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Abstract: Humanoid and collaborative robots find their application in numerous sectors, such as
automotive, electrical and mechanical engineering, not excluding the field of bioengineering. They
replace repetitive and often monotonous human activity. As the trend nowadays is for continuous
optimization of production processes, their advantage is easy relocation and operative application
to new tasks, which allows the automation of practically all manual work. A common feature of
manipulators is the control of the positioning of the actuators, primarily by adjusting the parameters
of the drive units. Feedback is often implemented through various sensors that provide real-time
information. However, most of the sensors in use do not provide information that would allow
obtaining data on the history of the operating load in order to assess the further safe and reliable
operation of the mechanical parts. This paper presents a low-cost torque sensor that was proposed
by modifying the design of an existing part. The torque sensor was developed on the principle of
strain gauge measurement. The results of strain–stress analysis obtained by numerical modelling
were experimentally validated under static and dynamic loading. Practical application is mainly the
development and long-term testing of prototypes of various types of manipulators and collaborative
robots, where high accuracy and repeatability of positioning are essential.

Keywords: torque sensor; collaborative robot; operation monitoring; strain gauge method

1. Introduction

A collaborative robot, also known as a cobot, is an industrial robot that can work safely
alongside humans in a common workspace. In contrast, autonomous robots are fixed and
set up to perform a single task repeatedly. Continuous developments in mobile technology,
artificial intelligence, machine vision, and touch technology allow small, lower-powered
robots to sense their surroundings and safely perform multiple tasks close to humans.
Cobots performing production-related tasks, including assembly, material handling, ma-
chine operation, and product quality control, are programmed to protect the safety of
their human co-workers. The beginnings of the implementation of industrial robots and
manipulators in technological processes are associated with the 1980s [1,2]. Since then, they
have undergone a long evolution not only in terms of design but also in terms of control.
Cobots operate quickly and reliably, so their application is now commonplace. They are
controlled by pre-built rigid codes, but in recent years, the emphasis has been placed on
multimodal yet symbiotic methods of communication and control. These methods include
voice processing, gesture recognition, haptic interaction, etc. Wang et al. [3] provide an
overview of symbiotic assemblies based on human–robot collaboration and indicates future
research trends.
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The manipulator structure is subjected to the action of gravitational forces, caused
by the self-weight of the manipulator and the manipulated object, and dynamic forces,
generated during the acceleration and deceleration of the motion units. Online monitoring
of the magnitudes of these forces helps design actuators appropriately and is also crucial
in constructing custom kinematic structures. It is essential to consider not only providing
the required strength but also sufficient stiffness due to the high demands on positioning
accuracy. These are mainly for manipulators with a large load capacity or with extensive ac-
cessibility of the links [4]. In practice, various sensors are used to detect the transmitted load
and to accurately adjust the position of the individual parts of the manipulator link. The
precise positioning of the robot links is controlled by adjusting the power of the actuators.
The driving effect is transmitted between the individual members using connecting parts,
enabling the transmission of the force flow. In manufacturing, the actuators are primarily
subject to smooth starting and braking requirements, high positioning accuracy, sufficient
positional rigidity, minimum weight, minimum size, and suitable spatial arrangement.
These requirements aim to ensure a steady, smooth, and frictionless handling and working
technological operation of the manipulator. Due to the high inertial forces and speeds, low
mass and small dimensions are required [5]. A common feature in robot development is
the kinematics design phase. It is widely known that due to manufacturing and assembly
tolerances, the actual kinematic parameters of a robot deviate from their nominal values,
which are referred to as kinematic errors. Guanglong et al., in [6], present an online robot
self-calibration method based on an inertial measurement unit (IMU) and a position sensor.
In this method, the position marker and the IMU need to be firmly attached to the robot
tool, which allows the position of the manipulator to be obtained from the position sensor
and the orientation from the IMU in real-time. They proposed an efficient approach that
uses Kalman filters (KFs) to estimate the manipulator position and orientation. The use of
these position (orientation and location) estimation methods will lead to an increase in the
reliability and accuracy of the position measurement. Compared to existing self-calibration
methods, the most significant advantage of this method is that it does not need any com-
plex steps, such as camera calibration, corner detection, and laser tracking, which makes
the proposed robot calibration procedure more autonomous in a dynamic manufacturing
environment. Moreover, a reduction in complex steps leads to an increase in calibration
accuracy. Like most machines and devices, collaborative robotics has limitations, e.g., to
achieve the required safety when working by humans, and there are limitations on the load
capacity and accessibility of the arms, so they are not suitable for heavy-duty operations.
In [7], an overview of the potential uses of collaborative robots in various applications is de-
scribed. It discusses the sensor devices useful for human detection and activity recognition
in industrial environments. The analysis of cobot motion with respect to human proximity
has also been addressed by other authors [8,9]. Collaborative robots are relevant in mixed
manufacturing, where small series of highly individualized products are produced. They
are ideal for companies that need to automate sub-processes parallel with human work
and require agility and flexibility in automating different processes [10,11].

