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Abstract: Sea ice extraction and segmentation of remote sensing images is the basis for sea ice monitor-
ing. Traditional image segmentation methods rely on manual sampling and require complex feature
extraction. Deep-learning-based semantic segmentation methods have the advantages of high efficiency,
intelligence, and automation. Sea ice segmentation using deep learning methods faces the following
problems: in terms of datasets, the high cost of sea ice image label production leads to fewer datasets
for sea ice segmentation; in terms of image quality, remote sensing image noise and severe weather
conditions affect image quality, which affects the accuracy of sea ice extraction. To address the quantity
and quality of the dataset, this study used multiple data augmentation methods for data expansion.
To improve the semantic segmentation accuracy, the SC-U2-Net network was constructed using multi-
scale inflation convolution and a multilayer convolutional block attention module (CBAM) attention
mechanism for the U2-Net network. The experiments showed that (1) data augmentation solved the
problem of an insufficient number of training samples to a certain extent and improved the accuracy of
image segmentation; (2) this study designed a multilevel Gaussian noise data augmentation scheme to
improve the network’s ability to resist noise interference and achieve a more accurate segmentation of
images with different degrees of noise pollution; (3) the inclusion of a multiscale inflation perceptron
and multilayer CBAM attention mechanism improved the ability of U2-Net network feature extraction
and enhanced the model accuracy and generalization ability.

Keywords: sea ice segmentation; U2-Net; remote sensing images

1. Introduction

Sea ice has a substantial impact on global climate change, geophysical activities such
as ocean surface physical properties and currents, and economic and social activities such
as maritime shipping and transportation [1]. The freezing and thawing of sea ice and sea
ice drift in winter interfere with sea-related engineering, marine trade, and various offshore
industrial production activities to varying degrees. Internationally, the melting of Arctic sea ice
is intensifying due to global warming, and the Arctic shipping route connecting the Atlantic
Ocean and the Pacific Ocean will soon open, shortening the voyage from the eastern coast of
China to the east coast of the United States (instead of through the Panama Canal) by at least
two thousand nautical miles, and reducing the distance from the northern port of China to
the western and northern coastal ports of Europe by 25–55% [2]. Therefore, sea ice monitoring
is important for maritime shipping, environmental changes, and disaster prevention. There
are many satellites used for sea ice remote sensing in the world, such as Landsat series, SPOT
series, Worldview series, GeoEye series, Sentinel series and so on. China’s sea ice remote
sensing satellites mainly include GF series satellites, FY series meteorological satellites and
HY series satellites [3]. Therefore, the use of sea ice remote sensing images to automatically
identify and extract sea ice has a broad application prospect.

Currently, sea ice segmentation methods can be roughly divided into three types:
threshold segmentation, machine learning, and deep learning. For example, Wang used
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multiple thresholding and random forest methods to invert FY-4A Bohai Sea regional
images and introduced a seed-filling algorithm to revise the results, which improved
the accuracy of sea ice inversion under non-clear sky conditions [4]. Li proposed turbid
seawater end elements for Bohai Sea ice and water classification, used multifeature binomial
tree classification to solve the problem of the difficult distinction between turbid seawater
and sea ice, and used mixed-image element decomposition to enter the pixel interior
to analyze its category [5]. Li et al. proposed an AL-TSVM sea ice image classification
method from the perspective of combining active learning with semisupervised learning
by combining a small amount of labeled, known training data and the overall data feature
and spatial distribution patterns [6]. Han et al. obtained a combination of informative and
low-similarity superior bands using the mutual information similarity metric and classified
them using a support vector machine [7]. Zhou et al. improved the OSSP algorithm
in three aspects: training set composition, classification result output, and tilted image
geometry correction, to improve the classification accuracy of ship-based images [8]. Yu
proposed a pixel-level domain relationship context classification method for sea ice spatial
neighborhood relations [9].

In the field of deep learning, Dowden et al. evaluated SegNet and PSPNet101 neural
networks based on self-built training and testing sets. The sea ice classification dataset
consisted of 1090 images with labels; for the test set of 104 images, the classification accuracy
was 98.3% or better for both, validating the applicability of deep learning methods for sea
ice detection [10]. Han et al. proposed a multilevel, feature-fusion image classification
method based on a residual network PCA method to extract the first principal component
of the original image, used a residual network to deepen the number of network- layer FPN,
PAN, and SPP modules to increase the mining between layer and layer features, merged
the features between different layers, and used the hyperspectral image of Bohai Bay for
validation; the method improved the sea ice classification accuracy [11].

