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Abstract: This work addresses the dynamic modeling of a negative stiffness absorber consisting of an
assembly of curved beams. Design rules are derived from the orders of magnitude of stiffness and
elastic energy stored by the negative stiffness elements. Although static and dynamic performances
are widely documented using equivalent spring–mass system equations of motion, this paper presents
a modeling approach based on beam dynamics to predict the behavior by incorporating the generation
of negative stiffness with prestressed Euler beams. The static behavior is first recalled to feed the
dynamic beam model with realistic orders of magnitude. The latter is derived from the beam balance
instead of the spring–mass system and aims at solving the beam problem, which encompasses more
realistic phenomena compared to introducing the equivalent stiffness in the spring–mass equation of
motion. The consistency of the beam modeling is confirmed by comparison with available models in
the literature and finite element simulations. A mock-up is built in which beam-type components
are 3D-printed. Axial loading is introduced on the curved beams to evaluate its influence on the
response of the isolator, and the observed softening trend complies with the theoretical predictions.

Keywords: vibration control; negative stiffness; high static low dynamic isolator; quasi-zero-
stiffness absorber

1. Introduction

A tuned mass damper (TMD) is a mechanical device designed to reduce the effects of
vibrations on a structure. It consists of a mass, a spring, and a damper, which are tuned
to a specific frequency close to the frequency of the primary system. It operates on the
concept of anti-resonance in such a way that, when the primary system vibrates at its
resonance frequency, the damper oscillates in the opposite direction, thereby countering
the oscillations and decreasing its amplitude. When properly calibrated, these devices are
effective even with a small additional mass (10% of the primary system). This concept
was formalized in terms of a two degree of freedom system, together with associated
design rules and optimized tuning parameters by [1]. For a more recent state of the art, one
may refer to [2], which compiles chronological progress on the design and modeling and
challenges in the field of passive vibration control. However, one limitation of the TMD is
that stiffness should be reduced, or mass should be increased, as a lower frequency range
of performance is expected. This would result in a large static displacement that would
be unsuitable for some applications. To overcome this limitation, negative stiffness can be
introduced to reach low-frequency ranges of efficiency.

The negative stiffness system itself does not provide a stable operating regime and
should be supplemented by a positive spring, which is expected to compensate for the
negative stiffness and become stable. The overall stiffness will then be quasi-zero but still
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positive. The combination of these two stiffnesses of opposite signs gives the resonator
great flexibility over the frequency range to be isolated, especially the low frequencies.

The concept of negative stiffness was first proposed by [3], who used three springs to
achieve the negative stiffness. The negative stiffness assembly is usually presented as two
horizontal springs in series, whose connecting point is also attached to a vertical spring.
In this way, the two horizontal springs provide the negative stiffness, while the vertical
spring provides the positive stiffness. This assembly is already documented to identify its
high static and low dynamic features, as well as the conditions under which the negative
stiffness compensates for or overcome the positive one. A summary of various prototypes
with quasi-zero stiffness characteristics is provided in [4] and numerous ways to produce
quasi-zero stiffness are documented in [5].

Negative stiffness springs take the form of elastic rubber rods, slender beams, or bar
systems, or even magnets repulsing each other. It is specifically introduced in the form of
curved beams by [6] and it was shown that such nonlinear springs provide low-frequency
performance while they support the static load of the equipment. Prestressed negative
stiffness springs were investigated in [7], as an industrial vibration isolator for sensitive
equipment such as microscopes. The substitution of the linear spring by a buckled beam
to form Euler springs was described by [8] to achieve a vibration isolator with high-static
low-dynamic stiffness properties.

The buckled beam setup takes advantage of the snap-through behavior of beams to
generate the negative stiffness mechanism. The aspect of symmetric buckling of Euler
beams is reported in [9], which also constrains the connecting point to realize negative
stiffness in the tangential direction. Very interesting is the derivation of static criteria
describing the performance of compressed beams from a fine analysis of displacement
and stresses. This mechanism was recently addressed by [10] from an analytical point
of view. The specific nonlinear behaviors relying on the buckling instability motivated
numerous fundamentals studies, as [11] followed by [12,13]. Most of these studies focus on
the mathematical way to obtain low dynamic stiffness [14,15], and some show experimental
results on prototypes for various industrial applications as [16] or as [17,18] to improve
the comfort seat suspension of the vehicle. The performance of more recent systems
is demonstrated experimentally under harmonic and random conditions [19]. Shock
excitation is also investigated [20] and specifically using a buckled beams setup [21].
As examples of other configurations, negative stiffness can be used to bring damping to
composites [22,23] or can be inserted as magnets, as in [24,25].

