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Abstract: In this study, a fast and non-destructive method was proposed to analyze rapeseed quality
parameters with the help of NIR hyperspectral imaging spectroscopy and chemometrics. Hyperspec-
tral images were acquired in the reflectance mode. Meanwhile, the region of interest was extracted
from each image by the regional growth algorithm. The kernel partial least square regression was
used to build prediction models for crude protein content, oil content, erucic acid content, and
glucosinolate content of rapeseed. The results showed that the correlation coefficients were 0.9461,
0.9503, 0.9572, and 0.9335, whereas the root mean square errors of prediction were 0.5514%, 0.5680%,
2.8113%, and 10.3209 µmol/g for crude protein content, oil content, erucic acid content, and glucosi-
nolate content, respectively. It demonstrated that NIR hyperspectral imaging is a promising tool to
determine rapeseed quality parameters in a rapid and non-invasive manner.

Keywords: rapeseed; NIR hyperspectral imaging; quality parameters; kernel partial least square
regression

1. Introduction

Brassica napus L. is one of the most important oilcrops, which provides not only
important sources of edible oil and protein feedstuff, but also nectar sources [1]. Crude
protein content, oil content, erucic acid content, and glucosinolate content are the most
important quality parameters of rapeseed. Protein provides nutrition for livestock, whereas
high oil content can increase the production of rapeseed oil [2]. Moreover, erucic acid
can impair myocardial conductance and cause lipidosis and increase blood cholesterol [3],
whereas glucosinolates in rapeseed meal are detrimental to animal health as glucosinolates
reduce the feed palatability and affect the iodine uptake by the thyroid glands, thus
reducing feed efficiency and weight gains, especially in non-ruminants [4]. With the
improvement of people’s living standards, quality inspection has received ample attention.
In recent years, traditional and classical analytical methods were used to detect these
quality parameters of rapeseed, such as the Kjeldahl method for crude protein content [5],
Soxhlet extraction for oil content [6], gas chromatography (GC) for fatty acids [7], and
high-performance liquid chromatography (HPLC) for glucosinolates [8,9]. However, these
traditional methods are generally time-consuming, tedious, laborious, destructive, and
require skilled operation. Therefore, a rapid and non-destructive technique is required for
high throughput detection.
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Near-infrared hyperspectral imaging (NIR-HSI) was used to conduct quantitative
and qualitative analysis due to its fast, non-destructive detection, and free use of chemical
reagents [9,10]. Combined with conventional near-infrared spectroscopy with imaging
techniques to acquire both spectral and spatial information from an object, NIR-HSI can
overcome the disadvantage of point detection and provide images for visual classifica-
tion [11–13]. Meanwhile, the spectral data provide the internal quality of the sample. The
image information can be used to detect the external quality of the sample [14]. NIR-HSI is
a three-dimensional image block containing a large amount of spectral information with
the wavelength, two spatial dimensions (x and y), and one spectral coordinate (λ) [15–17].
Usually, dimensionality reduction and feature extraction were used to extract the most
important information for solving practical challenges and building calibration models
based on the selected wavelengths [18].

NIR-HSI has been widely applied in the quality and safety of various agricultural
products. The contents of amylose and amylopectin in different varieties of sorghum
were predicted by the cascade forest model. The residual predictive deviations (RPD)
were 4.7622 and 5.5889, respectively [19]. Feature wavelengths were extracted by the
uninformative variable elimination, and the partial least squares regression (PLSR) model
was built for the moisture of maize [20]. An attention mechanism was used to identify the
geographical origins of Coix seeds [21]. The convolutional neural network (CNN) models
were established to discriminate three varieties of soybeans. The results showed that the
performance of the model using pixel spectra from 60 soybeans was comparable to a model
using average spectra from 810 soybeans. Only one soybean of one variety was misjudged,
and the rest were predicted correctly [22]. Meanwhile, there was considerable progress in
the detection of single seeds with the help of HSI, such as the total lipid content of single
cocoa beans [23], oleic acid content, and the linoleic acid content of a single soybean [24]. In
summary, HSI was widely used in the detection of quality parameters, origin traceability,
variety identification, and single seeds of agricultural products. Recently, it has been
reported that NIR-HSI was successfully used to detect mycotoxins and pesticide residues in
agricultural products. One-dimensional CNN (1D-CNN) was employed to detect aflatoxin
on the surface of one peanut and one corn by detecting aflatoxin-containing pixels in a
rapid, comprehensive, and non-destructive manner. The classification result showed that
the accuracy was greater than 90%, which was of great significance for the early warning of
mycotoxins in oilseeds [25]. Meanwhile, the AFB1 concentration in a single maize kernel can
be discriminated with the linear discriminant analysis (LDA) method [26]. The shortwave
infrared (SWIR)-HSI possessed high accuracy in detecting deoxynivalenol (DON) of wheat
flour rather than the visible NIR-HSI [27]. Moreover, the established absorbance-partial
least squares discriminant analysis (AS-PLSDA) and locally weighted partial least square
regression (LWPLSR) model had the potential to detect chlorpyrifos and imidacloprid in
edible jujube fruits [28]. In general, NIR-HSI combined with multivariate analysis showed
great performance in the detection of the quality and safety of agricultural products.