Shi proposed using the PCANet network to select adaptive convolutional filter banks
to mine sea ice depth features, adding hash binarization mapping and chunked histograms
to enhance feature separation and reduce feature dimensionality. The author designed a
two-branch, multisource, remote sensing, deep learning model for optical and SAR images to
obtain good classification results with fewer training samples [12]. The improved SIS-U-Net
network outperformed the classical U-Net network by adding a residual structure and void
space pyramidal pooling structure to the U-Net network [13]. Cui et al. used the convolutional
neural network (CNN) model for image segmentation and selected the appropriate cost and
activation functions according to the principle of migration learning. They examined the
HJ-1A/B Bohai Sea ice images as the experimental data source labeled samples and achieved
better experimental results [14]. Han et al. proposed a spectral–spatial joint feature concept for
hyperspectral sea ice image classification and designed a three-dimensional (3D-CNN) model
to extract the deep spectral–spatial features of sea ice by conducting sea ice classification
experiments using two hyperspectral datasets, Baffin Bay and Bohai Bay, with experimental
results based on a single-feature CNN algorithm [15]. Han et al. used the advantage of a
CNN in deep feature extraction to design a deep learning network structure for SAR and
optical images to achieve sea ice image classification by feature extraction and feature-level
fusion of heterogeneous data; the effectiveness of the method was verified using two sets
of heterogeneous satellite data in the Hudson Bay area [16]. Zhang et al. classified the
Beaufort Sea and Severnaya Zemlya based on a Micro Sea Ice Residual Convolution Network
(MSI-ResNet); the MSI-ResNet method performed better than the traditional support vector
machine (SVM) classifier for identifying sea ice [17]. Cheng Wen et al. proposed an automatic
LFSI extraction method for the Laptev Sea in the eastern Arctic Ocean based on the conditional
generative adversarial network Pix2Pix and validated it experimentally using true color
images from the Moderate Resolution Imaging Spectroradiometer (MODIS) [18].

In terms of data augmentation, Liu et al. proposed a data augmentation method based
on image gradients, which can freely choose the number of expansions and image sizes
to effectively expand the dataset, and demonstrated through comparison experiments
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that the accuracy of the network model was improved after expanding the dataset by this
method; the improvement was more obvious when the dataset was small, and the model
accuracy could be improved by effectively reducing overfitting. The improvement is more
obvious in the case of small datasets and can effectively reduce overfitting to improve
the model accuracy [19]. Ziqi et al. fused random probability resampling with adaptive
scale equalization, added the fusion expansion algorithm to different target detection
algorithms for experiments, and verified that the expansion algorithm can effectively
reduce misdetection and false detection of small targets in road scenes [20]. By improving
the generator and the discriminator of the Wasserstein–Generative Adversarial Network
(W-GAN) and introducing reconstruction and perceptual style loss to enhance the ability
of generating remote sensing images by ship, Yang et al. used the remote sensing images
generated by ship-WGAN to train the image recognition model, and the recognition
accuracy was substantially improved by sample expansion of the generated samples to
achieve the effect of data augmentation [21]. The recognition accuracy was substantially
improved by expanding the generated samples, and data enhancement was achieved.

Sea ice dataset labeling requires manual interpretation and mapping, and relies on
ship-based and shore-based observations, which are costly. In this context, to obtain the
segmentation of sea ice remote sensing images under limited sample conditions and achieve
good generalization of the semantic segmentation model, this study improved two aspects
of data augmentation and network structure, and used a test set to check the accuracy of
the improved model. The experimental area is located at lower latitudes (where data are
easier to access and process). We hope to build richer training sets to train lightweight
neural networks in the future to obtain more robust deep learning models, which will
later realize automated sea ice extraction and operational release of satellite-based remote
sensing data. In the next step, we will realize a more detailed sea ice segmentation, which
classifies sea ice into new ice, one-year ice, multiyear ice, etc. In addition to this, we will
fuse more remote sensing data (e.g., synthetic aperture radar (SAR)) and use this method
for the study of sea ice in the polar regions.

2. Materials and Methods
2.1. Data Augmentation

Difficulty in acquiring optical images of sea ice, the high cost of labeling, and an
insufficient number of samples are obstacles to sea ice segmentation, classification, and
detection. Owing to complex sensor factors and special weather conditions, image noise
and cloud occlusion are major obstacles to the inversion of optical sea ice images. Image
augmentation is an effective method for solving data limitations in deep learning model
training. Data augmentation not only increases the number of samples in the dataset but
also improves the generalization ability of neural networks. The main data augmentation
methods used in this study were affine transform, fuzzy, mirror image, noise, and optical
spatial transform augmentations [22].

In noisy data augmentation experiments, the Gaussian random noise is representative
of noise type in image processing. In this study, we used the Box–Muller transform
method to generate Gaussian random noise and studied the effects of noise with different
parameters on the model accuracy and generalization ability. The principle is as follows:
the joint two-dimensional distribution of two mutually independent Gaussian random
numbers with zero mean and the same variance is radially symmetrical, and the Gaussian
random number output by the algorithm can be considered to be the coordinates of a
random point in the two-dimensional plane, the amplitude of which is transformed from a
random number obeying a uniform distribution on the interval. Its phase is obtained by
multiplying a uniform random number on the interval, and the random point is mapped
onto the Cartesian coordinate axis. The corresponding coordinate point is a random number
that follows a Gaussian distribution.
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X and Y are assumed to obey normal distributions and the random variables; X and
Y, are transformed as (Equations (1) and (2)):

X = R cos(θ) (1)

Y = R sin(θ) (2)

The distribution functions are described by Equations (3)–(5):