As part of vibration control solutions, different types of negative stiffness systems
are reviewed by [19,26]. As for more recent developments, these devices are used in
periodic arrangement of beams to produce negative-stiffness honeycombs [27–30] and
negative-stiffness metamaterials providing band gaps [31,32].

From this literature review, a widely used approach is to formulate the dynamic be-
havior through the equation of motion of the equivalent spring–mass system, in which the
stiffness parameters are considered as the equivalent stiffness of the structural elements.
This approach is well suited to assess the nonlinear behavior since the stiffness is sup-
plemented by higher-order terms, either derived analytically or numerically using Taylor
expansions. The obtained equation is generally reduced to a Duffing oscillator, whose
nonlinear resonance and unstable nature are extensively documented.

Deriving a dynamic beam model would be of interest because solving the beam prob-
lem would encompass more realistic phenomena. In fact, the negative stiffness components
are rarely ideal springs but rather structural elements such as elastic rubber rods, slender
beams or bar systems, or repulsing magnets. For some operating regimes, even a linear
one assuming small displacements, the ability to obtain an analytical description of such a
system based on a bending model would be beneficial.

The objective of this work is to present some design rules and equations associated
with the description of a negative stiffness resonator prototype. The design under study is
largely inspired from [6,33]. The analysis is complemented by finite element comparisons
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performed on the different components. Experimental measurements are finally conducted
on a mock-up and demonstrate the tunable aspect of the resonator with respect to different
axial loads.

This paper is organized into three sections. A primary description of the structure
under study is introduced in Section 2, together with the underlying physics and asso-
ciated mechanisms. Along with the analytical model comes the numerical investigation
in Section 3. Particularly, force–displacement relations and eigenfrequency computations
are presented in order to confirm the validity of theoretical predictions. Finally, Section 4
describes experiments conducted on a mock-up of the resonator. Measured frequency
responses show the softening effect as axial load increases and exhibit similar trends to the
theoretical model, justifying its consistency.

2. Theoretical Insight

This section gives an overview of the preliminary theoretical calculations that can be
made to assess the static behavior and dynamic performance of the resonator depicted in
Figure 1.
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δ δ

m

Curved beam:

Initial state:

Buckled state:

δ

P

Figure 1. Compressed Euler beam clamped at both ends, physical configuration of the negative
stiffness resonator at rest, and working state with initial displacement.

2.1. Negative Stiffness from Buckled Euler Beams

The different components are drawn in Figure 1. The first element considered is the
beam with initial imperfection w = Q0, length L, depth b, and thickness h. As for the case
of a straight beam, the beam will not deform until the applied load reaches the critical
buckling load Pe, but in case of initial imperfection, a corrected expression can be found
between the end shortening δ and the axial force P, as derived in [34]. Assuming w < 0.2L,
the force displacement relation is given by (1)

P = Pe

1− πQ0

L
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πQ0

L

)2
+ 4
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δ
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1
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(
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+

1
2

(
δ

L

))
(1)

with Pe = nEI(π/L)2 the Euler critical load of the beam with n = 4 in case it has both ends
clamped, EI is the bending stiffness, L is initial the length of the beam.

The axial force P is plotted in Figure 2 as a function of the axial displacement δ. Both
quantities are normalized. It is also plotted for different values of initial imperfection,
ranging from Q0 = 0 (straight beam) to Q0 = 0.2L (initially curved beam). For the straight
beam, the applied displacement results in a linearly growing force while specifying an initial
imperfection leads to (i) a sudden decrease in force for very low values of displacement
and (ii) a quasi-linear increase in force for large displacement values, which is gradually
decreasing when increasing the imperfection. This observation confirms the softening of
the system as it experiences an axial force.
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Figure 2. Normalized axial force P versus increasing axial displacement δ/L, for imperfection
Q0 = [0 : 0.2]L from dark to light gray.

