
Citation: Bazzi, A.; Shaout, A.; Ma, D.

MT-SOTA: A Merkle-Tree-Based

Approach for Secure Software

Updates over the Air in Automotive

Systems. Appl. Sci. 2023, 13, 9397.

https://doi.org/10.3390/app13169397

Academic Editors: Mashael Maashi

and Majed Aborokbah

Received: 21 July 2023

Revised: 13 August 2023

Accepted: 16 August 2023

Published: 18 August 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

MT-SOTA: A Merkle-Tree-Based Approach for Secure Software
Updates over the Air in Automotive Systems
Abir Bazzi 1,* , Adnan Shaout 1 and Di Ma 2

1 Department of Electrical and Computer Engineering, Dearborn, MI 48128, USA; shaout@umich.edu
2 Department of Computer and Information Science, Dearborn, MI 48128, USA; dmadma@umich.edu
* Correspondence: aybazzi@umich.edu

Featured Application: Automotive Industry.

Abstract: The automotive industry has seen a dynamic transformation from traditional hardware-
defined to software-defined architecture enabling higher levels of autonomy and connectivity, better
safety and security features, as well as new in-vehicle experiences and richer functions through soft-
ware and ongoing updates of both functional and safety-critical features. Service-oriented architecture
plays a pivotal role in realizing software-defined vehicles and fostering new business models for
OEMs. Such architecture evolution demands new development paradigms to address the increasing
complexity of software. This is crucial to guarantee seamless software development, integration, and
deployment—all the way from cloud or backend repositories to the vehicle. Additionally, it calls
for enhanced collaboration between car manufacturers and suppliers. Simultaneously, it introduces
challenges associated with the necessity for ongoing updates and support ensuring vehicles remain
safe and up to date. Current approaches to software updates have primarily been implemented for
traditional vehicle architectures, which mostly comprise specialized electronic control units (ECUs)
designed for specific functions. These ECUs are programmed with a single comprehensive executable
that is then flashed onto the ECU all at once. Different approaches should be considered for new
software-based vehicle architectures and specifically for ECUs with multiple independent software
packages. These packages should be updated independently and selectively for each ECU. Thus,
we propose a new scheme for software updates based on a Merkle tree approach to cope with the
complexity of the new software architecture while addressing safety and security requirements of
real-time and resource-constrained embedded systems in the vehicle. The Merkle-tree-based software
updates over the air (MT-SOTA) proposal enables secure updates for individual software clusters.
These clusters are developed and integrated by diverse entities with varying release timelines. Our
study demonstrates that the MT-SOTA scheme can enhance the speed of software update execution
without significantly increasing the process overhead. Additionally, it offers necessary defense
against potential cyberthreats. The results of the performed technical analysis and experiments of the
MT-SOTA implementation are presented in this paper.

Keywords: cyber physical systems; digital signatures; distributed software development; Merkle
tree; safety-critical systems; software over the air updates; software-defined vehicle

1. Introduction

Software updates over the air (SOTA) have gained high interest in the automotive
industry. An electronic control unit (ECU) can only run a new version of received software
after empirically verifying that it has successfully received the entire correct image file
from the repository. Software updates need to be applied across a distributed system of
automotive devices, which can be designed and serviced by different suppliers. The origi-
nal equipment manufacturer (OEM) must shift from the traditional vehicle architectures

Appl. Sci. 2023, 13, 9397. https://doi.org/10.3390/app13169397 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13169397
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7230-0753
https://doi.org/10.3390/app13169397
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13169397?type=check_update&version=1

Appl. Sci. 2023, 13, 9397 2 of 34

toward the more flexible and scalable approach required for the next generation archi-
tecture. Software-defined vehicles are the next evolution of the automotive industry [1].
New automotive trends such as e-mobility, automated driving, and connectivity services
are made possible mainly by software. Main features and operations will be enabled and
managed by software. Software updates not only allow for fixes of software defects or bugs
but also enable management of new and paid features provided as a service throughout the
entire life cycle. The change in business model is made possible by the separation of hard-
ware and software. Significant variation is expected across the vehicle’s various software.
ECU software is becoming more similar to mobile software when different packages are
provided separately and need to be integrated together in the vehicle. Virtualization, cloud-
based approaches, AUTomotive Open System ARchitecture (AUTOSAR), and adaptive
and flexible classic multi-layer software architecture [2,3] are examples which split today’s
binary image into several software binary images which can be independently developed,
integrated, tested, released, and programmed on the target ECU (Figure 1).

