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Abstract: In this article, we introduce a new mathematical functional whose minimization determines
the quality of the solution for the exemplar-based inpainting-by-patch problem. The new functional
expression includes finite difference terms in a similar fashion to what happens in the theoretical
Sobolev spaces: its use reduces the uncertainty in the choice of the most suitable values for each point
to inpaint. Moreover, we introduce a probabilistic model by which we prove that the usual principal
directions, generally employed for continuous problems, are not enough to achieve consistent
reconstructions in the discrete inpainting asset. Finally, we formalize a new priority index and
new rules for its dynamic update. The quality of the reconstructions, achieved using a reduced
neighborhood size of more than 95% with respect to the current state-of-the-art algorithms based on
the same inpainting approach, further provides the experimental validation of the method.

Keywords: texture synthesis; inpainting by patch; image processing; discrete sobolev spaces

1. Introduction

In the literature, the so called “inpainting problem” consists of filling zones of “missing”
information in an image, i.e., in a two-dimensional discrete set [1].

Focusing on the specific two dimensional image case, to have satisfactory results, the
inpainted area has to be not “eye-distinguishable” from the rest of the given image by a
human observer. This subjective way to evaluate the achieved results does not take into
account the ground truth, in all of those cases when the to-be-inpainted areas are created
deleting zones of the complete starting image (Even if in practical cases ground truth
images are never available, it is possible to create specific tests where the area to reconstruct
is expected to be exactly the part that has been deleted from the pristine image. This kind
of test is useful, e.g., to verify the correct behavior of the reconstruction algorithms).

To tackle the inpainting problem different solutions have been proposed. On one hand,
partial differential equations (PDE)-based approaches have been used. These methods
involve the introduction of derivatives in the mathematical models (or their equivalent
finite differences in the discrete case), working in the so called Sobolev spaces [2–7], i.e., in
mathematical spaces where the norm of the Lebesgue spaces is extended to the derivatives
of the function itself. PDE-based approaches achieve good results when the damaged
regions are small in size; otherwise, their reconstructions appear blurred. Moreover, these
methods usually need a considerable execution time [8–11].

On the other hand, an interesting promising technique was introduced by [12,13]:
for each missing point in the to-be-inpainted area, a suitable neighborhood of the point
is scrolled all over the known image data and the correct value is chosen maximizing a
similarity measure between the neighborhood and the known signal (see, e.g., [12–20]).
The quality of the reconstructions by this method is conditioned by the choice of an

Appl. Sci. 2023, 13, 9405. https://doi.org/10.3390/app13169405 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169405
https://doi.org/10.3390/app13169405
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6599-3232
https://orcid.org/0000-0002-5439-3626
https://doi.org/10.3390/app13169405
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169405?type=check_update&version=2


Appl. Sci. 2023, 13, 9405 2 of 26

appropriate similarity measure. Furthermore, despite its conceptual simplicity, this method
provides very good results in a relatively affordable execution time [21–24]. The inpainting
procedures based on this idea are referred as “inpainting-by-patch” or exemplar-based
techniques, see Figure 1.

Figure 1. An example of a damaged image (left) restored (right) using the inpaint-by-patch approach
(central scheme). The missing points in Ω (in black) are sequantially scrolled to individuate the best
correspondence in the undamaged areas of the given image (TS in the scheme, in white). The values
found are then used to fill the missing points.

In [15], a mathematical formalization describing the behavior of the algorithm intro-
duced in [12,13] has been provided through a functional, named “Inpainting Energy” (EI).
The logic behind EI is to quantify the difference between a neighborhood of the missing
points (reconstructed one by one) and the known part of the signal itself. Another even
earlier work (see [25]), following in some sense a similar approach, used the correlation
function in place of EI : here the problem was the rigid registration of two similar im-
ages and the goal was the maximization of their similarity. However, we will show in
Section 3 that the “deterministic” EI hides a strong probabilistic character: it is equivalent
to finding, in the given image, which point has the highest probability to match the chosen
neighborhood, considering a content-driven, patch-based similarity.

Both PDE-based methods and exemplar-based ones have the common goal, hidden by
distinct mathematical formulations, to reduce the uncertainty in the choice of the missing
points. In the first case, boundary conditions together with constraints on the structure
(From here on, when we use the word structure, we will refer to the shape) of the three
dimensional structure of the image function (in effect a surface immersed in a 3D space)
and not to the geometry of the isophotes, as is usual in the image inpainting contest. of the
unknown are needed (e.g., in [3,26], the discrete Laplacian is employed as a smoothness
estimator); in the second case, the choice is driven by the best match among the available
patches in the dataset, usually represented by the given part of the image (in the following
sections we will refer to it as to the training set TS, borrowing this expression from the
neural networks literature).

Despite the goodness of the achieved results, inpainting-by-patch methods mask a
conceptual weakness due to neglecting the under-the-surface structural information hidden
in TS. This structural information is connected with the concept of finite differences [27–29].
For this reason, introducing a similarity metric that cares about these structural aspects
gives support to a better understanding of the logic behind the inpainting process.

Sobolev spaces [30], in their discrete versions, have been used in the image processing
field with different formalization and aims (see, e.g., [31,32]).

We employ, in the context of image inpainting, the definition of Sobolev spaces to
formulate a new, neighborhood dependent functional, described in Section 2: in our method
we stay true to the patch-based idea, in a way that is quite different from classical PDE
methods, in which higher order derivatives are employed for regularization reasons. To the
best of our knowledge, this is the first time that a functional having this form is employed
for the solution of the inpainting problem, such that it represents a novelty in the field of
the inpainting-by.patch techniques.
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More theoretically, in the seminal paper [29], a comparable approach for noise removal
has been introduced in BV spaces, giving origin to a vast literature. Differently from [29],
in our case, the finite differences are used as a similarity metric, as in [33] for textural
classification purposes. An attempt in this direction has been described in [34], where
a quite complete and general variational framework, applicable to super resolution and
denoising problems, has been proposed. Like in [34], our results can be extended to other
tasks, as image completion, texture synthesis, and image registration (only to cite some),
thus providing general operational principles.

Another open debate for the solution of the inpainting problem, using the inpainting-
by-patch methods, is focused on the scanning order of the missing points. The role of
the scanning order is to inpaint first those points where the uncertainty is lower with
respect to the others. The pivotal work exploiting the importance of the scanning order is
represented by [35], in which a priority index has been introduced. The proposed procedure
gave considerable results such that it is still commonly taken as reference for qualitative
evaluations. For this reason, in what follows, we have compared our reconstructions to
the ones achieved using [35]. Starting from [35], further attempts to improve the final
quality have been performed by different authors (see, e.g., [36]), basing their works mostly
on numerical considerations. Differently from them, we reformulate a completely new
priority index, never used before in the literature, justifying its introduction by uncertainty
reduction motivations.

An important scenario, for the inpainting problem, is represented by the fast and
effective neural networks (NN) solutions. Recently, many inpainting methods have been
developed based on deep learning techniques (see, e.g., [37–39]). The advantages of NN
approaches reside in a fast computational time (after the time consuming initial training)
with a high rate of success. Given these premises, the attempt to overpass the NN results
appears an insuperable task. The only criticism one can make of NN is their well known
lack of complete theoretical foundations, such that their design is essentially nowadays still
driven by heuristics. An updated survey focused on NNs can be found in [40].