Geometric parameters and mechanical properties of curved beam are indicated in
Table 1.

Table 1. Geometrical parameters and mechanical properties of curved beams.

Dimensions (m) Young’s Modulus (GPa) Density (kg/m3)

L = 0.14, Q0 = 0.004 2.5 1008
b = 0.06, h = 0.004

Two pairs of curved beams are then connected on both sides of the center mass, as
illustrated in Figure 1, and an initial axial displacement δ is applied in the opposite direction.
Increasing the initial displacement causes the beams to buckle and provides a vertical
restoring force F. Assuming δ < 0.1L as recommended by [34], and assuming the two pairs
of curved beams and mass are aligned, the vertical reaction force F is formulated as

F(x) = −4Pe

(
1− sa−1/2

1

)
a2

x
γ

(2)

with s = πQ0/L, γ =
√
(L− δ)2 + x2, a1 = s2 + 4− 4γ/L, and a2 = 3/2 + s2/8− γ/2L.

Differentiating (2) versus the displacement gives the effective stiffness provided by
the element as

k(x) = −2s a3 a2 a−3/2
1 − a3

2

(
1− s a−1/2

1

)
+ a2

(
1− s a−1/2

1

)(γ2 − x2

γ3

)
(3)

with a3 = x2/(Lγ2). The resulting expression of effective stiffness (3) exhibits the uncon-
ventional nature of the resulting force with respect to initial axial displacement δ. This
aspect is closely reported in [6,12].

The behavior of (2) is illustrated in Figure 3. It shows the vertical force F as a function
of the vertical displacement x. A maximum value xm = 0.3L is chosen for the following
analysis. Both quantities are normalized and plotted in two ways. First is a fixed value
of horizontal displacement δ = 0.1L with different values of initial imperfection, ranging
from Q0 = [0 : 0.2]L. The second a is fixed value of imperfection Q0 = 0.2L with increasing
values of horizontal displacement δ. For the curved beam with initial displacement δ,
increasing the initial imperfection tends to slowly reduce the negative stiffness to a quasi-
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zero stiffness, although this is not fully reached due to the limit of the analytical description.
However, setting the imperfection to its maximum value (admissible by the model) and
increasing the horizontal displacement produces a sudden change in the resulting force.
This observation confirms the softening of the system as it experiences an axial force.
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Figure 3. Vertical reaction force F versus vertical displacement x = [−xm, xm]L at the middle of the
assembly, for (a) increasing values of Q0 while δ = 0.1L from dark to light gray, and (b) increasing
values of initial displacement δ while Q0 = 0.2L from dark to light gray. Lighter lines on both figures
is the same configuration.

2.2. Qualitative Analysis

From these observations, a negative stiffness system does not offer a stable operating
regime. This is why a positive stiffness is introduced, which will have the role of sufficiently
compensating this negative stiffness to ensure the stable operation of the system. The overall
stiffness will then be quasi-zero but positive. The combination of these two stiffnesses of
opposite signs gives the resonator great flexibility over the frequency range to be isolated,
especially the low frequencies.

As a preliminary qualitative analysis, a static perception may lead to the two following
considerations. First, the mass is suspended by four identical folded beams providing
the positive stiffness that is considered as four springs having individual stiffness ks. The
equivalent positive stiffness kp is evaluated from the dynamic balance as kp = 4ks. The
bending stiffness of the folded beam is approximated by the equivalent stiffness of the
cantilever beam as ks = 3Es Is/L3

s . This is later validated in Section 3.1. Second, since
the supported–supported (S–S) and clamped–clamped (C–C) beam with load at midspan
has an equivalent bending stiffness of kb = 48EI/L3, respectively, kb = 129EI/L3, the
S–S or C–C beam with spring kp at midspan has an equivalent stiffness of keq = kb + kp.
This qualitative analysis is used in the next sections to weight parameters and evaluate
dynamic features.