PR(R ≤ r) =
∫ 2π

0

∫ r

0

1
2π

e
−R2

2 RdθdR = 1− e−
r2
2 (3)

Pθ(θ ≤ φ) =
∫ φ

0

∫ ∞

0

1
2π

e
−R2

2 RdθdR =
φ

2π
(4)

Retrieved from PR inverse function

R = F−1
R (1− z) =

√
−2 ln(1− z) (5)

When z follows a uniform distribution in [0, 1], the distribution function of R is PR.
Thus, two random variables, U1 and U2, which obey a uniform distribution on [0, 1], can
be selected such that

θ = 2πU1, 1− z = U2, R =
√
−2 ln U2 (6)

By substituting this into Equations (1) and (2), the normally distributed random
quantities, X and Y, were constructed. In this study, based on this principle, Gaussian
random numbers were generated from uniformly distributed, pseudorandom numbers to
approximately obey a normal distribution [23].

To intuitively understand the strength of the noise, this study used the following
strategy to generate the noise: first, the image grayscale value was divided by 255 to
normalize to the interval [0, 1]. Then, a noisy image was generated with a mean value of 0
and a variance of a given value of σ. The noise and image were superimposed and set to 1
if the pixel value was greater than 1, and set to 0 if the pixel value was less than 0. Finally,
the value was multiplied by 255 to map the pixel grayscale value back to 0–255. The “0.1
noise” mentioned in this paper indicates that “0.1” is the value of the parameter, σ, in the
noise generation process.

The study area was the Bohai Sea ice monitoring dataset, and the dataset was the sea
ice target monitoring dataset from the visible image of HY-1. The sea ice tag images were
obtained from manual image interpretation. The pixel depth of the images was 24 bits, the
original images were in red, green, and blue channels, the tag images were 8-bit grayscale
images, the sea ice area was marked as 255, and the non-sea ice area was marked as 0. Data
were from the following website: https://cg.cs.tsinghua.edu.cn/jittor/news/2021-09-02-0
0-00-jdet2/ (accessed on 5 July 2022).

The original training set had a total of 1200 images, and the 1200 images were used
as the basic unit for augmentation using image rotation, brightness variation, and noise
injection, respectively, before the experiment. The training set numbers and compositions
are listed in Table 1. To more accurately measure the accuracy of each model, the test
set (300 frames) was expanded (90-degree rotation, 180-degree rotation, blurring, and
brightening) to obtain an expanded test set (1500 frames).

2.2. U2-Net Retrofit

2.2.1. U2-Net Network and Convolutional Block Attention Module (CBAM)

Semantic segmentation networks have focused on extracting deep features using
existing backbones, such as Alexnet, VGG, ResNet, ResNeXt, DenseNet, etc. The above
networks have the following problems: first, the network backbones are designed for image

https://cg.cs.tsinghua.edu.cn/jittor/news/2021-09-02-00-00-jdet2/
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classification tasks, and the features they extract represent semantic rather than local details
and global contrast information, which are crucial for semantic segmentation; second, these
networks need to be pretrained on the ImageNet dataset; third, these networks add feature
aggregation modules in order to extract multilayer salient features leading to complex
network structure; and fourth, the deeper architecture is achieved by sacrificing the high-
resolution feature mapping. The U2-Net network has the following advantages: firstly, the
network is a two-layer, nested, U-shaped structure that does not use a pretrained backbone
model for image classification, and the model weights are trained from the training set;
secondly, the new architecture allows the network to go deeper and obtain high-resolution
features without substantially increasing memory and computational costs. In the bottom
layer, a new RSU is designed to extract intrastage, multiscale features without reducing
the feature mapping resolution. In the top layer, there is a U-Net-like structure, where
each stage is populated by a residual U-block. The feature map is downsampled twice
after each Encoder and upsampled before passing through each Decoder twice before
passing through each decoder. The residual U-blocks in the network can be divided
into two categories: Encoder1–Encoder4 and Decoder1–Decoder4. They use the same
modular structure of RSU-L, only the depth (L) is different. Taking L = 7 as an example, the
maximum downsampling time was 32 times. When Encoder5–6 and Decoder6 used the
module RSU-F, the main difference between the RSU-L and RSU-F structures was that there
was no more downsampling (purple part). Because the image size has been sufficiently
downsampled, much contextual information will be lost when the image size is decreased
again, which affects image segmentation. Therefore, RSU-4F is used in the deep layer, and
the module decreases the downsampling part and uses multilayer expansion convolution
to enlarge the receptive field. The right side shows the output of the fusion of the features
of each layer after upsampling to obtain the segmented image as large as the original image,
and the feature map of each layer is then convolved by channel number 1 to obtain the
final output [24].

Table 1. Training set composition.

Training Set Composition

Training Set Number
Training Set 1 Training Set 2 Training Set 3 Training Set 4 Training Set 5

Original training set (1200)
√ √ √ √

90◦ rotation (1200)
√ √

180◦ rotation (1200)
√ √

Horizontal mirroring (1200)
√ √

Brightness enhancement (1200)
√ √

Brightness reduction (1200)
√ √

Random noise (1200)
√ √

Gaussian blur (1200)
√ √

0.1 (1200)
√ √ √

0.15 noise (1200)
√ √

0.20 noise (1200)
√ √

Total number of images 1200 1200 4800 9600 13,200

Note: A checkmark indicates that the dataset used a type of augmentation; “0.1 noise” means 1200 images of the
training set with 0.1 level of noise added.

