for
instance, the last row of Table 14.

Table 14. Comparison of test powers for the method given in [12] and the method proposed in this
text (the last column). For the method in [12], the sample sizes are both equal to 10, and the powers
are taken from [12]. For the method proposed here, the sample sizes are both equal to 30.

k1 k2 θ1 θ2 ∆ in Mean Power [12] Power

1 2 1 0.75 0.50 0.679 0.024
1 2 1 1.00 1.00 0.410 0.190
1 2 1 1.25 1.50 0.225 0.490
1 5 1 0.75 2.75 0.999 0.999
1 5 1 1.00 4.00 0.994 1.000
1 5 1 1.25 5.25 0.965 1.000

2.5 5 1 0.75 1.25 0.967 0.150
2.5 5 1 1.00 2.50 0.768 0.800
2.5 5 1 1.25 3.75 0.450 0.999
5 5 1 0.75 1.25 0.278 0.050
5 5 1 1.00 0.00 0.170 0.000
5 5 1 1.25 1.25 0.900 0.015
5 10 1 0.75 2.50 0.998 0.530
5 10 11 1.00 5.00 0.967 0.990
5 10 1 1.25 7.50 0.574 1.000

4. Examples of the Procedure

Three examples are now shown to demonstrate the simple technique. The first two
examples used simulated data, and the third used real-life datasets.

First, let a random sample 1 of size 40 for a variable X from Γ(k1, θ1) = Γ(2, 4) be
7.4323, 8.7579, 3.8367, 24.3859, 4.1931, 1.4071, 2.1765, 13.8280, 2.1577, 8.9442, 3.6841, 3.6455,
5.8649, 2.2743, 3.5843, 4.0561, 8.9005, 10.6677, 12.9202, 21.4182, 4.9585, 7.7933, 1.4325, 2.4112,
11.1183, 11.2643, 7.2044, 6.7496, 7.0007, 2.2562, 2.7139, 9.4639, 4.3929, 9.1965, 16.9821, 4.4714,
12.9340, 7.5178, 13.2414, 12.3011.

Let a random sample 2 of size 40 for a variable Y from Γ(k2, θ2) = Γ(4, 2) be 3.5289,
7.5509, 15.9686, 2.9356, 4.2433, 22.0422, 12.0441, 3.2122, 6.0766, 3.7120, 17.4808, 14.7796,
17.8730, 3.8967, 7.1522, 10.7450, 7.7302, 9.9103, 6.2068, 3.4237, 12.2881, 3.8782, 5.0942, 13.1173,
4.6774, 7.0516, 11.4397, 4.5981, 6.1976, 12.9560, 15.7683, 9.1313, 6.0904, 3.1014, 4.2042, 13.4389,
4.5231, 4.5774, 10.8752, 5.0082.

The original values were rounded off to four decimal places. Their visualization is
shown in Figure 2.
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Figure 2. Visualization of the two data samples used for the first example.

The two distributions have the same means of 8; hence, the null hypothesis holds,
and the variances are 32 and 16, respectively. The test criterion in abs. value is |x− y| =
|7.7385− 8.4634| = 0.725, the percentile-based critical value equals 1.96v̂ar1/2 =
1.96

√
40−1[v̂ar(X) + v̂ar(Y)] = 1.96

√
40−1[27.206 + 23.587] = 2.208, and the hypothe-

sis is correctly accepted. The variances v̂ar(X), v̂ar(Y) were calculated with the (n + 1)−1

divisor. The d multiples were taken as ±1.96 since scenario 1 is observed here.
In the second example, let a sample 1 of 40 for a variable X from Γ(k1, θ1) = Γ(3, 4)

be 20.2621, 5.0067, 6.8178, 17.9724, 5.7980, 47.9481, 24.0818, 16.9974, 15.6469, 2.2784, 7.0815,
16.5170, 12.8472, 20.7937, 11.4743, 10.6894, 10.7756, 15.0273, 6.6600, 21.2111, 10.5329, 18.7154,
12.5374, 8.01664, 5.4640, 26.8381, 16.0145, 20.7234, 5.3591, 11.9667, 14.6437, 8.9770, 9.0279,
10.5961, 17.2995, 9.2122, 27.5701, 9.9853, 15.5422, 2.3258.