2.3. Spring–Mass System Modeling

This section introduces a simple and efficient spring–mass model available in the
literature [35]. It describes the structure using an analytical model derived from the
dynamic balance of a spring–mass system. The full developments are not rewritten for
the sake of brevity; only the key parameters are presented using notations consistent
with those of the present paper. The positive stiffness component has a stiffness kp, and
the two pairs of beams generating the negative stiffness have a stiffness kn defined as

kn =
2π4EI

L3

(
1− δ

δcr1

)
(4)

where δ is the horizontal displacement, and δcr1 = 4π2 I/SL is the critical horizontal dis-
placement leading to the first mode buckling. The overall stiffness of the assembly is defined
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as k = kp + kn. The transmissibility T(ω) is obtained by deriving the displacement–force
equations and calculating the ratio of input velocity to output velocity of the center mass.

T(ω) =
K/m

−ω2 + K/m
(5)

Transmissibility is then a frequency-dependent quantity that will account for the
performance of the vibration mitigation. It will be compared to experimental results
together with results of the dynamic bending model derived in Section 2.4.

2.4. Bending Behavior of Beam with Mass and Spring at Midspan

The model proposed in this section is based on the bending behavior of a beam of total
length l = 2L, with added mass and spring foundation located at L. Due to the curved nature
of the beams, a preliminary investigation is proposed to identify the model to be used.

Let us consider the curved beam as an assembly of two noncollinear beams connected
with an angle θ = arctan(2Q0/L), as illustrated in Figure 4, each beam experiencing
coupled flexural and longitudinal motions. The longitudinal motion is associated with
an axial displacement vi, and axial effort Fi, and the bending motion is associated with a
transverse displacement ui, section rotation u′i, bending moment Mi, and shear effort Vi,
where i = 1, 2 corresponds to the two segments. The continuity conditions at the connecting
point are

v1 = v2 cos(θ)− u2 sin(θ) (6)

F1 = F2 cos(θ)−V2 sin(θ) (7)

u1 = u2 cos(θ) + v2 sin(θ) (8)

u′1 = u′2 (9)

M1 = M2 (10)

V1 = F2 sin(θ) + V2 cos(θ) (11)

The solution for the bending motion of the i-th segment is

ui(x, ω) = C1,i sin(kx) + C2,i cos(kx) + C3,i sinh(kx) + C4,i cosh(kx) (12)

with k is the bending wavenumber k4 = ω2ρS/EI, and the one for the longitudinal
motion is

vi(x, ω) = C5,i sin(λx) + C6,i cos(λx) (13)

with λ is the compression wavenumber λ2 = ω2ρ/E.

L

lb

w

V
Vy

Vx

θ

Curved beam approximation:

Force projection:

Double beam configuration:

Figure 4. Schematic overview of the curved beam approximation and associated notations, for the
single curved beam, force projection, and double beam configuration.
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In order to verify the consistency of this modeling, we consider a straight beam two-
times thicker than the curved beam, a pair of curved beams, and a pair of noncollinear
beams, together with clamped-free boundary conditions. Stating v = u = u′ = 0, at x = 0
and v′ = u′′ = u′′′ = 0 at x = L provides an analytical benchmark case. In such conditions,
the first cantilever mode of the straight beam is 455 Hz, the one associated with the pair
of curved beams is calculated using a finite element model and yields 450 Hz. The first
mode of the pair of noncollinear straight beams is calculated by solving the transcendental
equation that is obtained by equating to zero the determinant of the 6× 6 matrix system
formed by the six continuity equations. This leads to 453 Hz and is confirmed by the finite
element model. This modeling is correct for small values of θ; otherwise, the length of each
noncollinear beam is lb = L(2− cos(θ))/2.

From this macroscopic analysis, the equivalent beam associated to a pair of curved
beam is two-times thicker than a single curved beam and can be described by the Euler–
Bernoulli beam equation:

EI
∂4u
∂x4 = ρSω2u (14)

from which the solution for the transverse displacement is

u(x, ω) = C1 sin(kx) + C2 cos(kx) + C3 sinh(kx) + C4 cosh(kx) (15)

with k as the bending wavenumber k4 = ω2ρS/EI. In the following, the added mass
is denoted m, and the stiffness of the vertical spring associated with positive stiffness
is denoted kp. Thanks to the symmetry, one half of the beam is considered through a
set of four boundary conditions, two at the extremity (supported or clamped), and two
at the mid-length, accounting for mass and spring. Specifically, it is assumed that the
mass can only move vertically and that the motion of curved beams is symmetric on both
sides of it. This point does not experience rotation and is subjected to (i) the difference in
shear forces on both sides of the mass, which is related to the mass and its acceleration
as 2EIu′′′ = −mω2u, and (ii) the restoring force from the spring as 2EIu′′′ = −kpu. A
dimensionless parameter γ = kp/mω2 is introduced to describe the relative importance of
the elastic effect compared to inertia.