The CBAM contains the channel attention mechanism (channel attention module,
CAM) and spatial attention mechanism (spatial attention module, SAM), with two sub-
modules (Figures 1 and 2, respectively). The channel attention mechanism is a one-
dimensional vector obtained by compressing a feature map in the spatial dimension.
Mean and maximum pooling operations are used to compress the spatial and channel



Appl. Sci. 2023, 13, 9402 6 of 18

dimensions. The mean and maximum pooling aggregate the spatial information of the
feature map, which is then mapped to the weights of each channel through the convolu-
tional layer or fully connected layer. The original features are multiplied with this vector
in the channel dimension to obtain the weighted feature map, and the size of the weights
reflects the degree of relevance and importance of the features in the layer (channel) for the
key information. CBAM contains a spatial attention mechanism and a channel attention
mechanism, and the structure is shown in Figure 3. The CBAM is a simple yet effective
attention module for feedforward CNNs. The module sequentially infers attention maps
along two separate dimensions, channel and spatial, and then multiplies the attention maps
with the input feature map for adaptive feature refinement. It can be seamlessly integrated
into any CNN architecture with negligible overhead and is end-to-end trainable along with
the base CNNs to improve the accuracy of the CNN [25].
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Li et al. proposed an improved YOLOv4-based pavement damage detection model.
The model improves the saliency of pavement damage by introducing a convolutional
block attention module (CBAM) to suppress background noise and explores the influence of
the embedding position of the CBAM module in the YOLOv4 model on detection accuracy.
The results indicate that embedding CBAM into the neck and head modules can effectively
improve the detection accuracy of the YOLOv4 model [26].

Sun et al. proposed an attention-based feature pyramid module (AFPM), which inte-
grates the attention mechanism based on a multilevel feature pyramid network to efficiently
and pertinently extract high-level semantic features and low-level spatial structure fea-
tures, thus improving the accuracy of instance segmentation [27]. According to the above
findings, the convolutional block attention module (CBAM) can independently learn the
importance of each channel and space feature, recalibrate the channel and space features,
and improve image classification performance [28]. Therefore, in this study, CBAM was
added to multiple locations of U2-Net.
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2.2.2. SCM-RSU and SC-U2-Net Network

SC-U2-Net refers to U2-Net with Skip connect structure and CBAM improvements. The
SC-U2-Net improvement was divided into two parts. First, the SCM-RSU was used instead
of the RSU (Figure 4). SCM-RSU is the RSU that incorporates Skip connect structure, CBAM,
multiscale dilated convolution. In the downsampling stage, SCM-RSU used the residual
structure, and the output of the upper layer skipped the intermediate convolution as the
input of the lower convolution directly to reduce the loss of features in the downsampling
process. The U2-Net network used multiscale expansion convolution only in RSU-4F, which
was located in the deep layer of the network, to extract richer features at different scales.
The SCM-RSU deep perception module was changed to multiscale expansion convolution,
where the input feature maps were subjected to 1 × 1 convolution with an expansion factor
(d) of 1, 3 × 3 convolution with a d of 1, and 3 × 3 expansion with a d of 2, respectively.
Subsequently, the outputs of the three convolutions were stitched in the channel dimension,
and, finally, channel fusion was performed using a 1 × 1 convolution. In the decoding
stage, the output of the same depth encoding and that of the previous decoding depth were
processed by the CBAM attention mechanism and inputted.
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Secondly, in the overall framework, multiple attention mechanisms were added
(Figure 5). The feature map of the encoder output feature map decoder upsampling after
using CBAM processing and then input to the corresponding decoder; the decoder output
feature map enables CBAM processing and then convolution operation to obtain the fea-
ture map with channel number 1; each feature map upsampled to the input image. After
upsampling each feature map to the size of the input image, stitching was performed to
obtain an output with a channel number of 6 and the same size as the original image, and
then CBAM was used to process the output. Finally, the output with a channel number of 1
was obtained using 1 × 1 convolution.
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2.3. Sea Ice Image Segmentation Experimental Setup