When designing new devices (prototypes), it is essential to verify the theoretical as-
sumptions. A mathematical model of a real physical system is only as good as its ability
to predict what experiments show. In order to have a good model, both its structure, i.e.,
taking into account all relevant dynamics, and its parameters must be correct. Some model
parameters, such as the masses and lengths of the robot segments, can be measured. In
contrast, others, such as the temperature-dependent dry and viscous friction, the moments
of inertia, or the position of the centre of mass of the segments, are almost always unknown.
Kouritem et al. [12] described a multi-objective design mechanism to minimize the initial
and operational costs of industrial robotic links. They investigated the influence of material
type and physical dimensions of the robotic link to withstand high loads at critical locations
across different frequencies. Based on vibration analysis using FEM, they proposed a
design to avoid robot failure at or close to the resonance frequency. Kovincic et al. [13]
investigated the dynamical parameters of a universal robot in two ways, namely, using
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Moore–Penrose pseudo-inversion and optimization. Numerical modelling methods, such
as the finite element method (FEM), are most commonly used for validation. However,
the real operating conditions are sometimes different as they depend not only on the ideal
shape of the part but also on other influences such as assembly inaccuracy and manufactur-
ing inaccuracy. These influences can be analysed primarily by using experimental methods.
However, there are also many questions here as well, such as what method is appropriate
for obtaining a given parameter [14–16]. Furthermore, applying an experimental method
often depends on the feasibility of the experiment itself, the operating range of the measur-
ing instrument and the type of measurement (static/dynamic) [6,17]. Schäffer et al. [18]
describe a new generation of torque-controlled lightweight robots. In order to operate in
unstructured environments and interact with humans, these robots have design features
and control/software functions that differentiate them from conventional robots, such as a
1:1 load-to-weight ratio, torque sensing at the joints, active vibration damping and sensitive
collision detection, as well as compliant control at the joint and Cartesian plane level.
Planning and control robustness with respect to environmental changes is crucial due to the
environment’s partially unknown properties. The paper presents a methodology for how
joint torque sensing (as a crucial property of the robot) is subsequently exploited to achieve
the above-mentioned performance, safety, and robustness properties. Hirzinger et al. [19]
discussed the possibilities of torque control in space robotics. It involved the development
of torque-controlled lightweight robots using all simulation and computational technolo-
gies available to approach the technical limits. With 13 active joints integrated into the
hand, it was possible to verify strong force grips like soft fingertip grips. A special adapter
was designed so that only 12 wires leading from the hand were conducted inside the hollow
shafts of the robotic joints. The developed robot was the basis for developing the DLR
space robot.

Robotics is also one of the fields where strain gauge sensors are used for online
monitoring of forces and torques. Often, this involves not only the use of commercial
sensors but also various innovative modifications to selected parts of the manipulators.
Billeschou et al. [19] used a custom three-axis sensor to measure torque and forces in the
leg of a walking robot. They achieved a maximum deviation of ±2% higher than other
commercial three-axis strain gauge sensors. However, the developed sensor’s deviation
can be considered a compromise when comparing its mass, dimensions and, especially,
manufacturing cost. Ubeda et al. [20] dealt with developing an ultra-low-cost torque sensor
for a measurement range of 1 Nm, 5 Nm and 20 Nm. They showed different approaches to
designing sensor geometry using numerical modelling by finite element method. Based on
the results obtained, real sensors were manufactured from aluminium 7075-T6 material. The
experimental measurement results were in good agreement with the numerical simulations.