Figure 1. ECU binary images are divided into multiple software clusters, each of which can be
developed, tested, released, and programmed onto the target ECU independently.

Digital signatures [4] have been proven to be the most fundamental and useful strate-
gies for securing software updates in the automotive industry. Existing solutions [5] range
from full over-the-air update (OTA) frameworks to approaches based on online/offline,
symmetric/asymmetric algorithms, full and partial verification, hardware and software
implementation, and many other approaches. These solutions have mainly been ap-
plied to classic ECUs with single image application software (one image binary per ECU).
With newer ECU architectures and frameworks, OEMs and suppliers face the challenge to
enable on demand a flexible deployment of portable, consistent and interoperable software
(multiple of software clusters) in the ECU throughout the entire lifecycle of the vehicle.
Software clusters and data are selectively updated to add or remove software functionality,
enable paid services, implement a security fix, or improve performance. OEMs have also
to support both legacy ECUs (e.g., classic AUTOSAR architecture) in addition to the high-
performance computing ECUs (e.g., adaptive AUTOSAR architecture). Among the existing
approaches, we did not find any related work to verify at once the authenticity, integrity,
compatibility, and harmonization of a single binary image with the remaining software
images using the single authentication signature appended to the software code image.
Different approaches should be considered for ECUs with multiple independent binary
executions. Thus, our Merkle-tree-based software updates over the air concept (MT-SOTA)
is proposed to complement existing approaches to address new software architectures
in the automotive industry. The main contributions of this work can be summarized as
the following:

• An overview of the process for software updates over the air and the current solutions
employed in the automotive industry.

Appl. Sci. 2023, 13, 9397 3 of 34

• An overview of the new vehicle architectures and the challenges in dynamically
updating selective software clusters.

• The design of a novel hash-based scheme that improves on the existing literature,
efficiently stores integrity information for ECU software images, and addresses the
various architectures of the software and vehicle markets. Our approach allows us to
maintain one key security pair for signing and the same signature size to obtain the
target security level. We define our scheme to accommodate interactions and compati-
bility between distinct software images, whether logically or physically interconnected
within the vehicle.

• The development of the suggested approach prototype and demonstration that our
strategy fulfills the specified requirements.

The remainder of this paper is organized as follows. Section 2 provides a summary of
related work. Section 3 defines our system and the adversary model. Section 4 describes
our scheme, including Merkle tree details and defining the interactions between entities.
In Section 5, we analyze the security of our approach. Section 6 presents our performance
evaluation and results. Section 7 discusses different methods to optimize the MT-SOTA
approach to better address different use-cases. Finally, we conclude the paper in the
last section.

2. Related Work

Consumer electronics, commercial aviation, and medical devices are adjacent indus-
tries that have many hardware devices containing loadable firmware components and have
the task to track and verify the installation of the software updates across their fleets. In the
NHTSA report [6], the authors present a literature review of the state-of-the-art of software
updates in the industries related to the automotive industry and conclude that there are
mainly two common existing defense mechanisms: trusted content distribution networks
and digitally signed software updates.

The Internet of Things (IoT) devices have similar resource constraints (e.g., energy,
computation, and storage capacity) to the automotive ECUs [7,8]. The Trusted Com-
puting Group (TCG) has released a reference report [9] describing how secure software
and firmware update for embedded systems can be performed using trusted computing
technologies. The Internet Engineering Task Force (IETF) Software Updates for Internet
of Things (SUIT) working group is actively working on specifying a software update
architecture for IoT devices [10].