However, the detection of quality parameters of rapeseed using NIR-HSI has not been
reported. In this study, the aim is to build models of rapeseed quality parameters based
on NIR-HSI. Different pretreatment methods were compared to select the optimal method.
Meanwhile, kernel partial least squares (KPLS) regression was used to build the model.

2. Materials and Methods
2.1. Materials

To ensure that the models could be used to predict quality parameters of rapeseeds
from all varieties, production areas, and quality grades, 150 representative rapeseed sam-
ples were selected from our reference sample library. These rapeseed samples with different
quality grades covered 14 major rapeseed-producing provinces in China. The major pro-
ducing regions of rapeseed were shown in Figure 1. All samples and chemical values were
provided by the Quality Inspection and Test Center for Oilseed Products, Ministry of Agri-
culture and Rural Affairs. The samples were spread evenly to the size of a 10 cm × 1 cm
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culture dish until fully covered, and the culture dish was put into the incubator and scanned
one by one by the NIR-HSI system. The key steps for the whole procedure are presented in
Figure 2.
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2.2. Reference Analysis

The chemical values of four parameters were detected after acquiring NIR-HSI, which
were the reference to develop the NIR-HSI calibration models. Crude protein content was
measured using Kjeldahl analysis, whereas the Soxhlet extractor method was used to detect
oil content. Meanwhile, erucic acid content was determined with GC, and HPLC was
employed for the glucosinolate content according to the Chinese national standard [29–32].

2.3. NIR Hyperspectral Image Acquisition and Preprocessing
2.3.1. The NIR-HSI System

The GaiaSorter NIR-HSI system (Sichuan Dualix Spectral Imaging Technology Co.,
Ltd., Chengdu, China) was used to obtain the spectra and image data of rapeseed. This



Appl. Sci. 2023, 13, 9444 4 of 10

system consisted of a line-scan push broom spectrograph (ImSpector, N25E, Spectra Imag-
ing Ltd., Oulu, Finland), a CCD camera (Zelos-285GV, Kappa optronics Gmbh, Gleichen,
Germany) with 320 × 320 (spatial × spectral) pixels, halogen tungsten lamps (HSIA-LS-
TDIF, Zolix, Ltd., Beijing, China), a conveyer (PSA 200-11-X, Zolix, Ltd., Beijing China), a
data acquisition, preprocessing software (Spectra sens, Zolix Instruments Co., Ltd., Beijing,
China), and a PC. The camera parameters were set as followed: objective lens height was
31 cm and exposure time was 10 ms. The spectrograph had a fixed-size internal slit (30 µm)
to define a field of view (FOV) for the spatial line (horizontal pixel direction) and collected
spectral images with 271 bands of 5.6 nm spectral resolution from 1000 to 2500 nm. The
four 200 w lamps were mounted on one side of the camera at a 45◦ angle with respect
to the vertical plane to illuminate the sample, which should be warmed up for 30 min to
ensure the light source is stable. Meanwhile, the conveyer was at an optimized velocity
of 10 mm/s during acquisition. More importantly, the dark current and background were
subtracted. Reflectance spectral intensity correction was performed automatically when
the sample was measured each time.

2.3.2. Regions of Interest (ROI) Selection and Spectral Information Extraction

Hyperspectral imaging systems can acquire abundant spatial and spectral information.
The ROI tool in ENVI (Research Systems Inc., Boulder, CO, USA) was used to extract
spectral information from rapeseed ROI. The regional growing method was employed to
select ROI and spectral information was extracted from these regions. After identifying
the ROI image, average spectra were calculated for all pixels enclosed in this region and
taken as the NIR spectra of each rapeseed sample. All samples followed this procedure to
acquire spectral information. As a result, a spectral matrix of 150 rapeseed samples in a row
and 271 bands in a column was obtained for the modeling and prediction of the quality
parameters of rapeseed.