This paper presents the design and implementation of a low-cost torque sensor as
a part of a prototype manipulator designed for manipulation with a load of 10 kg. As a
standard practice, commercially available sensors are used for monitoring various parame-
ters, such as acceleration, displacement and the magnitude of a moment. Their dimensions,
measuring range and location often must be considered at the initial design stage. The
vibration of the manipulator’s links in terms of the precision of the exact positioning of
the actuators must also be considered, as this directly affects the accuracy and quality of
production. In addition, from a mechanical point of view, vibration can be considered a
cyclic loading that, in some cases, can cause a reduction in the lifetime of a seemingly minor
component in terms of fatigue, which can subsequently cause more significant damage. It
may not be interesting for short-term operations, but manipulators are often designed as
part of automated systems for long-term use. In such a case, operating parameter diagnos-
tics participate essentially in predicting the lifetime of machines and manipulators. The
aim of the design modification of the load-bearing element proposed by the authors is the
possibility of immediate identification of the magnitude and orientation of the torque by
using the strain gauges applied directly on the mechanical part of the manipulator. The
advantage of the presented design over other authors’ designs is that it does not require
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structural interventions in other mechanical parts of the manipulator. The presented results
confirm the suitability of the proposed methodology and its practical use not only for
testing prototypes but also for long-term diagnostics of operating parameters of various
types of manipulators or collaborative robots. The more information we have, the sooner
we can assess the influence of the operating parameters not only on the lifetime of the
components but also on the overall safe and reliable operation of the manipulator. This is,
of course, not only associated with financial savings but more importantly, the knowledge
gained can significantly help designers and developers further develop machines and
equipment or confirm their correct designs and procedures.

2. Materials and Methods

The aim of the proposed methodology of experimental measurement using strain
gauge method is online monitoring of the prototype manipulator under operating load,
which would allow not only validation of numerical calculations but also verification of
repeatability of processes, assessment of the influence of the number of load cycles on the
stress state at critical nodes. For the experimental validation of the methodology, a flange
was chosen, which is one of the load-bearing parts of the pivot joint transmitting the torque
from the actuators (Figure 1a, white circle). Figure 1b shows the original structural design
of the flange, and Figure 1c shows the flange with the proposed structural modifications.
The proposed modification increased the stress levels on the outer surface of the flange to a
measurable level and, at the same time, provided the required stiffness.
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Figure 1. Prototype of the manipulator with an indication of the place to be analysed. (a) General
view; (b) original shape of the flange; (c) flange with design modification as part of the pivot joint.

The determination of the torque using strain gauge method is directly proportional to
the measured value of the strain in the elastic deformation region. However, the implemen-
tation of the experimental measurement requires the assurance of several requirements.
One of the essential ones is the selection of a suitable measurement location, where it
is necessary to take into account the dimensions of the strain gauges, their wiring, the
transmission of the measured signal to the measuring apparatus and, above all, to ensure
sufficient measurement sensitivity in terms of correct evaluation of the measured data. The
location of the strain gauges was chosen on the outer surface of the flange (see Figure 1c,
white arrow). An initial stress–strain analysis was carried out using the finite element
method. As mentioned in the introduction, many researchers have developed their custom
sensors, either force or torque, using numerical modelling. However, these are often new
mechanical parts that need to be embedded between other mechanical parts of the manipu-
lator [21]. In this paper, the authors describe a procedure where a low-cost torque sensor
is obtained by designing a modification to an existing part of the manipulator, namely, a
flange. For the original design of the flange (Figure 1b), low-stress levels were determined
on the external circumference of the flange, which, on the one hand, can be considered
satisfactory in terms of stiffness; on the other hand, the results obtained experimentally
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would be challenging to analyse in this case (low sensitivity/significant measurement
error). For this reason, structural modification of the flange was proposed so that the
stiffness would meet the required parameters, and at the same time, the stress levels would
be increased at pre-selected locations to the required level in terms of the applicability of
the strain gauge measurement (Figure 1c). The last step was the experimental validation of
the proposed methodology on physical models.