In case the beam is simply supported at both ends, the solution form simplifies as
φω(x) = C1 sin(kx) + C3 sinh(kx), and the equation of motion together with the zero-slope
condition give the following system:

2EIk3[−C1 cos(k∗) + C3 cosh(k∗)]
= −(mω2 + kp)[C1 sin(k∗) + C3 sinh(k∗)],

k[C1 cos(k∗) + C3 cosh(k∗)] = 0

(16)

Solving these equations gives the frequency equation, and rearranging with respect to
mass ratio mb/m, it follows that

mb
m

=
k∗

2
(tan k∗ − tanh k∗) (1 + γ) (17)

with mb as the weight of the beam, k∗ as the dimensionless wavenumber defined as kl/2.
The first solutions are illustrated in Figure 5. Expression (17) contains the frequency

equation of a beam with support-slide boundary conditions, as well as a corrective term
related to the added mass and supporting spring. It shows the rapid decrease in the first
root as the added mass increases. As expected, it also shows the shifting of the first root to
higher values as the elastic contribution prevails over the mass effects.
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Figure 5. Graphical representation of the roots k∗ of simply supported beam (17) (a) with respect to
mb/m with kp = 0, (b) with respect to γ with mb/m = 1.

In case the beam is clamped at one end, the solution form simplifies as u(x, ω) =
C1(sin(kx) − sinh(kx)) + C2(cos(kx) − cosh(kx)), and the equation of motion together
with the zero-slope condition give the following system:

2EIk3[C1(− cos(k∗)− cosh(k∗)) + C2(sin(k∗)− sinh(k∗))]
= −(mω2 + kp)[C1(sin(k∗)− sinh(k∗)) + C2(cos(k∗)− cos(k∗)))],

k[C1(cos(k∗) + cosh(k∗)) + C2(− sin(k∗)− sinh(k∗))] = 0

(18)

Solving these equations gives the frequency equation, and rearranging with respect to
the mass ratio mb/m, it follows that

mb
m

= k∗
(

1− cosh k∗ cos k∗

sin k∗ cosh k∗ + sinh k∗ cos k∗

)
(1 + γ) (19)

The first solutions are illustrated in Figure 6. Expression (19) contains the frequency
equation of a fixed beam 1− cosh k∗ cos k∗ = 0, as well as a term related to the added mass
and supporting spring.
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Figure 6. Graphical representation of the roots k∗ of clamped beam (19) (a) with respect to mb/m
with kp = 0, (b) with respect to γ with mb/m = 1.

A comparison of the roots calculated analytically and by a two-dimensional finite
element model (by making the frequencies dimensionless with respect to the characteristics
of the beam) is presented in Table 2 to show the relevance of the formulation. The finite
element model, as used in Section 3.3, is a beam element clamped or supported at both
ends. Spring foundation and added mass are specified at mid-length. An eigenfrequency
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study is performed that leads to the characteristic frequencies of the system. Considering
the mechanical properties and geometrical parameters, the roots of the characteristic
transcendental equation can be obtained.

Table 2. First root kl/2 of Equation (17) calculated analytically and by finite elements as a function of
the ratio mb/m.

mb/m

2 1 0.5 0.1

Analytical 1.92 1.72 1.50 1.04
Finite element 1.92 1.72 1.49 1.03

Let us define µ = m/mb as the mass ratio between the middle mass and the mass of
the beam, and κ = kp/kb the stiffness ratio between the linear spring and the equivalent
bending stiffness of the beam.