2.4. Data Processing and Quantitative Models

The spectral data often contain unexpected noise and exhibit systematic variations
on the baseline due to the physical properties of the samples and other environmental
noises. If the raw hyperspectral data are directly used to build the model, it might obtain
low data modeling efficiency and poor model performance. The preprocessing of spectral
datasets is necessary to remove non-chemical biases, such as scattering effects, due to the
inhomogeneity of the surface, interference from external light sources, or random noise.
Scattering correction can reduce the spectrum caused by the uneven distribution of sample
particle size differences. Generally, common scattering correction includes multiplicative
scatter correction (MSC), standard normal variate transformation (SNV), and smoothing.
Meanwhile, the derivative algorithm can eliminate baseline drift and improve the resolution
of overlapping peaks.

Extending the PLS model by introducing a nonlinear kernel is an approach to solv-
ing nonlinear problems. KPLS regression is a mapped spectral input matrix to a high-
dimensional feature space by a nonlinear function; the major advantage of the KPLS method
is that it does not need nonlinear optimization by substitution of the inner product of the
feature space with a kernel function, which was used to build calibration models [33–35].
Leave-one-out cross-validation (LOOCV) was employed to evaluate the established cali-
bration models. The performance of the calibration models was also evaluated according
to the root mean square error of calibration (RMSEC), the root mean square error of cross-
validation (RMSECV), and the correlation coefficient (Rc).

2.5. Software

Hyperspectral image and spectra data extraction were accomplished with ENVI 4.5
(Research Systems Inc., Boulder, CO, USA). The data processing, wavelength selection, and
model establishment were developed in Unscrambler X version 10.4.1 (CAMO Software
AS, Oslo, Norway).
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3. Results and Discussion
3.1. Statistics Analysis

As illustrated in Table 1, the descriptive statistics of crude protein content, oil content,
erucic acid content, and glucosinolate content of representative rapeseed samples were
presented using Unscrambler X version 10.4.1 (CAMO Software AS, Oslo, Norway). The
minimum and maximum values of crude protein content, oil content, erucic acid content,
and glucosinolate content were 18.66%, 33.24%, 0.10%, and 14.63 µmol/g and 29.60%,
49.37%, 50.20%, and 168.96 µmol/g for all rapeseed samples (including the training set
and test set), respectively. The wide range of the above four parameters indicated that
150 rapeseed samples could reflect the qualities of rapeseeds in China. These rapeseed
samples were divided into a training set of 120 samples and a test set of 30 samples using
the improved KS algorithm.

Table 1. Descriptive statistics for crude protein content, oil content, erucic acid content, and glucosi-
nolate content.

Parameters Group Number Min. Mean Max.

Crude protein content Training set 120 18.66 24.29 29.60
Test set 30 18.86 24.78 29.12

Oil content
Training set 120 33.24 42.15 49.37

Test set 30 34.54 43.32 49.11

Erucic acid
Training set 120 0.10 16.37 50.20

Test set 30 0.10 15.40 47.87

Glucosinolates
Training set 120 14.63 68.97 168.96

Test set 30 15.87 71.43 155.54

3.2. Research on the ROI of Hyperspectral Image Data

The regional growing methods were used to select a rapeseed image by EVNI 4.5,
which was primarily conducted by combining pixels with similar properties [36]. First,
a seed point should be designated as the starting point of growth, and the pixels in the
area around the seed point should be compared with the seed point. Then, we combined
the four similarity points, which continued to grow outward until the pixels did not meet
the conditions. After identifying the region of similar spectral characteristics, the average
spectrum was calculated as the average of the spectra of all pixels enclosed in this region.
In this work, a four-neighborhood region-growing algorithm was used to mask the image.
The ROI and spectral data were shown in Figure 3.

Figure 3c showed the average spectrum. It was reported that the wavelengths of fat
were 1210 nm and 1715–1750 nm, which was associated with the third overtone -CH stretch.
The protein was related to the wavelengths of 2052 nm and 2300 nm and corresponded to
the N-H functional groups [37]. Meanwhile, erucic acid ranged from 1333–1837 nm and
glucosinolates were 1333–1837 nm and 2173–2355 nm [38]. This study demonstrated that
the species, variety, and production area of samples were the important factors in NIR
analysis, which will increase the heterogeneity of the spectrum and improve the robustness
of the calibration model [37].
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3.3. Establishment and Validation Calibration Model
3.3.1. Establishment Calibration Models

After hyperspectral image acquisition, 120 and 30 spectral data were involved in the
training set and test set, respectively. The regional growing method was used to calibrate
the model. Different pretreatment methods were used to obtain the optimal model for
four quality parameters of rapeseed. The light scattering correction was used to reduce the
difference caused by the light source drift, whereas the first or second derivative (1st Der
or 2nd Der) by the Savitzky–Golay algorithm was employed to eliminate the interference
of baseline and other backgrounds. KPLS was employed to build the models for crude
protein content, oil content, erucic acid content, and glucosinolate content of rapeseed. As
shown in Table 2, the best processing method was MSC and the first derivative for crude
protein content, oil content, erucic acid, and glucosinolates.
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Table 2. The performance of four prediction models for crude protein content, oil content, erucic acid
content, and glucosinolate content.