On one hand, the aim of our work is to investigate some hidden aspects of the
deterministic inpainting procedure. On the other hand, this may guide the development of
fast machine learning algorithms that have solid and understandable theory and provide
benchmarks for comparison. Finally, we propose that some aspects considered in this work
could be included in the formulation of new NN frameworks.

In what follows, the new functional formalization is given in Section 2, probabilistic
considerations about the neighborhood are given in Section 3, the concept of causality
is exploited in Section 4, and the importance of the uncertainty and scanning order is
investigated in Section 5. The achieved results are discussed in Section 6. In Section 7
we show that, exploiting the knowledge of the relations between neighbor pixels, we can
achieve qualitatively relevant reconstructions also operating a reduction in the training
set TS. Final remarks conclude the paper in Section 8. To improve the readability, in
Appendix A, a list of symbols used and their meanings is provided. Technical numerical
implementation details are described in the Appendix A.

2. Functional Formalization

Working with a W-bits coded image function I, of size M× N ( M rows, N columns),
containing the area Ω to be inpainted (see Figure 2), we consider a function χ : [1, 2L+ 1]2 ⊂
N2 → [0, 2W − 1] (L ∈ N determines the size of the square (Without loss of generality, the
supp χ is assumed to be square. In the experimental part we will use also non-square-
shaped neighborhoods.) supp χ), that, centered in the generic point (i, j) of I, is defined as

χi,j := χ(i + a, j + b) = I(i + a, j + b)

with a = {−L,−L + 1, . . . , L− 1, L}, b = {−L,−L + 1, . . . , L− 1, L}, i ∈ [L + 1, M− L] and
j ∈ [L + 1, N − L] (We assume the first element of a matrix to be at coordinates (1,1)).
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We will refer to supp χ in the following as the neighborhood of the point to be in-
painted (see blue square in Figure 2 again). The choice as of a square-shaped support for χ,
with an odd value for its dimensions, simplifies the mathematical notation without loss
of generality (On the contrary, this aspect must be taken into account in the numerical
implementation). We will see in Section 3 how the shape and size of χ (i.e., value of L) is
fundamental for the correct reconstruction of Ω.

We outilne the inpainting task in three main sub problems:

1. Identifying the best content-driven solutions;
2. Identifying the best structure-driven solutions;
3. Inpainting using the best possible value, resulting from the combination of the best

fits individuated in the two previous steps.

Figure 2. On the left the image I contianing the to-be-inpainted area Ω; in the center, the neighborhood
χ in blue, centered in the top-left point to be inpainted; on the right, the red line represents the set TS

of points for which ECT is well defined.

In general, it is possible to define a pointwise distance function between two points of
coordinates (i, j) and (h, m) in I as

d(I(i, j), I(h, m)) := ||I(i, j)− I(h, m)|| , (1)

where || . || is a generic norm. Using a similar approach as the one described in [15], the
best content-driven correspondence for Ω is related to the minimization of the functional

ECT (r, s) := ∑
(i,j)∈Ω

EC((i, j), (r, s)),

where, given a point of coordinates (r, s) ∈ I \Ω, EC((i, j), (r, s)) is defined as

EC((i, j), (r, s)) := ∑
(p,q)∈supp χi,j\(i,j)
(h,m)∈supp χr,s\(r,s)

d(I(p, q), I(h, m)) . (2)

The coordinates (r, s) varies in a suitable subset TS ⊂ I \Ω, such that the above sum
is well defined without the introduction of further boundary conditions (e.g., red zone in
Figure 2). In Equation (1), the || . ||2 norm, originally used in [15], has been replaced by a
generic norm || . ||. We will explicit this norm in the following.

To the light of the previous consideration, the functional ECT represents a sort of
content-related energy: it is the amount of error one commits comparing two patches having
same support, equal to supp χ.

In a fashion similar to the one used to formalize ECT , we introduce a new structure-
driven functional, defined as follows

EST ((r, s), l) := ∑
(i,j)∈Ω

ES((i, j), (r, s, ), l),

where

ES((i, j), (r, s), l) := ∑
Λ

l

∑
k=1

1
Rk

∑
θ∈Θk

d(∆(k)
θ I(p, q), ∆(k)

θ I(h, k)),

Λ =
{

p, q, h, m : (p, q) ∈ supp χi,j \ (i, j), (h, m) ∈ supp χr,s \ (r, s)
}

.
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In the above equation, k is the order of the finite differences ∆(k)
θ I(p, q) and θ is their

orientation, given the set Θk of all the available and valid orientations in the considered dis-
crete set. A direction is considered valid if the calculation of the associated finite difference
∆(k)

θ I(p, q) does not involve the to-be-inpainted point of coordinates (i, j). In the standard
inpaint-by-patch process the value of I in (i, j) is excluded from the calculation of the
pointwise differences: in the same way we excluded it in the finite differences calculation.
In Figure 3 an example of the non-valid directions for the calculation of the finite differences
of order one is given: the directions highlighted by the black arrows, connecting the red
squares with the yellow ones are not valid, being I(i, j) the unknown. The normalization
coefficients are Rk = 8k(#Θk − 1) with #Θk = 8k, where the symbol # denotes the cardinal-
ity of a set. The maximum order of finite differences l is chosen accordingly with the size of
I and of TS.

The finite differences in the direction θ = 0, from order 1 to k, are defined as

∆(1)
0 I(p, q) = I(p, q + 1)− I(p, q);

∆(2)
0 I(p, q) = ∆(1)

0 ∆(1)
0 I(p, q) = I(p, q + 2) + I(p, q)− 2I(p, q + 1);

...

∆(k)
0 I(p, q) = ∆(1)

0 ...∆(1)
0︸ ︷︷ ︸

k times

I(p, q).

Figure 3. Example of not valid directions for k = 1. The red square is the missing point to-be-
inpainted, having coordinates (i, j); the grid represents supp χ (being 3× 3 in size for finite differences
of order one); the arrows, connecting the yellow squares with the red ones, identify the non-valid
directions: being centered in the yellow squares it is not possible to calculate the corresponding finite
difference of order one because the value of the red square is unknown. It follows that, for each point,
7 directions are valid, and they are identified by the lines connecting the center of the white squares
with the center of the red one. Indeed, in this example, Θ1 = {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, 315◦},
#Θ1 = 8, R1 = 56.

We recall that, being in a discrete case, the finite differences have a local (and not
pointwise like the derivatives) character, as evident from the definitions above.

The logic paving the definition of EST is the same of ECT , except that the functional
calculation involves, here, the finite differences for each available direction in the digital
image set. For this reason, similarly to ECT , we interpret the functional EST as representative
of a structure-associated energy, carrying information connected with the structure of the
image content. The reason we employ the word “structure” stands from the fact that
derivatives are representative of the shape, i.e., the “structure” of a function. Knowing
the tangent to a function in each of its points is equivalent to knowing its structure, the
same way the knowledge of an ordinary first order differential equation is effective for the
knowledge of the unknown function, given the initial conditions.