2.1. Stress/Strain Analysis of the Load-Bearing Manipulator Link Element

Numerical stress/strain analysis was performed for the original and modified shape
of the load-bearing manipulator element (flange) used to transfer the force flow (driving
effect) between the individual link members. The flange material is ENAW 5054 with a
yield stress of 115 MPa, an ultimate tensile strength of 250 MPa and a shear modulus of
G = 26,900 MPa. The required torque range under operating load is from 28 Nm to 200 Nm.
The determination of the maximum stresses was carried out under static loading in the
linear deformation region. Based on the values of the equivalent von Mises stresses, σMises,
the values of the maximum shear stress, τ, can be determined for the components subjected
to torsion according to the relation [22]:

τ =
σMises
√

3
(1)

Using the following relationship:

τ = 2ε45·G (2)

where τ is the shear stress, ε45 is the principal strain and G is the shear modulus. Value
of the strain determined analytically will be compared with the values obtained by strain
gauge method.

2.2. Experimental Measurement

The experimental measurement was divided into two parts. In the first one, static
loads were considered to verify the results obtained by numerical modelling using the
finite element method. In the second part, the dynamic effects that can occur when the
individual links of the manipulator accelerate or decelerate, or as a result of the vibration
of the transferred object, were investigated.

Part one: The strain gauge method was chosen for the experimental measurement.
In order to consider the measured values as relevant and able to validate the results
obtained by numerical modelling, it was necessary to design a loading mechanism to allow
calibration measurements to be carried out. Figure 2 shows a test stand where the loading
torque was induced by force acting on a known lever arm. The magnitude of the force was
registered by a calibrated RSCC force sensor (HBM, Darmstadt, Germany). Radial bearings
were used to eliminate the bending effect. A highly dynamic universal amplifier Quantum
MX410 combined with the evaluation software CatmanEasy 3.5.1.48 (HBM, Darmstadt,
Germany) was used to measure the analysed data. The available sampling frequency range
is from 1 Hz to 19,200 Hz; thus, it is also suitable for dynamic measurements.

The purpose of the experimental measurements was to verify the suitability of the
flange design modification to increase the sensitivity of the measured data while ensuring
the required stiffness. For the values of the strains, εa, registered by the strain gauge
apparatus when the strain gauges are connected to the half-bridge, the following applies:
εa = 2ε45. Based on the evaluation of the increments in the measured values from the
operating load, it can be concluded that the strain/stress states correspond to the results of
the numerical modelling.
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Part two: The second part of the experimental measurements was focused on the case
when the manipulator link may oscillate when handling the load. The above case was
simulated by the vibration of a beam with a load attached to a rigid arm, as shown in
Figure 3. Since a Quantum MX410 also allows the connection of acceleration sensors, the
authors also carried out measurements using two uniaxial accelerometers, type Bruel &
Kjaer 4507B. The accelerometers were installed on the beam at location A1 and on the flange
at location A2, as shown in Figure 3. The measurements aimed to compare the amplitude
spectra obtained from the samples recorded by the accelerometers and strain gauges.
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The experimental measurements show that the proposed methodology using the strain
gauge method is so sensitive that even at low amplitudes of the measured strains and with
a suitable sampling frequency, it allows estimating the natural frequencies of the assembled
mechanical system, taking into account its real couplings. Measurements carried out on the
flange already under laboratory conditions confirmed that they take into account not only
manufacturing and assembly inaccuracies but also the accuracy of applying strain gauge
sensors at the selected location.

3. Results
3.1. Numerical Analysis Using FEM

Several design modifications were analysed by numerical modelling using the finite
element method in terms of the shape of the hole, its size and the number of holes. In the
present paper, the most advantageous variant of the design modification of the existing
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component is presented, which decreased the overall mass of the manipulator and did not
require any design modifications to other components.

When defining the boundary conditions, it was taken into account that the considered
flange is loaded only by torque. SolidWorks 2018 software was used for the numerical
analysis. The finite element model without structural modifications was composed of
16,674 nodes and 8311 volume elements with quadratic approximation. The finite element
model with structural modifications was composed of 260,099 nodes and 157,783 volume
elements with quadratic approximation.

Figures 4 and 5 show the equivalent (von Mises) stress field and the displacement field
for the original and modified shape of the flange under consideration at a maximum load
of 200 Nm. From the figures, it is clear that the above design modification increased the
stress levels around the concentrators, i.e., in the areas between the oval holes chosen as
the application locations of the strain gauge sensors.
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As already mentioned, the presented methodology is based on comparing the principal
strains registered by the strain gauge at the location of its application. In Figure 6, for
illustration, the values of the principal strains at a maximum torque load of 200 Nm are
presented. At the location of the applied strain gauge, the principal strains were numerically
computed as ε1 = 446 µε and ε3 = −452 µε.
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Table 1 shows the results of the above numerical FEA corresponding to the minimum
(28 Nm) and maximum (200 Nm) operational loads of the flange with structural modification.