Let a sample 2 of size 40 for a variable Y from Γ(k2, θ2) = Γ(4, 2.5) be 16.7113, 9.3561,
19.1426, 6.7874, 8.5002, 7.2641, 29.7096, 12.4152, 20.7611, 4.3977, 6.2623, 9.2883, 7.7831,
16.7462, 3.8046, 7.8470, 4.5086, 11.9305, 18.3177, 12.5083, 4.6306, 5.6554, 17.0151, 6.7073,
6.0264, 10.4029, 15.1457, 14.8109, 7.0398, 3.3200, 10.5470, 5.5386, 10.2651, 6.7952, 17.0514,
3.7160, 4.1363, 13.9024, 8.0307, 12.7817. The data visualization is in Figure 3.
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The population means are 12 and 10 this time, respectively, so H1 holds. The vari-
ances are 48 and 25, respectively. Now, |x− y| = |13.931− 10.439| = 3.492, 1.96v̂ar1/2 =
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1.96
√

40−1[v̂ar(X) + v̂ar(Y)] = 1.96
√

40−1[67.482 + 31.899] = 3.089, and the null hypoth-
esis is correctly rejected.

Taking real-life data, the interest is now focused on whether there was a significant
across-time difference in the amount of July rainfall in all of the Czech Republic, the first
data sample spanning the time period 1979–1999 and the second the years 2000–2020.
Both data samples are of size n = 21. The officially published data are available at https:
//www.chmi.cz/historicka-data/pocasi/uzemni-srazky (accessed on 16 August 2023).
The data published by the Czech Hydrometeorological Institute are (in millimeters and
chronologically) 66, 154, 163, 72, 29, 72, 79, 74, 86, 88, 71, 34, 76, 69, 96, 56, 61, 89, 204, 93, 86,
for 1979–1999; 121, 119, 87, 81, 64, 131, 38, 84, 86, 111, 118, 145, 113, 34, 102, 36, 115, 90, 42,
58, 61 for 2000–2020. Employing the gamma_test function in R, the procedure returned the
p-values 0.2956 and 0.316, respectively, for the two samples, allowing us to model them with
gamma distributions. Since x1 = 86.57, s2

1 = 1685.46, the parameter estimates for the first-
sample gamma distribution are k̂1 = 86.572/1685.46 = 4.44, θ̂1 = 1685.46/86.57 = 19.47.
For the second, the estimates are x2 = 87.43, s2

1 = 1131.76, k̂2 = 87.432/1131.76 =
6.75, θ̂2 = 1131.76/87.43 = 12.94. The sample variances were calculated with the term
(n− 1)−1 for the moment. This brings the analyst to scenario 1, for which the multiples to
calculate the critical percentiles are equal to −1.96 and 1.96. The test criterion in absolute

value is |x1 − x2| = 0.86, and by (13)–(15), 1.96
√

21−1
[(

n− 1)/(n + 1)
(
s2

1 + s2
2
) ]

= 21.65
can be used as the critical value of the test. Since the test criterion in absolute value is
much lower than the critical value, or equivalently, the test criterion lies in the interval(
−1.96v̂ar1/2, 1.96v̂ar1/2

)
, the null hypothesis of no shift in the average amount of July

rainfall across time is accepted.