The content-related term considers the pointwise differences only, while the structure-
associated term takes into account of the local variation contribution.

Combining ECT with EST in a new functional ET := ECT + EST , we can control the
contributions related to both the content and the structure in the inpainting process. This
combination represents a novelty in the exemplar-based inpainting-by-patch literature.
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Being EC and ES dimensionally different, the introduction of normalization coefficients βk,
is needed. The expression of ES is, then

ES((i, j), (r, s), l) := ∑
Λ

l

∑
k=1

βk
Rk

∑
θ∈Θk

d(∆(k)
θ I(p, q), ∆(k)

θ I(h, k)),

with βk ∈ R (their values will be calculated in Section 3). If, and only if, χ is causal
(According to the definition of causality in Signal Theory, a filter is defined causal if and
only if the unknown value depends only on the ones given in the past. Strictly speaking,
in the 2D asset, this means that only one single point, for each χ, should be unknown
(but this is never quite the concrete case). In Section 4 we will clarify this point.), then the
minimization of ET gives the best choice for I(i, j),

I(i, j) = I(arg min
(r,s)∈TS

{ET(r, s)}),

where, as before, TS is a suitable set of coordinates such that, now, both ECT and EST are
well defined (For simplicity of notation we use, here, the same symbol TS as in Equation (2),
even if, in general, the two sets could be not necessarily equal.). As we will show in
Section 3, the introduction of EST reduces the uncertainty connected with the choice of the
best possible value in TS, for a missing point in Ω.

Our formulation of ET models the inpainting problem such that we are able to take
into account of the contribution of ES, which has never been presented before in the existing
reference literature (e.g., [35]).

3. Neighborhood

For simplicity of notation, in what follows we do not explicitly indicate the dependency
of the energy from (i, j) and (r, s). The new functional ET = ECT + EST hides a probabilistic
interpretation. To prove this statement, we initially focus on ECT . For each point (i, j) ∈ Ω,
EC represents the sum of the differences, in modulus, in a domain of size supp χi,j, between
Ω and the subset TS ∈ I \Ω: the closer this sum is to zero, the higher the probability is to
find a correct match.

The value of EC is the sum of the d((h, m), (p, q)) contributions, as expressed in
Equation (2). We can normalize each d((h, m), (p, q)) in supp χi,j as follows

dCNorm((h, m), (p, q)) :=
d((h, m), (p, q))

(2W − 1)
∈ [0, 1]

such that we can define

EPC ((h, m), (p, q)) :=

{
dCNorm((h, m), (p, q)) , i f d 6= 0 ,
ε, otherwise

where ε is arbitrarily small and EPC ((h, m), (p, q)) is the probability to have a match in
supp χi,j. Introducing a scanning order of supp χi,j, e.g (without loss of generality) the
raster scanning, we can write

EMC (i, j) := ∏
(p,q)∈supp χi,j\(i,j)
(h,m)∈supp χr,s\(r,s)

[1− EPC ((h, m), (p, q))] . (3)

If EMC (i, j) is close to one (ideally one for each term of the product) the reconstruction
is exact, i.e., without errors of any kind. On the other hand, if EMC (i, j) is close to zero, the
probability to have a correct match is very low.

From Equation (3) two conditions follow:

• a hypothesis of statistical independence is hidden in the formulation;
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• dropping a ot equal to one term in the product (3) is equivalent to drop part of the
information related to the structure of I.

From the previous considerations it follows that the shape and the size of supp χi,j
both determine the quality of the reconstructions. In particular, the second point states that
it is not enough to take into account only the two orthogonal principal directions for the
reconstruction (as it is usually desiderable in practice), because neglecting a point in supp χ
is equivalent to assume to know its value with probability equal to one, i.e., that its value
does not condition the outcome (size and shape of the neighborhood change the value of
the confidence term introduced in [35]).

When the two above conditions, stating an “ideal” case, are not respected, the in-
painting process does not generally perform correctly, the quality of the results depending
on how far from the ideal case the real case is. We stress that supp χ is discriminating
for content as it is for structure, but its shape (not necessarily square) and size are not
sufficient for a correct reconstruction. In fact, if supp χ is made bigger and EMC (i, j) stays
close to one, we have a high probability of having made the correct choice. The other way
around, if EMC (i, j) decreases when supp χ grows, we have individuated a local similarity
that is going to be lost increasing the “field of view” (i.e., the supp χ). From the previous
consideration comes that the correct choice of supp χ depends on the image content.

For what concerns ES, in a similar manner used for EC, it is possible to write

dSNorm(∆
(k)
θ I(p, q), ∆(k)

θ I(h, m)) :=
d(∆(k)

θ I(p, q), ∆(k)
θ I(h, m))

2k(2W − 1)

and

EPS((h, m), (p, q)) :=

{
dSNorm(∆

(k)
θ I(p, q), ∆(k)

θ I(h, m)) , i f d 6= 0,
ε, otherwise

where, again, ε is arbitrarily small and EPS((h, m), (p, q)) is the probability to have a match in
supp χi,j. Reasoning the same way we did for EC, the structural patch matching probability
EMS can be expressed as

EMS(i, j) = ∏
(p,q)∈supp χi,j\(i,j)
(h,m)∈supp χr,s\(r,s)

[1− EPS((h, m), (p, q))] .

Due to the normalization coefficient 2k(2W − 1), the contribution of the finite differences
tends to “refine” the value of the inpainting energy by a factor βk ∝ 1/2k. If we assume
working with a bounded function, the hypothesis is always verified in the applications,
and the values of βk scale exponentially with base 2, as evident from Figure 4. The example
in figure describes an “extreme” case for which the contributions of subsequent finite
differences stay fixed to one. When this does not happen, they tend to decrease as the order
of derivation grows. We put in evidence that the determination of the normalizing factors
makes our method non-parameter-dependent.

The structural information is hidden as in ECT as in EST . This consideration enlightens
a subtle connection between content (ECT ) and structure (EST ), being the structural infor-
mation contained as in the size and shape of supp χ (i.e., in both ECT and EST ), as well as in
the finite differences expressions.

An application example is given in Figure 5 . Once the shape of supp χ has been
chosen, the minimization of ET is equivalent to find the best match between patches: if
supp χ is too small in size, it can occur to find considerably different values associated
with the same ET . In substance, the metric used for the calculation of ET gives origin to
a set SC of equivalence classes, depending on supp χ. The number of elements in each
class decreases as supp χ becomes bigger in size as well as including EST . In Figure 5, the
effect of the introduction of EST on the trend of the trustability C is shown: thanks to it, the
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reduction in uncertainty U = 1− C, given the same supp χ size, is faster. The inclusion of
the term EST decreases U as well as the space of the possible solutions. The role of EST can
be seen as a refinement to discriminate between patches that would otherwise be equally
eligible for the inpainting.