In order to improve the accuracy of sea ice image segmentation, this paper improves
two aspects of data augmentation and the U2-Net network structure. In terms of data
augmentation, five datasets were constructed using various data augmentation methods
(such as noisy data augmentation), the model weights were obtained by training the U2-Net
network with the five datasets, respectively, and the accuracy was checked using the test set.
In terms of network structure improvement, a multilayer CBAM attention mechanism and
multiscale expanded convolution were added to U2-Net to enhance the network feature
extraction ability, and the accuracy and generalization ability of the improved model were
checked using the test set. The SC-U2-Net network model was constructed by adding a
multilayer, CBAM attention mechanism and multiscale inflation convolution to enhance the
network feature extraction ability. The accuracy and generalization ability of the improved
model were tested using test data (Figure 6).
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The initial learning rate was set to 0.001, and this study used the learning rate warmup.
The learning rate warmup [29] and cosine annealing [30] were used to combine the learning
rate change strategy. The weights of the neural network were randomly initialized at the
beginning of training, and the warmup gradually increased the learning rate from low to
high to ensure a good convergence of the network. When the gradient descent algorithm
was used to optimize the objective function, cosine annealing reduced the learning rate
of the cosine function as it approached the global minimum of the loss value, making the
model as close to the optimal value as possible. The loss function is a binary cross-entropy

loss function (Equation (7)), where
∧
y is the result of the model prediction sample and y is

the sample label.
The loss function of U2-Net is calculated in Equation (8), which contains two parts:

M
∑

m=1
w(m)

sidel(m)
side represents the sum of the cross-entropy of the output results of different depth

decoder and GT images, and w f usel f use is the cross-entropy loss of the final output and GT
images after multichannel fusion.

Loss = −(y · log(
∧
y) + (1− y) · log(1− ∧y) (7)

L =
M

∑
m=1

w(m)
sidel(m)

side + w f usel f use (8)

The validation accuracy of the model increased with an increase in epochs, and the
model started to converge when the epoch reached 360 when the U2-Net network was
trained using training set 1. To balance model accuracy and training efficiency, the epoch
was set to 360 in this study. Five test sets were used for training, in which the epochs of
training datasets 1 and 2 were set to 360, the epochs of datasets 3, 4, and 5 were set to 90,
and the epochs of datasets 3, 4, and 5 were set to 90.

The accuracy evaluation metrics selected in this study are the intersection over union
(IoU, F1-score, and recall. If sea ice is called a positive case (positive), non-sea ice is called a
negative case (negative), and the classifier predicting correctly is noted as true (true) and
incorrectly predicting as false (false), and the four basic terms are combined with each other
to form the four basic elements of the confusion matrix: true case (TP), false positive case
(FP), false negative case (FN), and true negative case (TN). Then IoU, F1-score, and recall
are calculated by Equations (9)–(11).

IoU =
TP

TP + FP + FN
(9)

F1 =
2TP

2TP + FN + FP
(10)

Recall =
TP

TP + FN
(11)

To distinguish the network model from the dataset used for training, the naming rules
for the network and model weights were as follows: The U2-Net network was trained using
dataset i, and the names of the model weights were obtained as U2-Net (Training set i). In
the illustration, to save space, we use U2-Net-1 to equivalently represent U2-Net (Training
set 1).

3. Results
3.1. Data Augmentation Experiments

The average cross-merge ratio of U2-Net (Training set 1) tested on the test set was
0.842, the average recall was 0.897, and the average F1-score was 0.889. U2-Net (Training
set 1) predicted noise-free sea ice images well, but there was overfitting of the network
weights, and weak noise interfered with the segmentation, as shown in Figure 7d. The
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recall distribution curves of U2-Net (Training set 1) predicting noise-free images and weakly
noisy test set images are shown in Figure 8.
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To further study the effect of noise, we trained U2-Net using different training sets to
obtain the corresponding model weights (U2-Net (Training set 1) was the weight obtained
by training U2-Net on training set 1). We performed a segmentation of the test set containing
different noise levels using U2-Net trained from different training sets. The average IoU,
average recall, and average F1-score of the test set with different noise levels were counted
(Table 2). The curves of average IoU, average recall, and average F1-score with noise level
of the test set were made according to Table 2, as shown in Figures 9–11, respectively.

Table 2. U2-Net predicts the average metrics of the test set with different noise levels.

Noise
Level U2-Net (Training Set 1) U2-Net (Training Set 2) U2-Net (Training Set 3) U2-Net (Training Set 4) U2-Net (Training Set 5)

Imou F1 Recall Imou F1 Recall Imou F1 Recall Imou F1 Recall Imou F1 Recall

0 0.842 0.897 0.889 0.802 0.87 0.882 0.811 0.877 0.889 0.879 0.926 0.918 0.849 0.903 0.9
0.05 0.421 0.49 0.442 0.802 0.871 0.895 0.8 0.868 0.884 0.856 0.909 0.9 0.85 0.906 0.906
0.10 0.146 0.172 0.154 0.792 0.86 0.862 0.811 0.877 0.889 0.812 0.878 0.872 0.834 0.895 0.899
0.11 0.786 0.853 0.864 0.794 0.864 0.885 0.76 0.831 0.822 0.823 0.887 0.895
0.13 0.776 0.847 0.856 0.79 0.861 0.886 0.722 0.792 0.787 0.821 0.885 0.897
0.15 0.77 0.844 0.849 0.784 0.857 0.883 0.553 0.619 0.599 0.799 0.869 0.877
0.16 0.714 0.801 0.769 0.777 0.851 0.877 0.765 0.837 0.85
0.17 0.57 0.657 0.613 0.774 0.849 0.878 0.720 0.796 0.804
0.20 0.346 0.427 0.357 0.771 0.85 0.885 0.628 0.701 0.697
0.25 0.131 0.158 0.144 0.732 0.811 0.85 0.484 0.553 0.535
0.30 0.713 0.795 0.841 0.305 0.349 0.337
0.45 0.615 0.706 0.735 0.125 0.145 0.134
0.55 0.510 0.599 0.612
0.60 0.462 0.544 0.553
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Figures 12 and 13 show the results of U2-Net (Training set 2) and model U2-Net
(Training set 3) predicting different levels of test set. Model 2 could predict images with
low noise, but the predicted noise limit was approximately 0.15; U2-Net (Training set 3)
had a stronger generalization ability than model U2-Net (Training set 2) and was able to
segment images with more severe noise pollution.
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Figure 12. U2-Net (Training set 2) predicted noise images. (a) Original image; (b) sea ice GT
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image segmentation.