Table 1. Values of equivalent and shear stresses, strains and maximum total displacements for the
flange under consideration at the minimum and maximum operating loads.

Torque
(Nm)

σeqv,max *
(MPa)

σeqv,SG **
(MPa)

τSG ***
(MPa)

2ε45
(µε)

Uresmax
(mm)

28 7.02 6.12 3.51 127 0.003
200 49.98 43.36 25.03 898 0.024

* σeqv,max is the maximum value of the equivalent (von Mises) stress at the edge of the hole; ** σeqv,SG is the value
of equivalent (von Mises) stress read in the strain gauge application area; *** τSG is the value of shear stress read
in the strain gauge application area.

Figure 7a shows the equivalent (von Mises) stress field obtained at the location of the
applied strain gauge. It is obvious that the values of the equivalent stresses (about 43 MPa)
can be considered constant in the area of the strain gauge measuring grids.
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The following section presents the procedure for validating numerical modelling
results by experimental measurements using the strain gauge method.
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3.2. Experimental Measurement

The strain gauges’ dimensions were considered in the design of the modified flange
shape. Strain gauges with two measuring grids are most commonly used to measure
torsionally stressed members. Four strain gauges XY41/3-120 (HBM, Darmstadt, Germany)
were used (Figure 7b), spaced evenly around the circumference of the analysed flange. The
half-bridge was used for wiring the measuring grids to exclude tension and bending.

3.2.1. STAGE 1 Verification of Measurement Repeatability—Static Measurement

The first step was a calibration measurement under static loading to verify the correct
functionality of the applied strain gauges. The torque was induced by force applied on the
rigid arm at a perpendicular distance of 500 mm from the flange axis (see Figure 2). The
force sensor registered the magnitude of the loading force. The sampling frequency was set
to 200 Hz.

Figure 8 shows an example of the time records of the strains registered by four strain
gauges. The flange was loaded in two steps with torques of 5 Nm and 10 Nm and then
unloaded. The above procedure was repeated five times within one measurement. The
aim was to determine the sensitivity of the measurement at low load levels. It should be
noted that the considered flange is designed for a minimum operating torque of 28 Nm. In
Figure 9, the time records of the strains over the entire working range, i.e., up to a torque
value of 200 Nm, are documented.
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Table 2. Mean values and standard deviations of the strains registered separately for each of the
five loading cycles.

Torque
(Nm)

Strain Measured in the Locations of Applied Strain Gauges

SG1 (µε) SG2 (µε)

5 −22.8
± 0.2

−22.9
± 0.3

−23.0
± 0.2

−23.1
± 0.2

−23.2
± 0.2

−23.4
± 0.2

−23.5
± 0.2

−23.5
± 0.2

−23.6
± 0.2

−23.6
± 0.2

10 −45.2
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−45.3
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SG3 (µε) SG4 (µε)

5 −23.5
± 0.2

−23.4
± 0.2

−23.1
± 0.2

−22.9
± 0.2

−22.7
± 0.2

−23.8
± 0.2

−23.9
± 0.2

−23.8
± 0.2

−23.8
± 0.2

−23.8
± 0.2

10 −46.8
± 0.2

−46.6
± 0.2

−46.3
± 0.2

−46.2
± 0.2

−46.0
± 0.2

−47.2
± 0.2

−47.2
± 0.2

−47.1
± 0.2

−47.1
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−47.2
± 0.2

200 −906.7
± 4.0

−910.0
± 4.1

−909.4
± 4.1

−909.7
± 4.1

−908.7
± 4.3

−919.6
± 3.8

−921.5
± 3.6

−920.4
± 4.0

−921.6
± 3.1

−921.7
± 3.1

Table 2 shows that the measured values achieved excellent agreement at low and also
high load levels. According to the HBM manufacturer (Germany), with a measured value
of less than 1500, the measurement error per million cycles is less than 10 [23]. For this
reason, the measurement error under cyclic loading, even at the maximum load (200 Nm),
will not exceed 1%.

Table 3 compares the values of shear stresses obtained by numerical modelling and
experimental measurements using Relations (1) and (2) at two load levels. The measured
values are averaged from five measurements for each of the four strain gauges (see Table 2).