Figure 4. A square wave signal, with values in the range [0, 1], represents the normalized signal
with the highest amount of variation, whose maximum value is equal to 1 (= 20) (first figure on
the left). We assume the values 0 and 1 to be respectively the minimum and the full scale of the
measurement instrument. Performing the calculation of the finite difference of first order (second
figure from the left) the range of variation expands to 2 = 21 and so on, proceeding exponentially
with the differentiation (last two figures on the right, relative to the second and third order finite
differences, respectively).

Figure 5. On the left, the trend of the number NET of patches having the same minimum value for ET

when varying the size (side in pixels) of supp χ; on the right the trustability C (= 1−U, where U is
the uncertainty) in the choice of the available patches when varying supp χ. The blue line is relative
to the use of ECT only, the red line gives reason for the introduction of EST (first order differences
term in red, both first and second order difference terms in yellow). In particular, the closer C is to
one, the better the choice of the value for the reconstruction tends to be; on the contrary, the lower
the number of candidate points is, the better the discrimination between different patches will be. In
the right figure, C (blue line) increases with the size of supp χ while tending to decrease when the
number of available patches in the image becomes too small (right side of the graph on the right).

4. Causality

In signal theory, a system is defined to be causal if and only if the values of its output
depend only on the present and past values of the input [41]. In the inpainting case, we state
that the minimization of ET is meaningful if and only if supp χ guarantees the causality
condition, i.e., if the calculation of ET is performed including only known points. If this
does not happen, the values calculated, let us say in (i, j + 1) in Figure 6, modifies the
previously calculated ones ((i, j) in the same figure), whose number and position both
depend on the size and shape of supp χ.

The inpainting energy ET changes with time (the points of Ω are inpainted sequen-
tially), such that the presence of unknown values for its calculation introduces loops in the
system (feedback), making the minimization effectively not computable. Moreover, we
remark that, in general

min
(r,s)∈TS

∑
(i,j)∈Ω

EC((i, j), (r, s)) 6= ∑
(i,j)∈Ω

min
(r,s)∈TS

EC((i, j), (r, s)) .
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To the best of our knowledge, the previous inequality has been completely ignored by
the existing exemplar-based inpainting-by-patch methods, in which the minimization is
operated tacitly turning it to an equality (see, e.g., [15]). Another novelty of our work is, in
fact, in the inclusion of this aspect of crucial importance in the inpainting dynamic.

Figure 6. The inclusion of unknown points in supp χ, during the minimization of ET , makes its
calculation not effective. In the figure, it is assumed to use a square supp χ, highlighted in yellow
when centered in (i, j), i e., at time t, and highlighted in red when centered in (i, j + 1), i.e., at
time t + 1. In fact, it results min{ET((i, j), t)} 6= min{ET((i, j), t + 1)}, where the min operation is
performed all over the points belonging to the area that is not black.

The procedure described, e.g., in [13], is an example of an algorithm that does not take
into account the causality and, to achieve convergence, sets random initial conditions in Ω.
Even if a convergence is reached, this way of proceeding has two main drawbacks:

• the inpainted result is not always the same, because it depends on the random initial
conditions;

• if in TS the missing area is given, such that we expect to find a perfect match for Ω
(i.e., ET = 0 ∀ (i, j) ∈ Ω), the inpainting procedure does not generally reconstruct it
as expected.

The missing of the causality condition is a source of uncertainty and its respect is
needed to reduce the inpainting error. We take two actions to face the previous problems:

• we consider a variable supp χ (in size and shape);
• we define an appropriate scanning order (priority) that takes into account at the same

time of ET , of the uncertainty connected with the shape of supp χ, and of the isophotes.

All the previous actions have been taken into account in our work, increasing its
novelty character.

To be more specific, the first action is mainly algorithmic and consists in considering, in
the calculation of ET , only known points in Ω and in TS (A suitable binary mask is enough
to numerically implement this condition. Thanks to it, whatever shape for supp χ can be
used and dynamically changed at runtime.). For this reason from now on, to simplify the
notation, and due to the variability of supp χ, we will refer to the size of supp χ to identify
the minimum square size in which supp χ is contained.

For the second action the formalization of a priority index is needed: being it a more
complex procedure, we will discuss it in the following Section 5.

5. Uncertainty and Priority

The inpainting process consists of two different phases: the analysis of the similarity
between patches (to determine the best fit) and the synthesis of the unknown value. Both of
these processes hide sources of uncertainty.

In the analysis phase, the scanning order to inpaint Ω plays a central role for the
correctness of the reconstruction. In this direction, different works have tried to improve
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the confidence term firstly introduced in [35] (see [36,42,43] ). We shortly recall that in [35],
the scanning order P(i, j) (also called priority) has been defined as

P(i, j) = C(i, j) · D(i, j)
α

where (i, j) ∈ Ω, C(i, j) and D(i, j) are, respectively, the confidence term (what we called
trustability before), and the data term: the first one estimates the uncertainty of the neigh-
borhood, the second one considers the direction of intersection between the isophotes and
the boundary ∂Ω of Ω. Briefly,

C(i, j) =

∑
(r,s)∈supp χ∩supp I

C(r, s)

#(supp χi,j)
, D(i, j) =

|∇⊥(i,j) · n(i,j)|
α

(4)

where #(supp χi,j) is the cardinality of the pixels in supp χi,j, ∇⊥(i,j) is the isophote vector
and n(i,j) is the unitary vector orthogonal to ∂Ω. C(i, j) is initially set to one in every point
of I \Ω (see [35] for a complete description). The value of P(i, j), being in the discrete, and
consequently approximated asset, is strictly connected with the methods used to achieve
∇⊥(i,j) and n(i,j), whose calculation usually requires the introduction of a preprocessing stage
by a Gaussian smoothing to reduce noise. Dramatically different reconstructions come out
from different implementations of the same method.

The contributions of C(i, j) and D(i, j) have been usually considered separated, as
respectively explanatory of the uncertainty of the given data and the preferential direction
of propagation of the isophotes [42,43]. Both C(i, j) and D(i, j) belong to the interval [0, 1],
given a suitable normalization coefficient α (e.g., 255 if W=8). Exploiting this property, we
can interpret them as probabilities. More precisely, C(i, j) is the probability to find a match,
given a certain trustable number of neighbor points, while, when D(i, j) is normalized, it
expresses a probability connected with the structure, i.e., the morphology of I around Ω.

The last statement follows from the properties of edges in images. In fact, points
belonging to contours of an object are those points that generally are less numerous than
other points, i.e., that are less probable to be found.

An explanatory example is provided in Figure 7: to inpaint the Kanizsa [44] triangle we
have to set the priority. As an example, we take into account of two plausible configurations
of χ, being supp χ highlighted in light green in Figure 7 and shown in the small squares
on the right (in black the missing areas). It is evident that the number of points, in I \Ω,
compatible with the upper square is lower than the number of points compatible with the
lower one.

Thought in this way, D(i, j) individuates the directions along which there is a reduction
of uncertainty in the choice of the best fit. In fact, the equivalence class to which the
candidate points belong, has (auspicably) the lowest cardinality with respect to the other
ones in SC. The probability to make a mistake, in the choice is, then, reduced even in
presence of multiple candidates. For this reason, we introduce DM(i, j), in place of D(i, j),
defining it as

DM(i, j) := max
θ
{∆(1)

θ I(i, j)} . (5)

Edges are zones where exists a ∆(1)
θ that is higher than other areas of the image. Then,

its maximum individuates the direction of lowest uncertainty.
Two main advantages follow from our new formalization:

• no need to calculate (and approximate) ∇⊥;
• there are not preferential straight directions of propagation, a known drawback of [35].