Numerous mechanisms have been considered, standardized, and adopted by the
automotive industry for software updates over the air in the vehicle. Uptane [11] and other
proprietary frameworks (e.g., [12]) have been introduced to manage the software update
process. In addition, different security mechanisms have been used to secure the software
updates by means of hashing mechanisms [13,14] as well as symmetric and asymmetric
cryptographic mechanisms [15,16]. SOTA approaches have been extended by using com-
pression [17] and delta flashing [18] to reduce the network utilization and bandwidth used
for software updates. Blockchain-based approaches [19,20] have also been considered for
performing software updates for vehicles to guarantee the authenticity and integrity of new
updates. The implementation of blockchain for automotive software updates is promis-
ing for the new electrical/electronic (E/E) architecture; however, it requires considerable
efforts for OEMs as well as high resource consumption at the ECU level. We categorize
these SOTA solutions in the automotive industry based on the security mechanisms used
by the researchers and summarize them in Table 1. In a typical new-generation vehicle
architecture, the topology of an ECU has several software entities (known as software
clusters). Software updates of such clusters need to be applied across a distributed system
of automotive ECUs that are designed and serviced by different suppliers. Hence, OEMs
have to shift from the traditional software update approaches toward a more flexible and
scalable approach required for such software-defined architecture.

Appl. Sci. 2023, 13, 9397 4 of 34

Table 1. Common software OTA update approaches used in automotive.

Approach Description Pros Cons

Message-digest/
Hash-based [13,14]

Software package is hashed,
and result is compared with a
trusted known-good value.
Different types of hash chain

have been proposed to
increase security.

Simple to implement.
One-way only. No security

keys used. Can be software or
hardware implemented.

Memory efficient (typically
256 bits).

Inefficient when there are
many collisions. Known-good

value must be
read/write protected.

Symmetric-based [15]

Software package is encrypted
with a common key and then
decrypted at the receiver side
with the same key. Another

approach is to generate a
message authentication code

(MAC) using the common key
and verify the same MAC

code at reception.

Fast cryptography. Easily
implemented (AES

accelerators are widely
available in microcontrollers.)
Small key lengths. Example of

symmetric keys used: AES
(128/192/256 bits),

CHACHA20 (128+ bits).
Modes of sharing:

Diffie-Hellman and physically.

Key security (key must be
read/write protected).

Managing keys is a challenge.
Complexity consistent

regardless of number of users
or frequency of use.

Asymmetric-based [16]

Software package is encrypted
with a private key and then

decrypted at the receiver side
with the corresponding public

key. Another approach is to
generate a code signature by

hashing the software package
and then encrypt the hash

value using a private key (e.g.,
RSA 2048, Ed25519).

Key flexibility. Relatively long
key lengths. Example of
asymmetric keys used:
RSA-2048 (256 bytes),

RSA-7096 (512 bytes), ECDSA
(secp521r1:1042-bit for public
key, 132 bytes for signature),

EdDSA (32/57 bytes for keys,
64/114 bytes for signature).

Modes of sharing: PKI.

Key security (key must be
read/write protected). Slower
cryptography than symmetric

schemes. Complex to
implement for some

algorithms (e.g., ECDSA and
EdDSA). Complexity grows
with number of users and

frequency of use.

Blockchain-based [19,20]

Distributed peer-to-peer
database. Data are saved on
each node, transactions are

saved into blocks.
Cryptography is based on

hashing and digital signatures
(using asymmetric

cryptography e.g., ECDSA.)

Immutable (permanent and
tamper-proof). Decentralized

control. Redundant
decentralized copy on every

node of the network.
Consensus-based, creates trust
and integrity in an untrusted

environment

New to Automotive.
High memory consumption in

the ECU.

Secure Software Repository
Framework [11,12]

Framework introduced to
allow repositories to build

different security models that
provide varying degrees of

security and usability
(e.g., Uptane framework).

Separation of trust. Explicit
and implicit revocation of

keys. Flexible implementation
(full or partial verification,
asymmetric or symmetric

keys, encrypted or
unencrypted update image,

online or offline keys.

OEM has to setup and
maintain the repositories.