5. Conclusions

This paper presented a simple method that can be used to test the statistical significance
of the difference between two independent gamma-distributed random variables in a small-
to-medium-sized data setting. There are many real-life situations when such a technique
might be useful provided the objective is to discern situations or scenarios from one another,
the scenarios being evaluated or described by a positive or nonnegative measure. Some
interesting applications were mentioned in the first part of this text. The method was
designed based on simulations that were also used for its validation, a standard procedure
in statistics, and its comparison with other methods. The simulation-based approach was
adopted because the usual techniques of deriving the precise distribution of a test criterion
under H0: “No difference in the expected values” are too complex and incomparable to
the presented technique in terms of the difficulty. The analysis was made possible through
a code written in the R statistical software development environment, version 2022.07.2
Build 576, using suitable API functions for working with the gamma distribution, as well as
API graphical tools (see Appendix A of this text). The presented conclusions concern small-
and medium-sized samples of 30 to 80 datapoints coming independently from gamma
distributions. For larger samples (at least a hundred datapoints), it seems that X − Y is
approximately normally distributed under H0 in a majority of considered cases, as was
confirmed with the Shapiro–Wilk test. This suggests that an approximate normality-based
test could be applied for such sample sizes with the same objective in mind instead of the
proposed procedure. The normality approach to testing can also be used once the gamma
distribution shape parameters are, say, 30 or higher. The resulting method has a very good
type I error probability within the considered situations, while its power averages above 0.7
for sample sizes of at least 60 for reasonably pronounced differences in the expected values
(see Tables 8 and 9). The test power of the method was compared to the methodology
proposed in [12] that claims to be as good as other methods, if not better. The method
proposed here seems to possess comparable power unless the means differ little. This was
suggested by the comparisons that could be made, at least approximately, for the parameter
scenarios and sample sizes used in [12] were not always close to what was considered
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in this paper. The analyses suggest that in many cases, it is possible to use the method
designed in the paper, the major advantage of it being its simplicity (see page 6). Table 15
summarizes the recommendations. In practice, the true scenario behind the parameters
can be identified with parameter estimates. Once the scenario estimate is given, the proper
row in Table 15 is selected and the ds identified, leading to the percentiles and the test
implementation.

Table 15. The multiples d to obtain the percentiles p̂2.5, p̂97.5. If p̂2.5 < x− y < p̂97.5, the hypothesis
H0: E(X) = E(Y) is accepted; in all other cases, it is rejected. For calculation of v̂ar1/2

X−Y
, see page 6.

k1,k2,θ1 Scenarios
(See Page 5)

d in
^
p2.5 = d

^
var

1/2
¯
X−

¯
Y

d in
^
p97.5 = d

^
var

1/2
¯
X−

¯
Y

1 −1.96 1.96
2 −1.96 1.96
3 −1.96 1.96
4 −1.92 2.00
5 −1.91 2.01
6 −1.95 1.97

Generally speaking, if the practitioner wants to keep the procedure even simpler, it
is conceivable to use a constant d between 1.95 and 2, whatever the parameter scenario.
The results obtained in this way should still possess reasonable statistical properties. In the
current context, it is also possible to think of the Vysochanskij–Petunin inequality, which
implies that under H0, the difference in the sample averages will fall outside the interval(
−3var1/2, 3var1/2

)
with a probability of at most 0.05. The result is valid for unimodal

distributions with finite variance. This instead suggests using a multiple of three to get
at the proper percentiles for the testing. But of course, the result concerns the unknown
population variance var and not its estimate that must be used in practice. And even if var
was known, the “at most” theoretical conclusion additionally suggests that the multiple of
three is probably too high. It must be stressed that the obtained results concern specific
situations, although their number runs into thousands. Nevertheless, for other situations
not covered here, the Appendix A code can still be used to expand the results.
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Appendix A

This supplement contains three R functions that can be used to both check the results
presented in this paper and enhance at will those results for parameter scenarios other
than the ones stated. The first function sets the k, theta parameters in a certain way, here,
corresponding to the first parameter scenario (see page 4), then realizes tens of thousands
of values of X − Y under H0 to estimate properly the true distribution of the difference
and then calculates the lower and upper d multiple leading to the distribution percentiles
relevant for the testing of H0. The second function takes the d-based proposed procedure
described in the paper and uses it many times given a scenario-specific parameter set-up
so that H0 holds, counting the number of cases when the hypothesis is wrongly rejected
with the proposed test; i.e., it estimates the type I error of the test. The third function runs
the test many times for a given H1 situation and estimates the test power.