The reasons we limit the value of DM to the first order of the finite differences in the
definition (5) have numerical and perceptual nature and are explained in the Appendix A.
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Moreover, back to the probabilistic interpretation given to ET in Section 3, its value
can be considered a measure of uncertainty itself: where ET is lower, the uncertainty is
lower the same way. Then, we include the value of ET in the final formalization of our new
priority index:

P∗(i, j) = [C(i, j) + a∗DM(i, j)] · b∗ET(i, j)

where a∗ and b∗ are two normalization coefficients.

Figure 7. On the left, the Kanizsa triangle to inpaint; in the center, the same tringle with Ω highlighted
in black; on the right, two examples of neighborhood to be inpainted in the black areas. It is easy to
verify that the number of possible patches compatible with the top neighborhood is lower than the
number of patches compatible with the down one.

The value of a∗ follows from two considerations: DM is a finite difference subject to the
same normalization reasoning of Section 3, and it has to be normalized by the ratio of valid
points involved in its calculation, i.e., C(i, j). This last consideration has to be extended to
ET too, providing the value of b∗. From these premises follows that, in the case of finite
differences of order one (that we used in practical applications), it results a∗ = C(i, j)/255
and b∗ = C(i, j).

The new P∗ balances between the ”morphological” uncertainty connected with the
shape and size of Ω and its surroundings (i.e., [C(i, j) + a∗DM(i, j)]), and the uncertainty
due to a limited TS (i.e., b∗ET).

To quantitatively support our choice, we inpaint a triangular shape (see Figure 8) the
same way they did in Figure 9 of [35]: in our case, it is possible to see that no “over-shot”
artifacts appear. The completion of the triangle is not as expected, but this is due to the lack
of the right patch in the rest of the known image: no top-pointing corners are available
without rotation.

In Figure 9 the reconstruction by our algorithm of a single straight line shows the
connectivity principle is respected.

Figure 8. On the left, the triangle to be inpainted (Ω in black); on the right, the result of inpainting
using 2L + 1 = 3 and l = 1. No “over-shot” artifacts appear. Moreover, the result is quite symmetric,
even if Ω is not. The expected top-pointing corner is not achieved because it misses in the known
part of the image. The convergence to the stable solution is achieved at the 4th iteration.

Figure 9. On the left the image to inpaint (Ω in black); on the right the inpainted result (2L + 1 = 3,
l = 1). Our algorithm guarantees the connectivity principle, whatever is the size of Ω (result
according with [34]).

Back to P(i, j), another crucial point for its calculation is represented by the esteem of
C(i, j): in Equation (4), the known points in supp χ ∩ supp I are set to one, independently
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from Ω. In probabilistic terms, this hypothesis is equivalent to state that all the given
points in supp χ ∩ supp I have the highest trustability, i.e., their values are certainly correct.
This assumption is true if there is a perfect match between the points to inpaint in Ω
and the available ones in TS, but in the most of the real cases this does not happen. In
fact, generally speaking, ET(i, j) 6= 0 ∀(i, j) ∈ Ω (otherwise the solution of the inpainting
problem would be obvious). Moreover, we remind that a reference image is unavailable for
the quantification of the quality of the reconstructions.

From the previous considerations it follows that ET(i, j) 6= 0 has an effect on C(i, j),
when (i, j) ∈ I \Ω, and this effect has to be propagated to the whole image, i.e., the error
has to be redistributed. This reasoning is licit only because a reference is missing (otherwise
ET(i, j) = 0 ∀(i, j), as noted before): only in this case, in fact, if we look at the image from
the reference system of the missing points in Ω, we can assume the surrounding points
are wrong, viceversa if we look to the problem taking as reference the points in I \Ω. This
considerations determine the need to upload C(i, j) also in I \Ω, given that, by hypotheses,
the value of ET(i, j) is not zero.

In Figure 10 a graphical example is provided.

Figure 10. Description of the updating process: time arrow from left to right, Ω in white. On the
left, at time t0, the small green and red arrows around the point to inpaint (in the center of the red
highlighted square, coordinates (i, j), C(i, j) = 1/2) determine the directions for the updating of the
trustability. On the right, at time t1, the propagation of the new value (corresponding zoommed
numbers on the right): while it is tacitly assumed fair to update the values of C(i, j) in Ω (green
arrows, starting zero value), the same has to be performed also in I \Ω (red arrows, starting value
equal to one). The linearity allows to update C(i, j) individually for each single point and to sum
the results. The Markovian hypothesis limits the radius of influence for the update to the bordering
pixels only.

We can figure C to be as a field (e.g., of force) where all the points are interconnected: a
perturbation occurring somewhere would cause the modification of the entire configuration.
To make this update numerically plausible we postulate two conjectures: we assume

• the system must satisfy the superposition effects principle (linearity);
• the system must be Markovian [45].

Both these conjectures are needed with the uinque scope to make the problem com-
putable. In fact, the first one allows to update C(i, j) in I \Ω summing the effects separately;
the second one limits the radius of influences of the perturbation to the bordering neigh-
borhoods. If the linearity is missing, the computation would not arrive to an end, because
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changing the value of one pixel will influence the minima connected with the other points
in Ω. If the the system is not Markovian, the chainging in the value of a missing point
would propagate all over the other values, producing an infinite loop, as in the case of the
lack of linearity.

To the best of our knowledge, this is the first time that a recalculation of the priority is
performed redistributing the error. In Figure 11 we provide an example of the value of P∗

after the first iteration for the reconstruction given in Figure 12: the priority decreases from
the borders of Ω to the center of it.

Figure 11. On the left: in false colors, the values of P∗ after the first iteration for the reconstruction of
the image shown in Figure 12 (detail). Points in bright yellow have values of P∗ = 1; the other colors
denote values lower than one. On the right the trend of P∗ for the red line highlighted on the left
picture. Image size of 140× 105.

Figure 12. From left to right: original image, image to be inpainted (Ω in white (top) and pink
(down)), reconstruction by [35], reconstruction by Matlab inpaintExemplar function, reconstruction
using our method (2L + 1 = 3, l = 1). Our proposed method exhibits more regularity respect with
the other two algorithms.

Neglecting our proposed updating process brings to visual poor results, as shown in
Figure 13.

Figure 13. On the left, the texture to inpaint (Ω in black). In the center, the inpainting result achieved
if C(i, j) is not updated in I \ Ω (i.e., C(i, j) = 1 ∀(i, j) ∈ I \ Ω, TS = I \ Ω). On the right, the
inpainting result updating the points in I \Ω (2L + 1 = 3, l = 1). The improvement of the result,
when correctly updating C(i, j), is evident.