3. System Model

A typical implementation of a software update over-the-air architecture in a vehicle is
shown in Figure 2. The OTA master residing in the ECU, usually the Telematics or Gateway
modules within today’s vehicles, is capable of connecting wirelessly to the repositories.
The OTA master receives the software image from the repository and distributes it to the
target ECU in the vehicle. A simplified view is shown in Figure 3 for the SOTA process
carried out in several successive steps. There are four main actors in the system:

• OEM Repository “OemR”: This repository is responsible for signing software images.
Given the role of OemR in common SOTA processes, OemR contains all of the in-
formation about images to be installed on ECUs, generally using an OEM inventory
database containing information on vehicles, ECUs, software images, etc. Each soft-

Appl. Sci. 2023, 13, 9397 5 of 34

ware image must have a unique identifier linked to an ECU identifier that specifies
the ECU installing the image. Our scheme extends the OemR with the capability
of creating and maintaining the Merkle trees. In our study, we focus on a scenario
in which software clusters reside in the same ECU. Thus, the OemR has to create a
Merkle tree for each ECU in the vehicle. OemR has to store the hash value of each
software cluster in addition to existing image metadata such as image name, version,
size, hashing function used, and any additional proprietary OEM information, such as
the download URL for the image file located in the image repository. OemR is trusted
and responsible for protecting the harmonization among software clusters as well as
the integrity of each software image to prevent any tampering.

• Image repository “ImgR”: This repository contains the software binary images to
install as well as the signatures (authentication tags) for these images. These signatures
are generated by OemR.

• OTA Master “OtaM”: This entity is responsible for receiving software images in
the vehicle and distributing them to other ECUs in the vehicle. OtaM is capable of
connecting to backend repositories through wireless channels, such as Wi-Fi or cellular
communications.

• End-Target ECU “EcuX”: This is the ECU in the vehicle where software image is
installed or updated. Upon reception of new image software, EcuX validates the
integrity and authentication of the image as well as proves complete possession and
compatibility of the software image in question. EcuX can be directly connected to
OtaM through in-vehicle communication channels, e.g., CAN or Ethernet, or can be
indirectly connected through a gateway or domain controller. In case the software
image is intended for the OTA Master itself, OtaM will play the role of EcuX.

Figure 2. OTA System Architecture: The OEM and image repositories contain all the information
about the software update process and the software images to be wirelessly transferred to the vehicle.
The OTA Master manages the update process for all ECUs within the vehicle. It receives the images
from the repositories and transfers the image to the target ECU.

Appl. Sci. 2023, 13, 9397 6 of 34

Figure 3. Software updates using a digital signature scheme: The signature generation process is used
by the repositories to generate the signature on the software images, and the signature verification
process is used by the ECUs in the vehicle to verify the received images.

3.1. Adversary Model

Before discussing the details of the system, we want to introduce the adversary model
and attack strategies considered for our system. We assume a powerful adversary, A, who
has managed to find a way to get hold of ImgR, OtaM, or EcuX to modify the code of a
software cluster image to control the ECU in the vehicle or even the vehicle itself, perform
reverse engineering of the software image, or read the contents of the ECU software to
discover confidential or intellectual property information. The adversary also knows the
details of the software update algorithm and how the software is organized within an ECU,
so it aims to modify one software entity or revert to an old software version. Due to the
storage of the keys in secure protected memory, the attacker can only alter the software
image itself or part of it but cannot modify any signature values generated by OemR. Our
threat model encompasses attacks not only on data integrity and authentication but also
on the compatibility of the complete software. Such attacks are mainly categorized into
spoofing, splicing, and replay attacks. Spoofing attacks correspond to A being able to
replace an existing software image with a malicious code. Splicing attacks or mix-and-
match attacks correspond to A being able to swap software between different ECUs or

Appl. Sci. 2023, 13, 9397 7 of 34

vehicles. Replay attacks correspond to A being able to revert a software image to an
older image.

We assume that adversary A can obtain direct access to the ECU or the image repository
and can repeat the process of modifying the image as many times as it wants until it
can create an image that can evade the detection of software update verification. Any
compromised applications can directly influence other applications in the ECU as well
as other ECUs in the vehicle. Thus, the weakest image repository and ECU that can be
attacked by A determines the security level of all applications running in the ECU and
vehicle. Any of the actors having access to the image software can potentially be taken up
by malicious actors in the supply chain and are prone to man-in-the middle attacks. On the
one hand, adversary A can intercept and modify traffic between the vehicle and image
software repositories or inside the vehicle between the ECUs or directly accessing and
compromising an ECU. In contrast, A can compromise and control the image repository.