A preliminary parametric study is presented in the following. It allows κ and µ
to vary respectively within the range [0; 10]. The resonance frequency of the obtained
spring–mass system is represented versus these two parameters in Figure 7. Additionally,
the fundamental frequency of the clamped beam with mass and spring foundation at
mid-length is evaluated from the analytical expression presented above. This gives a
representation to better visualize the design space and the frequency behavior of the full
resonator versus the simple case of a spring–mass damper. Figure 7 is shown for P = 0, that
is, no axial loading of the beam. It appears that the isofrequency limit grows with respect
to µ and κ, as predicted by the theory. Next section extends the study by introducing the
axial loading in beams.

2.5. Introduction of Axial Force in Beams

Initial axial effort is now introduced in the previous model. If it is tensile, it increases
the bending stiffness, whereas if it is compressive, it lowers it, leading to buckling instability.
Only compression is considered. In the case of axial compression, the force term contributes
to the balance of moments, and the Euler beam equation is supplemented by the second
order spatial derivative term associated with the force P as

EI
∂4u
∂x4 − P

∂2u
∂x2 = ρSω2u (20)

for which the solution for the transverse displacement is now

u(x, ω) = C1 sin(k1x) + C2 cos(k1x) + C3 sinh(k2x) + C4 cosh(k2x) (21)

with k1,2 as the bending wavenumbers

k1,2 = ± 1√
2EI

(
−P±

√
P2 + 4EIρSω2

)1/2
(22)

From this solution form and considering the same boundary conditions as in Section 2.4,
the analytical description of the structure is achieved, although equations become lengthy
and are not presented here. In addition to the previous case, Figure 7 shows the isofrequency
line as the axial load increases, resulting in the lowering of eigenfrequencies. Augmenting
the axial load in the beam from 0 to 0.14 Pcrit shows the frequency shift in the fundamental
frequency to the low frequencies. For a given mass ratio, decreasing the stiffness ratio
makes it possible to lower the fundamental frequency of the resonator. In this context,
this effect is obtained by the axial compression of the beam rather than by decreasing the
positive stiffness.
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(a) (b)

Figure 7. Evolution of the fundamental frequency of the spring–mass system (smooth surface) against
fundamental frequency of the resonator (surface with black edges). The solid line is the intersection
of the two surfaces. (a) for P = 0, (b) increasing axial load P = [0; 0.14]Pcrit.

3. Finite Element Modeling of the Positive and Negative Stiffness Components

Numerical simulations were conducted at different scales to emphasize the relevancy
of the theoretical approach introduced above. These address the computation of the
restoring force with respect to initial deflection in Section 3.2, bending response of the
mass supported by springs, in Section 3.3, and eigenfrequency study of the mock-up in
Section 3.4.

3.1. Estimation of Positive Stiffness

A preliminary computation is performed to estimate the accuracy of the assumption
stated in Section 2.2. First, the mass is suspended by four identical folded beams providing
positive stiffness which are considered as four springs having individual stiffness ks. The
equivalent stiffness kp is evaluated from the dynamic balance as kp = 4ks. The bending
stiffness of the folded beam is approximated by the equivalent stiffness of the cantilever
beam as ks = 3Es Is/L3

s . Considering Ls = 0.094, bs = 0.06, hs = 0.004 mm, the obtained
analytical value is 3.17× 103 N/m. From the finite element side, representing our full
geometry with clamped-free boundary conditions, running a stationary analysis and
dividing the input force by resulting transverse displacement leads to an apparent stiffness
of 3.17× 103 N/m, which is a relative error of less than 2%. Even if the kinematics expected
on the structure restrict the side to moving only vertically due to the attachment to the
mass, the cantilever assumption is considered satisfactory.

3.2. Force–Displacement Relation

The two pairs of curved beams are modeled to numerically compute the force–
displacement relation. The reaction force is plotted in Figure 8 as a function of the imposed
vertical displacement. A parametric study is performed to verify the influence of initial
axial displacement δ on the response. Two comments can be formulated. First, for the same
values of vertical displacements, the tension restored diminishes as δ increases, which is
consistent with the softening of the assembly. Second is the flattening of the curve and
especially the widening of the area where the stiffness is negative and/or quasi zero, which
appears as a fundamental feature for the design of the resonator. Since negative stiffness is
achieved even for low values of axial displacement, the introduction of the linear vertical
spring would be efficient even for small deflection values. The deflection associated with
several positions is depicted for illustrative purposes.
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Figure 8. (a) Vertical reaction force versus vertical displacement at the middle of the assembly, for
4 mm thick curved beams, and (b) increasing values of initial displacement δ = [0, 0.01]L from light
to dark blue.