For what concerns the synthesis phase, a source of uncertainty is due to the norm used
to quantify the patch similarity. In past works it has been stressed how the most appropriate
norm for images is the TV norm, that is, essentially an `1 norm of derivatives [29]. On the
other hand, in [34], results achieved using the `2 norm are evaluated as “smoother” and,
for this reason, better than the `1-based ones. For this reason, and according with the most
of the literature, we have chosen to operate with the `2 norm.
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6. Numerical Results

In this section we show numerical results achieved using ET . No limitations are
imposed on the topology of Ω.

The first toy example, here discussed to recall and clarify the novelties introduced in
the previous sections, inpaints one single point of coordinates (i, j) in a periodic chessboard-
like pattern, such as the red one in Figure 14. As result of the reconstruction, we expect
a white value to fill the vacancy. According to what stated in the theoretical section, we
assume (i, j) to be possibly located in whatever position of supp χ and not necessarily in its
center. We name the configurations arising from this choice from 3.1 to 3.9 and we group
them in the set of patterns SC = {3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9}. Each element of SC
is marked by a couple of integers separated by a dot: the first number gives the size of
one side of supp χ, and the second one specifies the pattern position in the set. In fact, SC
individuates the equivalence classes mentioned in Section 3.

The number and elements of this set are shown in Figure 15 for k = 1. Being that the
red point is surrounded by known values, each configuration of the set SC is causal. The
patches compatible with the configurations SC and giving a correct solution, taken from
the chessboard of Figure 14, are shown in the right part of Figure 15.

With each configuration of SC is associated a set of points compatible with the recon-
struction: for each element of SC, they are shown using different colors in Figure 16: we
name each set with S3.1, S3.2, ... ,S3.9.

Figure 14. In red, the point to inpaint in the periodic chessboard-like pattern. Each square of the
chessboard consists of 5× 5 pixels.

Figure 15. On the left: all the possible position of the missing point (in red) in supp χ. On the right:
each 3× 3 sized pattern compatible with the missing point of Figure 14.

The exact solution, i.e., the one taking into account as the content (black or white
color), as the structure (i.e., the fact that the missing point is on a corner) comes from sets
S3.1,S3.2,S3.4,S3.5 only. The other ones correctly identify the white value but the result is
achieved not taking into account the particular position of the red point in the chessboard.
In more complex and general cases, when there is not a perfect match in TS, the role played
by EST increases in its importance, such that considering ET = ECT + EST is crucial.
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An example of the inpainting of a chessbord with our method is provided in Figure 17.
Other numerical cases are considered in what follows.

Figure 16. From top to down, left to right: the candidate points for each different pattern (from 3.1 to
3.9). The squares with the same color in the 9 chessboards constitute the sets S3.1, S3.2, ... , S3.9.

Figure 17. Inpainting of the missing part Ω in a chessboard, using 2L + 1 = 3, l = 1.

We underline that, starting with non-random initial conditions (e.g., all zero values),
state-of-the-art methods like [13] fail (see Figure 18). Indeed, the respect of the causality
condition assures that the inpainting process is independent from the initial conditions.

In a quasi-periodic texture (de Bonet’s sample number 161 [46]), Ω has size of 12 × 14 pix-
els (the black rectangle in Figure 19).

Figure 18. Inpainting of Ω using [13], for different values of supp χ and different initial conditions.
On the left: initial condition with random white noise; on the right: initial condition equal to zero.
Both images achieved using 2L + 1 = 3. This is an example of missing causality condition.

Using the method proposed in [13], as the size of the neighborhood increases, the
reconstruction quality improves (its minimum size for a correct inpainting is 2L + 1 = 13).
Using our formalization with ET = ECT + EST , in place of ET = ECT , even the case
2L + 1 = 3 results in a correct reconstruction (see Figure 19). With our methods, the
needed number of surrounding points, for a correct inpainting, can be estimated to be
32/132 ≈ 0.05 (5%) of the amount of the ones needed in [13] to achieve results having a
quality comparable with our reconstructions.

In [15], they formulated the expression of the inpainting energy and showed that it has
a decreasing trend. We perform the same, achieving that our new version ET = ECT + EST
not only has a decreasing trend but reaches the minimum value faster (see Figure 20, that is
qualitatively representative of all the performed tests).
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Figure 19. From left to right: initial Ω of size 12× 14 pixels (left); inpainting result using our method
(2L + 1 = 3, l = 1) (center); inpainting result using method [13] with 2L + 1 = 11 (right). The better
performance deriving from the introduction of EST and the causality of the new proposed method
are visually evident. The image in the center is achieved at the first iteration and does not change
meaningfully in the subsequent ones, highlighting a fast convergence too. Our method needs less
than 8 points to provide suitable results, while for [13], 112 − 1 = 120 points are not enough.

Figure 20. Figure shows ET trends, calculated at the end of each scanning iteration of the whole Ω: in
red ET = ECT , in blue ET = ECT + EST . Finite difference contributions determine a faster convergence
to the steady state.

Remark 1. The value of ET is meaningful when it is calculated at the end of each scan and if the
causality condition is respected. Otherwise, in the inpainting algorithm, a potentially dangerous
(for stability) positive feedback is introduced. During the first scan, the causality property addresses
the algorithm to the direction of that minimum characterized by the lowest uncertainty. Subsequent
scans refine the calculation.

The introduction of EST allows to carry more structural information in the similarity
computation.

Other examples of reconstructions for quasi-periodic textures are provided in
Figures 21 and 22.

Figure 21. Inpainting of texture D1 taken from Brodatz database. From left to right: image to be
inpainted (Ω in black, size 16× 16); inpainting by mean of ET = ECT with 2L + 1 = 23 (second
column) and ET = ECT + EST (2L + 1 = 3, l = 1) (third column). The case using the first order finite
difference reconstructs visually better. Moreover the minimum value of L to inpaint correctly is 23
when ET = ECT , against L = 3 when introducing EST (reduction in the number of needed points of
around 98%).

Moreover, we compared the proposed method with results achieved by Matlab©
inpaintExemplar function ([35,47]) and with ones coming from an available implementation
of [35] (see Figures 23–26). In Figure 24, the reconstruction of the Kanizsa triangle is shown:
the connectivity principle is respected.
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A video showing the dynamic of the inpainting process for different classes of images
is available at https://youtu.be/GPGTA_Ukt9g (accessed on 16 August 2023).

Figure 22. Inpainting of texture D111 taken from Brodatz database. From left to right: image to
be inpainted (Ω in black, size 16× 16); inpainting by mean of ET = ECT with 2L + 1 = 27 (second
column); inpainting by mean of ET = ECT + EST with 2L + 1 = 3, l = 1 (third column). The case
using the first-order finite difference reconstructs visually better. Note, again, the different value of L
(reduction in the number of needed points of around 99%).

Figure 23. From left to right: original image, image to be inpainted (Ω in white), reconstruction by [35],
reconstruction by Matlab inpaintExemplar function, reconstruction using our method (2L + 1 = 3,
l = 1). All the methods guarantee the connection of the isophote along a straight line, according to
the connectivity principle.

Figure 24. Inpainting of the Kanizsa triangle. The starting image (left); the inpainting result, achieved
using 2L + 1 = 3, l = 1 (right).