Appl. Sci. 2023, 13, 9402 12 of 19 
 

 
Figure 11. Mean value of recall of U2-Net versus noise level. 

Figures 12 and 13 show the results of U2-Net (Training set 2) and model U2-Net (Train-
ing set 3) predicting different levels of test set. Model 2 could predict images with low 
noise, but the predicted noise limit was approximately 0.15; U2-Net (Training set 3) had a 
stronger generalization ability than model U2-Net (Training set 2) and was able to segment 
images with more severe noise pollution. 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 12. U2-Net (Training set 2) predicted noise images. (a) Original image; (b) sea ice GT value; 
(c) Noiseless image segmentation; (d) 0.1 noise image segmentation; (e) 0.11 noise image segmenta-
tion; (f) 0.15 noise image segmentation; (g) 0.16 noise image segmentation; (h) 0.17 noise image seg-
mentation. 

    
(a) (b) (c) (d) 

Appl. Sci. 2023, 13, 9402 13 of 19 
 

   
(e) (f) (g) (h) 

Figure 13. U2-Net (Training set 3) predicted noise images. (a) Original image; (b) sea ice GT value; 
(c) noiseless image segmentation; (d) 0.15 noise image segmentation; (e) 0.25 noise image segmen-
tation; (f) 0.30 noise image segmentation; (g) 0.40 noise image segmentation; (h) 0.55 noise image 
segmentation. 

To further verify the usefulness of multiple data augmentation methods, the trans-
formations (e.g., rotation and mirroring) were performed on the test set simultaneously to 
obtain a test set with different geometric and radiometric characteristics from the original 
test set in this study. The experimental accuracies are shown in Table 3 using the trans-
formed test sets for U2-Net (Training set 3), U2-Net (Training set 4), and U2-Net (Training 
set 5). 

Table 3. Accuracy of U2-Net on different test sets. 

Models U2-Net (Training Set 3) U2-Net (Training Set 4) U2-Net (Training Set 5) 
Indicators

Test Set 
Imou F1 Recall Imou F1 Recall Imou F1 Recall 

Original test set 0.811 0.877 0.889 0.859 0.916 0.91 0.849 0.903 0.9 
90° rotation 0.693 0.776 0.764 0.828 0.896 0.894 0.818 0.884 0.878 

180° rotation 0.665 0.749 0.731 0.843 0.908 0.91 0.831 0.896 0.882 
Blur 0.862 0.902 0.933 0.923 0.951 0.954 0.911 0.937 0.941 

Brighten 0.690 0.770 0.789 0.836 0.893 0.911 0.831 0.892 0.897 

The accuracy evaluation indices of U2-Net (Training set 4) were higher than those of 
U2-Net (Training set 1) when predicting the noiseless test set (Figure 14). The accuracy 
evaluation indices of U2-Net (Training set 5) were higher than those of U2-Net (Training 
set 3) when predicting the test set with 0.2 noise level (Figure 15). 

 
Figure 14. U2-Net (Training set 1) and U2-Net (Training set 4) predicted noise-free test sets. 

Figure 13. U2-Net (Training set 3) predicted noise images. (a) Original image; (b) sea ice GT
value; (c) noiseless image segmentation; (d) 0.15 noise image segmentation; (e) 0.25 noise image
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To further verify the usefulness of multiple data augmentation methods, the transfor-
mations (e.g., rotation and mirroring) were performed on the test set simultaneously to
obtain a test set with different geometric and radiometric characteristics from the original
test set in this study. The experimental accuracies are shown in Table 3 using the trans-
formed test sets for U2-Net (Training set 3), U2-Net (Training set 4), and U2-Net (Training
set 5).

Table 3. Accuracy of U2-Net on different test sets.