3.3. Frequency Domain Computations

The system in Figure 1 is modeled as a beam element clamped at both ends. Prescribed
vertical displacement is applied at clamped ends to account for the excitation. The middle
point is supplemented by two boundary conditions: first is the point mass m = 8mb, second
is the linear spring foundation accounting for positive stiffness kp = 4ks.
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Figure 9. Structural response (displacement at x = L ), analytical model (−), finite element
simulation (+).

The comparison of the structural response of the beam in Figure 9 shows that the
analytical model built in Section 2.4 and enriched with axial loading as in Section 2.5 is
totally consistent. It is able to handle the introduction of a point mass significantly larger
than the mass of the support beam, the effect of the positive spring, as well as the axial
loading of the beams. In the following, only the frequency range 0–100 Hz will be of interest.
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3.4. Eigenfrequency Study

From the geometrical parameters and mechanical properties indicated above, a prelimi-
nary eigenfrequency computation is performed on a three-dimensional finite element model
of the assembly. Fixed boundary conditions are specified on the left, right, top, and bottom
boundaries of the assembly to mimic clamped conditions with the frame. This results in the
modal shapes illustrated in Figure 10. The modes of interest are the ones having in-plane
kinematics, and particularly the first one associated with the symmetrical bending of curved
beams on each side of the mass, resulting in its vertical motion. For this specific kinematic to
occur, it is outlined that the negative stiffness introduced by the curved beam should over-
come the positive stiffness produced by the four supports. The second mode presenting the
rotation of the mass is not of interest in this contribution, although it is in some applications
related to structure stabilization and damping in joints of reticulated structures.

(a) (b)

(c) (d)

Figure 10. Modal shapes, with exaggerated amplitudes, associated with the first four eigenfrequencies,
(a) symmetrical bending mode with vertical motion of mass at 44 Hz, (b) asymmetrical bending mode
with rotational motion of mass 217 Hz, (c) symmetrical bending mode with inverted bending of curved
beams 238 Hz, (d) symmetrical bending mode with parallel bending of curved beams 300 Hz.

4. Experimental Validation

The objective of this section is to verify the influence of initial force on the response
from experimental measurements. A mock-up was designed in accordance with the struc-
ture described above. The structural response was obtained by exciting the structure using
an impact hammer, and measuring the resulting transverse acceleration. The experimental
results are compared with an existing spring–mass model available in the literature pre-
sented in Section 2.3 and the dynamic bending model of interest in this paper, derived in
Sections 2.4 and 2.5.

4.1. Measurement Setup

The mock-up of the system is depicted in Figure 11. It consists of an aluminum frame
assumed to be rigid, inside which there are three moving parts. The components governing
the behavior are (i) the four folded beams that provide positive stiffness in the vertical
direction (kp = 4ks in the analytical model), (ii) two pairs of curved beams that provide
negative stiffness, (iii) the center mass attached to these six components. As for the soft
components, the four folded beams and the two pairs of curved beams are 3D-printed.
Two aluminum sliders are designed to move horizontally to induce axial force in the curved
beams. The position of the sliders is adjusted using two screws and determines the initial
force experienced by the curved beams. The same displacement is applied to the sliders
so as to not introduce any asymmetry into the system. As for the excitation, the impact is
applied to the mass, and the calculated transfer function is the mass acceleration versus the
input force.
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Center mass Frame Support springs Curved beams Slider 

Figure 11. Picture of experimental setup with components of the resonator, aluminum rigid elements,
3D-printed soft components, and instrumentation; accelerometer on mass and impact hammer.

The frame with sliders and center mass are made of structural aluminium, with mass
density ρ = 2700 kg/m3 and Young’s modulus E = 69 GPa. After weighing the 3D-printed
spring components and modal testing, the mass density of the ABS parts and the Young’s
modulus are estimated from the first cantilever mode. Values are reported in Table 1.