Figure 25. Cont.

https://youtu.be/GPGTA_Ukt9g
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Figure 25. Reconstructions from different inpainting methods. For each image set, first row: original
image (left); image to inpaint with Ω (center); reconstruction by [35] (right). Second row: Matlab
inpaintExemplar reconstruction (left); reconstruction by our method (2L + 1 = 3, l = 1) (right).

Figure 26. Reconstructions and their details. From top: original and inpainted image sets in the
same order of Figure 25. In the last three rows, details of the achieved reconstructions: Matlab
inpaintExemplar (left); [35] (center); our method (right). At this level of zoom, our method exhibits a
better continuity in the structure of the inpainted zones.

7. Training Set

A pivotal role in the inpainting procedure is played by the training set TS. In particular,
as the size of TS decreases, the quality of the reconstructions degrades, due to the lower
number of available patches. On the other hand, having a TS that is too big can result in
wrong inpainted areas, especially in those points far enough from ∂Ω. Another drawback
of a too-extended TS is the computational time.
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Furthermore, the impressive results achieved in [48] using neural networks prove
that the information provided in images are redundant, such that even a limited subset is
enough to inpaint correctly the missing areas.

Moreover, advances in the field of texture synthesis [16] have been based on the same
hypothesis, such that a reduced TS appears to be an effective policy to correctly inpaint.

In other works, it is stated that the inpainting process proceeds by continuation of
the structure of the area surrounding Ω into it, such that contour lines are drawn via the
prolongation of those arriving at ∂Ω [3]. Moreover, other techniques have based their
effectiveness on metrics including the proximity between the point to inpaint and the
match found in TS, to penalize the ones at higher distance (see, e.g., [31,49]).

In the light of the previous observations, we can reduce TS to include only limited
areas of I \Ω: some examples operating this reduction are available in Figure 27.

Other examples of a correct inpainting using a reduced training set are shown in
Figure 28, using pictures from [50].

One more time, the results achieved reducing TS put in evidence how our inclusion
of the finite differences in the inpainting procedure, reduces the number of points needed
for a correct reconstruction exploiting the information hidden in the relations between
neighborhoods.

Figure 27. Inpainting of a stone and a wood structure. The inpainting results have been achieved
with 2L + 1 = 3, l = 1. The reduced training sets used to inpaint are contained in the red squares:
their size is modest if compared with I \Ω.

(a) Ink

(b) Marble
Figure 28. Cont.
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(c) Paper

(d) Metal

Figure 28. Inpainting of textures from [50] (a) ink; (b) marble; (c) paper; (d) metal. From left to right:
the pristine image; the image to inpaint (Ω in black); the inpainted result; the used training set (same
scale of the images).

8. Conclusions

In this paper, we have introduced a new functional to investigate the inpainting
problem: it is strictly connected with the definition of Sobolev spaces but formalized in
discrete setting. We have replaced the usual MSE-like metric (mean square error) with a
more precise one, in the Sobolev spaces sense, for the determination of the correct values
to inpaint.

The results we achieved show that the new functional, taking into account finite
differences, provides reconstructions of good quality.

The improvement is, on one hand, theoretically predictable (functions being equal, or
similar, for higher order derivatives ”resemble” more each other), and, on the other hand
we provided effective practical examples.

In particular, the new introduced functional formulation carries, in the reconstructed
area, precise structural information, depending on the size and shape of the neighborhood,
which strongly conditions the final quality of the reconstructions. An application proof of
this behavior stands in the capability of the new method to reproduce and connect isophotes,
even in complex cases, not necessarily privileging the propagation along straight lines.

Moreover, the new formulation plays two complementary roles: on one hand it speeds
up the convergence toward a minimum value; on the other hand, it reduces the number of
local minima, lowering the probability to end the process in one of them.

To explain the role of the neighborhood in the inpainting process, we have introduced
a statistical model, thanks to which we have proved that considering only the principal
directions is not sufficient to achieve correct reconstructions.

In addition, from our investigation of the role played by the causality condition, we
have shown it represents a starting point in the direction of the uncertainty reduction of
the entire process: this role has never been explicitly considered before in the literature of
the exemplar-based inpainting-by-patch procedures.

Following in the direction of this reduction, we formalized a new priority index, giving
an applicative explanation of the roles played by each one of its terms: the inpainting energy
ET , the trustability C, and the finite differences DM. We proved that all of them concur
together to the uncertainty reduction.



Appl. Sci. 2023, 13, 9405 21 of 26

In addition, we proposed and implemented a new dynamic for the update of the
priority, with the introduction of the completely new concept of the error redistribution
among neighbor points.

The numerous numerical results, both on synthetic and on natural images, have
confirmed the expectations: in terms of the mathematical model, in terms of the values we
calculated, and in terms of the parameters in the applications. Again, we remark that our
method is not parameter-dependent, the values of the parameters having been explicitly
determined exploiting uncertainty assumptions.

Our work shows that a deeper understanding of the exemplar-based inpainting-by-
patch procedure effectively brings to a reduction in the needed information to achieve
correct results, compared with the algorithms of the same class.

Thanks to our new model, we proved a meaningful reduction of the number of
neighbor points needed for the reconstruction, when compared with some well known
state of the art algorithms using the same inpainting approach.

Our new proposed method reduces the uncertainty in the inpainting process, boosting
the amount of information that can be inferred from the training set.

We obtained better results (also reducing the training set) than the ones achieved
merely increasing the size of the neighborhood in the direction of a more efficient use of
the known information hidden in what we referred to as the structure of the given image.

Generally, it is not easy to a priori identify cases of failure of our technique. Its
mathematical formulation proves that the number of plausible values to be used for the
inpainting is lower than the formulation without the structural term. This aspect confers a
lower error probability on our approach. Moreover, the results we reported in this work
have been achieved on images with high signal to noise ratio, such that the effects of noise
have been reduced, in this first stage.

Moreover, another crucial point is represented by the execution time: the implementa-
tion, e.g., of a PatchMatch-like approach [21] can be the focus for future works.

Finally, given our probabilistic interpretation, it is possible to find contact points
between the inpainting-by-patch algorithms and NNs. It is well known how NNs are
efficient statistical classifiers. Among them, U-nets are capable to inpaint images only using
the known part of the given single image itself. Then, this kind of nets uses a training set
that is the same of our TS. Initialising a U-net generally requires starting random values,
the same way inpainting-by-patch methods do. Then, the major difference between NNs
and inpainting-by-patch methods resides in the extremely reduced execution time of NNs,
hidden in the NNs interpretability, probably the major open problem in the NNs research
field nowadays.
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Appendix A. Numerical Implementation

To calculate EST in a suitable algorithmic form, some considerations are useful to be
made. In the discrete one-dimensional case, given a row r of the image I, we can rewrite
I(r, i + k), r, k, i ∈ N as a function of past samples using the following equation (In place
of a horizontal direction r (i.e., a row), it is possible to consider whatever orientation at
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the price to introduce some interpolation methods to compute the missing values on the
discrete grid.): I(r, i + k) = I(r, i) + ∆(1) I(r, i) + ∆(1) I(r, i + 1) + ... + ∆(1) I(r, i + k− 1).