Models U2-Net (Training Set 3) U2-Net (Training Set 4) U2-Net (Training Set 5)

Test Set
Indicators

Imou F1 Recall Imou F1 Recall Imou F1 Recall

Original test set 0.811 0.877 0.889 0.859 0.916 0.91 0.849 0.903 0.9
90◦ rotation 0.693 0.776 0.764 0.828 0.896 0.894 0.818 0.884 0.878
180◦ rotation 0.665 0.749 0.731 0.843 0.908 0.91 0.831 0.896 0.882

Blur 0.862 0.902 0.933 0.923 0.951 0.954 0.911 0.937 0.941
Brighten 0.690 0.770 0.789 0.836 0.893 0.911 0.831 0.892 0.897

The accuracy evaluation indices of U2-Net (Training set 4) were higher than those of
U2-Net (Training set 1) when predicting the noiseless test set (Figure 14). The accuracy
evaluation indices of U2-Net (Training set 5) were higher than those of U2-Net (Training set
3) when predicting the test set with 0.2 noise level (Figure 15).
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3.2. SC-U2-Net Network

The SC-U2-Net (Training set 1) and U2-Net (Training set 1) network was trained using
the same dataset (Training dataset 1). The accuracies of SC-U2-Net (Training set 1) and U2-
Net (Training set 1) were tested using the test set, and the accuracy of SC-U2-Net (Training
set 1) and U2-Net (Training set 1) tests are shown in Table 4.

Table 4. SC-U2-Net (Training set 1) vs. U2-Net (Training set 1) test accuracy.

Indicators Imou F1 Recall

U2-Net (Training set 1) 0.842 0.897 0.889
SC-U2-Net (Training set 1) 0.857 0.913 0.920

Figure 16 shows some experimental results, where figures (a) to (h) show the sea ice
images of different regions, and (1) to (4) show the original image, labeled image, U2-Net
segmentation result, and SC-U2-Net segmentation result, respectively. U2-Net was less
effective in segmenting some sea ice, such as the broken ice area at the land edge. SC-U2-
Net performed better and could extract the outline and some details of sea ice, as shown in
(a) of Figure 16.
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The accuracy of SC-U2-Net (Training set 5) was examined using an extended test set
(1500 images) and compared to U2-Net (Training set 5). The IoU, F1-score, and recall of
U2-Net (Training set 5) and SC-U2-Net (Training set 5) on the extended test set are shown
in Table 5.

Table 5. Accuracy of U2-Net and SC-U2-Net on augmented test set.

Indicators Imou F1 Recall

U2-Net (Training set 5) 0.834 0.886 0.884
SC-U2-Net (Training set 5) 0.836 0.897 0.898

Using the transformed test sets to test U2-Net (Training set 1) and SC-U2-Net (Training
set 5), the statistics of IoU, F1-score, and recall per image for each test set were calculated
(Table 3; Figure 17). SC-U2-Net (Training set 5) had a much better segmentation effect
than U2-Net (Training set 1) on each test set (Table 6). The results in Table 6 show that
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the simultaneous use of data augmentation and network improvements can improve the
accuracy and generalization of the model.
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Table 6. Accuracy of U2-Net (Training set 1) and SC-U2-Net (Training set 5) on the augmented test set.

Models U2-Net (Training Set 1) SC-U2-Net (Training Set 5)

Test Set
Indicators

IoU F1 Recall IoU F1 Recall

Original image 0.812 0.865 0.857 0.847 0.907 0.911
90◦ rotation 0.793 0.857 0.845 0.827 0.894 0.898
180◦ rotation 0.786 0.855 0.840 0.817 0.887 0.886

Blur 0.807 0.866 0.853 0.838 0.900 0.901
Brighten 0.797 0.856 0.843 0.836 0.897 0.898

Mean of all test sets 0.799 0.860 0.848 0.832 0.896 0.897

4. Discussion
4.1. Data Augmentation Experiments

U2-Net (Training set 1) is very sensitive to noise, and the low intensity of Gaussian
noise makes it difficult for Model 1 to achieve the semantic segmentation of sea ice images.
When the test set did not contain noise, the recall was mainly concentrated at 0.8–1.0,
and when the noise level was 0.05, the recall was bimodal (partly concentrated in 0.8–1.0
and partly concentrated in 0–0.2, which indicates that the weak noise interfered with the
prediction of the model and can only achieve more accurate segmentation for a part of the
images, while the segmentation accuracy of another part of the images was close to 0; the
noise level was 0.1, and the recall of all predicted images was concentrated around 0. This
shows that noise reduces the accuracy of U2-Net semantic segmentation. There are two
main reasons why U2-Net (Training set 1) is sensitive to noise. On the one hand, it is the
convolutional neural network itself, and there is an overfitting phenomenon in the network
training; on the other hand, the training dataset is small, and the single feature of the sea
ice image makes it difficult for the network to recognize more complex ice conditions.

To enhance the generalization ability of U2-Net, different levels of noise are added to
the training set for augmentation. The training set after adding noise has a minimal loss of
accuracy, but the generalization ability of the model is enhanced. The comparative analysis
led to the following conclusions: first, for the noise-free dataset, U2-Net (Training set 1) had
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the best segmentation effect; second, in terms of noise resistance, U2-Net (Training set 3) was
better than U2-Net (Training set 2), which was better than U2-Net (Training set 1). Especially in
U2-Net (Training set 1) (no noise was added to the training set), the noise made the prediction
accuracy decay rapidly. Third, in terms of generalization, the model with the noisy training
set resisted the interference of noise; the richer the noise level was, the stronger its noise
resistance was. U2-Net (Training set 2) could predict images with low noise, but the predicted
noise limit was approximately 0.15; U2-Net (Training set 3) had a stronger generalization
ability than model U2-Net (Training set 2) and was able to segment images with more severe
noise pollution.