4.2. Response of the Resonator

The ratio of acceleration and input force, namely the structural inertance, is shown
in Figure 12 for values of initial horizontal displacement δ increasing from 1.5 to 5 mm.
These values are within the validity range of (1) since the maximum value of δ as 5 mm
corresponds to 0.035L. The values of axial forces required by the analytical model were
calculated using the theoretical curved beam model (1), supplied with the real values of
measured axial displacements.

Experimental responses in Figure 12 are plotted together with the corresponding
coherence function to attest to the quality of the measurement. The trend associated with a
decrease in frequency as increasing force is applied is confirmed experimentally for values
of initial displacement δ from 1.5 to 5 mm. The analytical results from the dynamic bending
model and spring–mass model are also shown in Figure 13 and they predict the same
operating frequencies. Good qualitative agreement is obtained between experimental and
theoretical responses, mostly in terms of frequency prediction. The structural response
shows the frequency shift due to the softening effect as a consequence of increasing initial
load, from 30 Hz down to 20 Hz, as well as the marked gradual decrease in amplitudes.

For large values of force, the structural integrity of the 3D-printed curved beams is
uncertain and questionable, as they become inelastic and brittle. Other discrepancies may
be caused by fabrication tolerances and slight misalignment in the manufacturing of the
experimental setup.
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Figure 12. Structural inertance (ref: 1 m/s2/N) from experimental setup δ = 1.5 mm (−), δ = 3.5 mm (−),
and δ = 5 mm (−) and frequency shift evolving respectively to 30 Hz, 26 Hz, 20 Hz.
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Figure 13. (a) Structural inertance (ref: 1 m/s2/N) from analytical bending model with frequency
shift from 30 Hz, 24 Hz, 16 Hz for δ = 1.5 mm (−), δ = 3.5 mm (−), and δ = 5 mm (−), (b) analytical
spring-mass model 5 with frequency shift from 29 Hz, 23 Hz, 15 Hz.

5. Conclusions

This paper discusses how a dynamic vibration absorber can achieve lower frequencies
by incorporating a negative stiffness component. This paper presents a theoretical analysis,
FEM simulations, and experimental measurements. Axial loading is introduced on the
springs to evaluate its influence on the negative stiffness effect. The efficiency of the
negative stiffness resonator on vibration isolation is evaluated for different conditions
of axial force. The novelty of this work is the derivation of a moderately complex beam
bending analytical model instead of a spring–mass system. This is relevant because solving
the beam problem encompasses more realistic phenomena compared to introducing the
equivalent stiffness in the spring–mass equation of motion. The investigation is performed
in three steps.

This paper first recalls theoretical formulations describing the relation between restoring
force and initial deflection, and shows how the standard linear force–displacement is altered
with respect to the geometrical parameters of the spring-like components. This is supple-
mented by qualitative analysis and design rules based on static bending considerations.

Along with the static aspect, the dynamic aspect is also explored. A theoretical
model describing the flexural behavior of a beam supplemented by point mass, positive
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stiffness, and axial force associated with negative stiffness components is explained. In
this way, the key parameters are correlated to the negative stiffness mechanism as well
as the overall bending kinematics governing the motion of the resonator. Finite element
simulations confirmed static assumptions, and dynamic analysis confirmed the relevancy
of the proposed model.

Finally, according to the qualitative analysis suggested and the design procedure
presented, a variable passive negative stiffness resonator is manufactured and tested.
Although setting the overall stiffness to zero and overcoming the positive stiffness at
equilibrium point is challenging due to the uncertainties when manufacturing the frame
and junctions between the components, the decrease in frequency as axial force increases is
evidenced experimentally. Comparisons with the analytical model demonstrate that the
proposed bending model captures the behavior in terms of frequency and amplitude.

Further improvements could focus on a more accurate bending behavior of the
two pairs of curved beams, which is the key component responsible for the bending
kinematic of the resonator. Qualitative analysis may be pushed forward to determine
whether the axial or bending stiffness governs the performance of the structure. This would
be related to the nonlinear response of the structure and would require the evaluation of a
force–displacement relation in the scope of large displacements.
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