Proof. From the definition of ∆(1) I(r, i), given a generic index i, the equality I(r, i) +
∆(1) I(r, i) = I(r, i + 1) stands. Then

I(r, i) + ∆(1) I(r, i) + ∆(1) I(r, i + 1) + ... + ∆(1) I(r, i + k− 1) =

I(r, i + 1) + ∆(1) I(r, i + 1) + ... + ∆(1) I(r, i + k− 1) = .... = I(r, i + k),
the last equality stands iterating the procedure.

Moreover, in general, it is possible to write

∆(1) I(r, i) = I(r, i + 1)− I(r, i)

∆(2) I(r, i) = [I(r, i + 2)− I(r, i)]− [2∆(1) I(r, i)]

...
∆(k) I(r, i) = [I(r, i + k)− I(r.i)]− [ak,1∆(1) I(r, i) + ... + ak,j∆(j) I(r, i) + ...+
+ak,k−1∆(k−1) I(r, i)]

with the coefficients ak,j =

(
k
j

)
, as they come form the Pascal’s triangle formulation.

Given a direction, the above expression allows the calculation of the finite difference of
order k in (r, i) as a linear combination of pointwise differences (i.e., I(r, i + 1)− I(r, i),
I(r, i + 2) − I(r, i),...). In the two-dimensional case, this results in the combination of
differences between the central point and a square shaped ring, depending on the maximum
finite difference order chosen (see Figure A1). In particular, this generally requires some
interpolation or quasi interpolation techniques to provide values along those directions
that are not explicitly available.

Figure A1. An example of points involved in the calculation of finite differences: the red point
of coordinates (i, j) is the point to reconstruct; the green points identify the values needed for the
calculation of the finite differences of order 1 with respect to (i, j); the blue points, together with the
green points, identify the values needed for the calculation of the finite differences of order 2 with
respect to (i, j); the yellow points, together with the blue and green points, identify the values needed
for the calculation of the finite differences of order 3 with respect to (i, j).

Calculating high order finite differences, in a two-dimensional setting, is time-consuming.
Moreover, recalling that the quality of the reconstruction is evaluated by simple observation,
we stopped at the first-order finite differences. In addition, to justify this choice also from a
perceptive point of view, it is quite evident that a human observer can easily determine the
class of continuity of a function only until the first order (see Figure A2). The same reasons
have been used to justify the definition of the data term in P∗(i, j).

In the applications, it happens to have different candidate values with the same ET :
when this is the case, we choose their mean value as the best match. In Algorithm A1 we
show the pseudo-code of the whole method theoretically described in the previous sections.
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Figure A2. A C0 function on the left and a Ck function on the right: a human observer can easily
perceive the continuity of the left function but cannot determine k of the right one.

Algorithm A1 Inpaint by Finite Differences
procedure INPAINT(I,M,TS ,χS ,n)

. I=Image . M=To-Be-Inpainted area . TS=Training Set . χS=support of Chi . n= order of finite differences

P=M

ET ← EnergyCalculation(I, M, TS , χS , n)
. first calculation of ET

loop :
for (ii, jj) ∈ M do

P← updatePriority(I, M, TS , n, ET , P)
. return the priority for each point to inpaint

I( f ind(P == max(P))← TS(bestFit( f ind(P == max(P)))
. inpaint the point with highest priority

ET ← EnergyCalculation(I, M, TS , χS , n)
. update ET after the inpainting

goto loop :

procedure ET ←ENERGYCALCULATION(I,M,TS ,χS ,n)
. I=Image . M=To-Be-Inpainted area . TS=Training Set . χS=support of Chi . n= order of finite differences

bestFit=I

for (ii, jj) ∈ M do
ETmin = 256 · ones(size(M))

for (i, j) ∈ TS do
EC = sum(abs(I(ii ∈ χS , jj ∈ χS)− TS(i ∈ χS , j ∈ χS)))
ECnorm = Norm(EC)

. normalization of EC such that 0 ≤ EC ≤ 1
ES = 0
for d=1:n do

for k=1:8*k do
ES = ES + sum(abs(∆(I(ii ∈ χS , jj ∈ χS), k, d)− ∆(TS(i ∈ χS , j inχS), k, d)))

ESnorm = Norm(ES)
. normalization of ES such that 0 ≤ ES ≤ 1

ET∗ = ECnorm + ESnorm
if ET < ETmin then

bestFit(ii, jj)← TS(i, j)
ET(ii, jj)← ET∗

procedure P←UPDATEPRIORITY(I,M,TS ,χS ,n,ET ,P)
. I=Image . M=To-Be-Inpainted area . TS=Training Set . χS=support of Chi . n= order of finite differences . ET=

Inpainting Energy . P= Priority

for (ii, jj) ∈ M do
C(ii, jj)← calculateC(I, M, χS)
D(ii, jj, θ))← calculateD(I, M, χS , n)
P(ii, jj)← (C(ii, jj) + maxθ D(ii, jj, θ)) · ET(ii, jj)

. C is the trustability, maxθ D is the maximum of the finite differences; their calculation details are omitted for brevity

The color images have been managed operating separately on the RGB channels and
joined at the end of the procedure. No blending of any sort (e.g., Poisson blending) has
been used to adjust the final results.
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Abbreviations

a row shift value in supp χ;
a∗ normalization coefficient for P∗;
α normalization coefficient for D;
b column shift value of supp χ;
b∗ normalization coefficient for P∗;
βk normalization coefficient for EST ;
C trustability or confidence term;
χ neighborhood function;
D state of the art data term;
DM proposed new data term;
d pointwise distance between two pixels in I;
dCNorm normalized pointwise content-related distance between two pixels in I;
dSNorm normalized pointwise structure-related distance between two pixels in I;
∆(k)

θ finite difference operator of order k in direction θ;
∂Ω boundary of Ω;
EC single point, content-related, inpainting energy;
ECT total content-related inpainting energy;
EI inpainting energy;
EMC total patch content-related probability of a match in TS given supp χ;
EMS total patch structure-related probability of a match in TS given supp χ;
EPC pointwise content-related probability of a match in TS given supp χ;
EPS pointwise structure-related probability of a match in TS given supp χ;
ES single point, structure-related, inpainting energy;
EST total structure-related inpainting energy;
ET total inpainting energy;
I image under investigation;
i, h, r, p row coordinate of a pixel in I;
j, m, s, q column coordinate of a pixel in I;
k generic order of the finite differences;
l maximum order of the finite differences;
` discrete Lebesgue space;
Λ summation domain;
M number of rows in I;
N number of columns in I;
n unitary vector orthogonal to ∂Ω;
∇⊥ isophote vector;
Ω to-be-inpainted area;
P state of the art scanning priority index;
P∗ proposed scanning priority index;
Rk direction-related normalization coefficient for EST ;
S specific configuration in SC;
SC set of equivalence classes;
supp χ support of the neighborhood function;
t time;
TS training set;
θ specific orientation of the finite difference;
Θk set of possible and valid orientations θ given the order k;
W bit depth;
U uncertainty.
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