3.2. Assumptions

Our basic assumptions for the system are:

• A1: ECUs are able to perform cryptographic digital signature operations and key
management throughout the entire lifecycle, including key establishment, storage,
and usage. By using existing methods such as public key infrastructure (PKI) [21],
OemR owns a private and public key pair for each EcuX. OemR uses the private key
for signature generation and EcuX uses the public key for signature verification. We
assume that the public keys are distributed and installed in EcuX before any software
updates can be performed. The public keys shared between the OemR and EcuX are
not guessable and cannot be accessed by the adversary.

• A2: The communication between OemR and ImgR is secure. We assume that they
are able to connect and communicate whenever the ImgR has a new software image
version to be deployed to the vehicle or whenever OemR finds out that the vehicle
does not have the latest software images.

• A3: The hash function used is not breakable, meeting the requirements of preimage-
resistant, second-preimage-resistant, and collision-resistant for a hash function [22].
In other words, for a hash value H(SW) calculated for a given image software SW,
it is infeasible to find the software image SW (preimage-resistant feature). It is also
infeasible to find another image SW’ such that Hash(SW) = Hash(SW’) and SW 6= SW’
(second-preimage-resistant feature), as it is also infeasible to find any two images SW
and SW’ such that Hash(SW) = Hash(SW’) and SW 6= SW’.

• A4: The chosen signature scheme is strongly unforgeable. Strong unforgeability
assures the adversary cannot generate a new signature for a previously signed software
image. In other words, assume an adversary obtains the software image and signature
pair (SW, δ); the signature is strongly unforgeable if the adversary cannot generate a
new signature δ’ for the same software image SW.

• A5: The OemR and EcuX share the same information about the Merkle tree (e.g.,
max number of software images, left-right bottom-up approach, static or dynamic).
Otherwise, EcuX, as the verifier, cannot validate the correctness of the software image.

3.3. Requirements

The E/E architecture is going through fundamental changes. Driven by software-
defined vehicle architecture, the vehicle is evolving into ECUs in which new functions
and features are implemented and deployed primarily through software. The adaptation
of the vehicle-centralized, zone-oriented E/E architecture takes place as an iterative pro-
cess, introduced gradually in the vehicle. The E/E architecture transitions from being a
decentralized system, connected by a central gateway in which functions are running on
dedicated ECUs with software binding to hardware, towards more centralized systems
with dedicated domain controllers handling a set of functions related to a specific area
or domain before evolving into zonal controllers arranging functions according to their

Appl. Sci. 2023, 13, 9397 8 of 34

positions in the vehicle [23]. Throughout this transition, significant variation is expected
across the various vehicle software. As shown in Figure 4, the software evolution goes
in parallel with hardware evolution. The majority of software in decentralized architec-
ture is combined with a function-specific ECU in a single package and fully controlled by
OEMs. A typical new-generation vehicle likely has an architecture composed of five or
more domains. The functions are abstracted from discrete ECUs and centered in software
in fewer hardware modules. Domain-specific functions are optimized for their applica-
tion and distributed flexibly to any cross-domain vehicle controllers and no longer tied
to a particular ECU. High performance computing ECUs and service-based approaches
(e.g., service-oriented communication) are essential for the zonal architecture. Software
services can be subscribed across application and ECU boundaries. Signal-based real-time-
controlled software continues to be used for sensors and control actuators. Due to the
disruption in the E/E topology, OEMs cannot change the complete vehicle setup quickly
and the transition will take place at different rates depending on OEM strategies. Therefore,
legacy classical ECUs will remain part of the vehicle, and a mixed architecture will be
implemented in tomorrow’s vehicles. An application software entity can be placed either
in a central computing controller, a zonal controller, a domain controller, or a persistent
specialized ECU (e.g., actuator, sensor).

Figure 4. Evolution of the E/E and software architecture from a distributed approach to a hierarchical,
software-centric architecture with centralized computers and domain or zone controllers.