Parameters Preprocessing KPLS Factors
Training Set Cross-Validation Test Set

R2c RMSEC R2
CV RMSECV R2

P RMSEP

Crude protein

MSC + 1st Der 6 0.9692 0.4500 0.9548 0.5522 0.9461 0.5514
MSC 7 0.9632 0.4975 0.9481 0.5908
SNV 8 0.9687 0.4559 0.9504 0.5736

SNV + 1st Der 6 0.9468 0.5957 0.9219 0.7369

Oil content
MSC + 1st Der 6 0.9653 0.5399 0.9528 0.6285 0.9503 0.5680

MSC 6 0.9511 0.6185 0.9423 0.6812
SNV 6 0.9474 0.6397 0.9393 0.7105

Erucic acid
MSC + 1st Der 9 0.9774 2.5018 0.9603 3.2581 0.9572 2.8113
SNV + 1st Der 7 0.9610 3.3473 0.9423 4.1374
OSC + 1st Der 6 0.9362 4.2488 0.9134 5.0265

Glucosinolate

MSC + 1st Der 8 0.9451 9.5087 0.9182 11.7602 0.9335 10.3209
MSC + 2nd Der 7 0.9380 10.5956 0.8931 13.8567
SNV + 1st Der 6 0.9194 11.6972 0.8995 13.0994
SNV + 2nd Der 7 0.9461 9.4447 0.9044 12.6364

As shown in Figure 4, the prediction model for crude protein content was built and ob-
tained acceptable results (R2c = 0.9692, RMSEC = 0.4500%, R2cv = 0.9548, RMSECV = 0.5522%),
whereas the prediction models for oil content, erucic acid content, and glucosinolate
content also showed satisfactory results. R2c = 0.9653, RMSEC = 0.5399%, R2cv = 0.9528,
RMSECV = 0.6285% for fat, R2c = 0.9774, RMSEC = 2.5018%, R2cv = 0.9603, RMSECV = 3.2581%
for erucic acid, and R2c = 0.9451, RMSEC = 9.5087 µmol/g, R2cv = 0.9182, and RMSECV =
11.7602 µmol/g for glucosinolates.
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3.3.2. Validation of Calibration Models

The KPLS calibration models of crude protein content, oil content, erucic acid content,
and glucosinolate content were built in Section 3.3.1. Then, these calibration models were
used to estimate the crude protein content, oil content, erucic acid content, and glucosinolate
content at each NIR hyperspectral image. A total of 30 independent samples were used to
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evaluate these models, and the results were presented in Table 2. The RMSEPs of the crude
protein content, oil content, erucic acid content, and glucosinolate content were 0.5514%,
0.5680%, 2.8113%, and 10.3209 µmol/g, respectively. The R2

p of proteins, fat, erucic acid
and glucosinolate were 0.9461, 0.9503, 0.9572, and 0.9335, respectively.

3.4. Discussion

In order to eliminate the negative effects of sample color and particle size, some
measures were used to collect the hyperspectral image. These measures included (a)
the region growth algorithm used to select images and remove abnormal color points
to improve applicability; (b) sample surface color, type and distribution determined the
directions of reflected light, the four lamps were mounted on one side of the camera at a 45◦

angle with respect to the vertical plane to illuminate the sample, which should be warmed
up for 30 min when the light source was stable; (c) the black box was used to reduce the
light interference when collecting the samples; (d) the moving platform was at a uniform
speed of 10 mm/s and without vibration; and (e) average spectrum was used to reduce the
negative effects of sample color and particle size.

4. Conclusions

In this study, the crude protein content, oil content, erucic acid content, and glucosino-
late content of rapeseed were determined using NIR-HSI. The regional growth algorithm
was used for selecting the ROI. Furthermore, the best processing method was MSC com-
bined with the first derivative for crude protein content, oil content, erucic acid content,
and glucosinolate content. KPLS was used for the model establishment. The results indi-
cated that RMSEPs were 0.5514%, 0.5680%, 2.8113%, and 10.3209 µmol/g and R2

p were
0.9461, 0.9503, 0.9572, and 0.9335 for the crude protein, oil content, erucic acid content and
glucosinolate content in rapeseed, respectively, which revealed great potential for detecting
four quality parameters of rapeseed using NIR-HSI. Therefore, this method can provide
technical support for guaranteeing rapeseed quality and safety.
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