# R function to identify the lower and upper d for the given scenario and sample
# size; here, the first parameter scenario is shown in the cycles below.

d <- function(n) { #sample size n given

i <- 0; avgX_minus_avgY <- d_lower <- d_upper <- c(0)

for (k1 in 1:10) {
for (k2 in 1:10) {
for (theta1 in 1:30) {

theta2 <- k1 * theta1/k2 #theta2 calculated, so that Ho holds
varXY <- (1/n) * (k1 * theta1ˆ2 + k2 * theta2ˆ2) #known variance of X−Y under Ho

for (draw in 1:10,000) #ten thousand realizations of X−Y under Ho

{

X <- rgamma(n,shape = k1, scale = theta1)
Y <- rgamma(n,shape = k2, scale = theta2)
avgX_minus_avgY[draw] <- mean(X) −mean(Y)

}
i <- i + 1
d_lower[i] <- quantile(avgX_minus_avgY, 0.025) * varXY ˆ (−0.5)
d_upper[i] <- quantile(avgX_minus_avgY, 0.975) * varXY ˆ (−0.5)

}
}

}

return(list(d_lower = d_lower, d_upper = d_upper)) }

# R function to estimate the type I error alpha for the proposed test
# the code concerns the first parameter scenario (see page 4), shown here
# in the cycles below; for other scenarios, this part must be changed
# as well as the 1.96 mutliples used in the cycles
# n = sample size

alpha_check <- function(n, numberOfTests) {

bigger <- c(0); i <- 0
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empir_quantupper <- empir_quantlower <- varXY <- avgX_minus_avgY <-
numeric(numberOfTests)

for (k1 in 1:10) { #the first-scenario parameter combinations
for (k2 in 1:10) {
for (theta1 in 1:30) {

theta2 <- k1 * theta1/k2 #calculation of theta2, so that Ho holds

for (j in 1: numberOfTests) { #many tests for the given k1,k2, theta 1,2

X <- rgamma(n, shape = k1, scale = theta1)
Y <- rgamma(n, shape = k2, scale = theta2)
avgX_minus_avgY[j] <- mean(X) - mean(Y)
varXY[j] <- (1/n) * ((n − 1)/(n + 1)) * (var(X) + var(Y)) #the min MSE estimate of var

( X−Y
)

empir_quantlower[j] <- −1.96 * sqrt(varXY[j]) #the lower percentile for testing Ho
empir_quantupper[j] <- 1.96 * sqrt(varXY[j]) #the upper percentile for testing Ho

}

i <- i + 1 #saving in"bigger" the relative frequency of cases when Ho is rejected
bigger[i] <- (sum( avgX_minus_avgY > empir_quantupper )/numberOfTests) +
(sum( avgX_minus_avgY < empir_quantlower )/numberOfTests)

}
}

}
return( bigger )

}

#“bigger” is a vector whose i-th component gives an estimate of the type I error
#probability corresponding to the i-th parameter set-up within the scenario

# R function estimating the test power (here, for the 1st parameter scenario set-ups)
# n=sample size, const = the constant in H1 (see the top of page 5), const > 0
# the higher the “number” of tests, the more precise the test power estimation
power_check <- function(n, const, number) {

test_power <- c(0); i <- 0

for (k1 in 1:10) { #the first-scenario parameter combinations
for (k2 in 1:10) {
for (theta1 in 1:30) {

theta2 <- (k1*theta1 + const)/k2 # the set-up of a H1 case
numberOfSuccesses <- 0

for (test_run in 1:number) { #test power for given k1, k2, theta 1, 2, n, const
X <- rgamma(n,shape = k1, scale = theta1)
Y <- rgamma(n,shape = k2, scale = theta2)
percentile <- 1.96 * sqrt((1/n) * (n − 1)/(n + 1) * (var(X) + var(Y))) #test percentile,

# here for the 1st scenario

if (abs(mean(X)-mean(Y)) >= percentile)
{ numberOfSuccesses <- numberOfSuccesses + 1}
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# this condition is valid for the 1st scenario only; for others, it must be changed

}
i <- i + 1; test_power[i] <- numberOfSuccesses /number #saving the test power

#for the given set-up
}

}
}

return(test_power) }

# Some parts of the code must be changed for the appropriate scenario, e.g.:
# percentile1 <- −1.91 * sqrt((1/n) * (n − 1)/(n + 1) * (var(X) + var(Y))) for the 5th

scenario
# percentile2 <- 2.01 * sqrt((1/n) * (n − 1)/(n + 1) * (var(X) + var(Y))) for the 5th

scenario, and:
# if (( mean(X)-mean(Y) <= percentile1)|( mean(X)-mean(Y) >= percentile2)) { . . . }
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