U-Net (Training set 4) was obtained using Training set 4, and the accuracy evaluation
indices of U2-Net (Training set 4) were higher than those of U2-Net (Training set 1) when
predicting the noiseless test set. U2-Net (Training set 5) was obtained by training U2-Net
network with dataset 5, and the accuracy evaluation indices of U2-Net (Training set 5) were
higher than those of U2-Net (Training set 3) when predicting the test set with 0.2 noise
level. Using multiple data augmentation methods not only improves the model’s ability to
cope with complex scene transformations but also improves the accuracy of semantic seg-
mentation. We also constructed additional test sets with affine transformation, mirror flip,
and blurring. The augmented training set images in the training of U2-Net (Training set 4)
and U2-Net (Training set 5) enabled the network to learn multiperspective and multiscale
semantic features, making U2-Net (Training set 4) and U2-Net (Training set 5) cope well
with complex scenarios. We also constructed additional test sets with affine transformation,
mirror flip, and blurring. U2-Net (Training set 4) and U2-Net (Training set 5) performed
better on these test sets.

Data augmentation experiments showed that U2-Net (Training set 1), which was
trained using only the original data, was very sensitive to noise and that adding a small
perturbation to the grayscale values of the original images caused U2-Net (Training set 1)
to fail. This was because the number of images in the training set was small, and the scene
was single, which results in U2-Net overfitting. Noisy data augmentation expanded the
sample size and improved the generalization ability of the model. U2-Net (Training set
2) and U2-Net (Training set 3) showed a more stable prediction ability when predicting
images with noise. The semantic segmentation accuracies of U2-Net (Training set 4) and
U2-Net (Training set 5) were close to that of U2-Net (Training set 3) tested on the test set,
and the new test set was obtained by subjecting the test set to affine transformation, mirror
flipping, and blurring. The semantic segmentation accuracy of U2-Net (Training set 4) and
U2-Net (Training set 5) was much better than that of U2-Net (Training set 3) on the new
test set because the training sets of U2-Net (Training set 4) and U2-Net (Training set 5) used
a variety of data augmentation in the training. The augmented training set images in the
training of U2-Net (Training set 4) and U2-Net (Training set 5) enabled the network to learn
multiperspective and multiscale semantic features, making U2-Net (Training set 4) and
U2-Net (Training set 5) cope well with complex scenarios.

4.2. SC-U2-Net Network

In the comparison experiments of U2-Net and SC-U2-Net, we used the same training
set to train U2-Net and SC-U2-Net, so as to exclude the accuracy improvement brought
by the increase of dataset, and the experiments show that when using the same training
and test sets, the IoU, F1-score, and recall of SC-U2-Net were higher than those of U2-Net.
SC-U2-Net is more effective for sea ice segmentation on remote sensing images. We also
compared U2-Net (Training set 1) (U2-Net trained without data augmentation) and SC-U2-
Net (Training set 5) (SC-U2-Net trained with data augmentation), and the results show that
the simultaneous use of data augmentation and network improvement can improve the
accuracy and generalization of the model. SC-U2-Net was able to segment the narrowly
shaped sea ice with a smaller area, and the segmentation results are basically consistent
with the labeled images. U2-Net is effective in segmenting sea ice over a large area on
the sea surface, while narrowly shaped sea ice extending into the land interior is ignored.
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Compared with U2-Net, the improved SC-U2-Net was able to pay more attention to the
details of the target and segmented the discontinuous sea ice better.

5. Conclusions

Based on the U2-Net semantic segmentation network, this study expanded the training
set using a data augmentation method and investigated the effect of data augmentation
on the accuracy and generalization ability of U2-Net. In the case of poor segmentation
of some sea ice images, the SC-U2-Net network was constructed by adding a multiscale,
inflation convolution and multilayer CBAM attention mechanism on top of U2-Net, and
its accuracy was compared with that of the U2-Net network. The study concluded the
following: (1) U2-Net could segment the original test set images well, but the model
generalization was poor. (2) The multilevel Gaussian noise data enhancement scheme
designed in this study improved the noise interference resistance of the network, considered
the generalization performance and accuracy of the model, and achieved more accurate
segmentation of images with different degrees of noise pollution. (3) In SC-U2-Net, the
residual structure reduced the loss of features during downsampling, multiscale inflation
convolution increased the perceptual field of deep convolution, and the multilayer CBAM
attention mechanism improved the recognition ability of the network for local features.
SC-U2-Net had a higher average IoU, average F1-score, and average recall rate than U2-Net
for each test set, especially for fragmented sea ice regions.

The limitations of the experiments were as follows: (1) From the experimental data,
the amount of training and test data were relatively small, which affects the reliability
of the network training effect and test accuracy. (2) In the experimental setup, only U2-
Net and SC-U2-Net were compared, and the other networks were not used as references
in the accuracy assessment. (3) The experimental results indicated that, although both
data augmentation and network improvement could improve the accuracy of semantic
segmentation, the improvement was not substantial enough.
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