Table 3. Values of shear stresses obtained by numerical modelling and experimental measurements.

Torque
(Nm)

τ
(MPa)

FEM SG1 SG2 SG3 SG4

10 1.25 1.22 1.25 1.25 1.27
200 25.03 24.39 24.65 24.45 24.77
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3.2.2. STAGE 2 Dynamic Measurement

As a Quantum MX410 is compatible with various measurement sensors, two ac-
celerometers were added to the measurement chain as part of the second stage. The aim
was to assess the vibrations transmitted to the flange caused by the vibration of the beam
attached to the rigid arm and to verify the possibilities of using the applied strain gauges
in the analysis of the manipulator vibration. A first uniaxial acceleration sensor type 4507B
(Bruel & Kjaer) was installed on the flange at location A2, and a second uniaxial sensor
type 4507B was placed on the beam at location A1 (see Figure 3).

The measurement of the free vibration of the beam was carried out first. In Figure 10a,b,
the time records of the strains and accelerations during the free vibration of the beam
attached to the rigid arm are documented. The measurement was repeated three times.
Figure 10c,d show the amplitude spectra corresponding to the first vibration cycle depicted
in Figure 10a,b.
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(a) 

Figure 10. Free vibration of the beam attached to the rigid arm. (a) Time record of measured
strains; (b) time record of accelerations; (c) amplitude spectrum of strains; (d) amplitude spectrum
of accelerations.

From Figure 10c,d, it is obvious that both strain gauges and accelerometers identified
the same values of the natural frequencies of the analysed mechanical system.

The measurement of the forced vibration of the beam at a known frequency using an
MXG 9802 signal generator was carried out as the second one. Three regimes were simu-
lated: forced vibration at 5 Hz (Figure 11 left) and 10 Hz (Figure 11 right) and measurements
at varying excitation frequencies (Figure 12). For the evaluations of amplitude spectra in
the first two regimes, the time intervals between 11–14.5 s (for 5 Hz) and 15–17.5 s (for
10 Hz) were chosen. The amplitude spectrum of the third regime was obtained using all of
the samples registered during excitation.
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Figure 11. Forced vibrations at 5 Hz (left) and 10 Hz (right). (a) Time record of strains registered by
strain gauges; (b) time record of accelerations registered by accelerometers; (c) amplitude spectrum
of strains; (d) amplitude spectrum of accelerations.
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4. Discussion

The present methodology investigated the innovative use of the strain gauge method
in combination with a structural modification of a manipulator link load-bearing element.
The advantage of the proposed low-cost torque sensor using the strain gauge method
is the possibility to register and evaluate the dynamic effects (vibrations) of the whole
mechanical system during real operating conditions as well as their influence on the stresses
in selected structural elements in case of setting a higher sampling frequency. Based on the
deformation and stress analysis carried out in real operating regimes on a physical model, it
is possible to verify the results obtained by numerical modelling on computational models
and, thus, to verify the correctness of the boundary conditions used. The advantage of
the presented methodology is the possibility to analyse the stress states depending on the
parameter settings of the drive units. The force effects acting on the manipulator link can
also be measured when it is braked.

Based on a series of experimental measurements under static and dynamic loading
and the results obtained by numerical modelling, the following can be stated:

• Strain gauge measurements on the modified flange under static loading confirmed
perfect agreement (less than 2%) with the numerical modelling results over the entire
working range (28 Nm to 200 Nm).

• The measurements under dynamic loading were analysed by comparing the amplitude
spectra obtained from time records of the strains and accelerations. The amplitude
spectra documented perfect agreement between strain gauges and accelerometers,
which can be used in practice for vibration analysis. The strain gauge measurements
documented excellent agreement in the frequency domain compared to the accelerom-
eters, even at low strain levels of the order of microstrain units (Figure 11a).

• Strain gauges provide information on the mechanical stress history, which can be used
to investigate the influence of the number of cycling loads on positioning accuracy.
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• The design of a low-cost torque sensor represents a simple solution to measure torque
using a modified flange without intervention in other parts of the manipulator.

The proposed methodology is mainly suitable for testing newly designed (prototype)
manipulators. The use in long-term operation, for which the manipulators are designed
(repeatability of operations), is possible by replacing the flanges with strain gauges as part
of planned maintenance.
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