The contents of software within an ECU can differ hugely due to many factors, such as
segment (e.g., ADAS, Infotainment, Chassis), powertrain type, level of driving automation
(SAE AV level), etc. The software functionalities range from real-time safety systems to
interactive apps. The vehicles are expanded with cloud and backend solutions as well as
services, enabling the vehicle to access and participate in mobility ecosystems to guarantee
high availability and fast delivery of the updates. OEMs and suppliers have an opportunity
to grow their business by adding on the fly certain software capabilities, e.g., functional
safety, artificial intelligence, security capabilities. Optimization can be implemented glob-
ally across all vehicle platforms, as well as locally, limited to a particular vehicle model or
market. Small, large, low-end, high-end vehicles are usually equipped with ECUs with dif-
ferent sets of software. Such flexibility and scalability are mainly achieved through software
modularity and over-the-air update capabilities. Software modules are deployed based on
the vehicle models or markets as well as relevant configurations. While variant handling
and configuration options are traditionally performed at the time of vehicle purchasing,
they will increase and be activated at a later point in time depending on available features

Appl. Sci. 2023, 13, 9397 9 of 34

and paid services. The most promising feature of the future architecture is the ability to add
new functions to the vehicle by simply adding a software driver, very similar to the case of
adding a new application to a mobile phone. Software is transforming capabilities in the
vehicle but also creating development challenges for OEMs. OEMs have to manage the
software complexity introduced by new and advanced functionalities; distinguish which
software is running into an ECU regardless of the vehicle models, markets, and activation
states; as well as provide dynamic software updates at any time.

To address such automotive demands, we aim to design a software update scheme
with the following requirements:

• Requirement 1: The scheme shall allow detection of any tampering with the soft-
ware image.

• Requirement 2: The scheme shall allow detection of any incompatibilities between
the logically or physically dependent software images in the vehicle.

• Requirement 3: The scheme shall work with any frameworks or platforms supporting
multiple binaries programming using digital signatures. The scheme shall support
different types of hash algorithms as well as different signature mechanisms.

• Requirement 4: The scheme shall allow efficient addition or removal of software
clusters. The vehicle should be able to receive requests to add a new software cluster
or remove an existing one. Thus, the scheme shall enable efficient generation and
secure storage of the signature.

• Requirement 5: As ECUs might be heterogeneous in terms of hardware, computation
capabilities, and memory storage, the scheme shall make it possible to induce in-
significant overheads in the lightweight ECUs with limited memory and computation
resources on the installation of additional images.

• Requirement 6: The scheme may be used for intra-ECU and inter-ECU distribution
of software clusters. Dependant software clusters can be located in the same physical
ECU. However, it is possible they are physically running in different ECUs. In this case,
it should be possible for the ECU to validate the signature even it doesn’t have access
to complete software clusters. This enables flexibility to move a software cluster from
one ECU to another ECU while keeping the dependency among the software clusters.

• Requirement 7: The scheme shall use one key pair per ECU to generate and verify
the signature regardless of how many software clusters are used per ECU.

4. Scheme Design

As explained in the previous section, functions are hard-coded and tied to the hard-
ware for specialized ECUs and domain controllers, while they are implemented as software
in domain-agnostic hardware for zonal controllers and central computers. Our approach
aims to cover software over the air updates for any embedded systems in today’s, to-
morrow’s, and future vehicles. We can categorize the software architectures into four
main categories:

• Case 1: A single software package in an ECU (e.g., traditional classic AUTOSAR
platform, software is decomposed into software blocks).

• Case 2: Multiple software packages in an ECU (e.g., adaptive AUTOSAR, flexible
classic AUTOSAR platform).

• Case 3: Multiple software packages in different ECUs (e.g., zone controllers and
connected ECUs).

• Case 4: Multiple software packages on-board and off-board (e.g., AI-based cloud
applications, backend user applications).

Our approach is built on hash-based signatures [24] due to their advantages, specifi-
cally considered to be quantum-resistant and future proof. They are reasonably fast and
result in a small signature size. Its security assumption is minimal as it relies only on the
criteria of a hash function and unforgeability of a digital signature as stated in Section 5.
It is parameterized to fit the need for specific applications and different use-cases. We
choose hash tree versus hash table to cover use-cases where software is distributed or used

Appl. Sci. 2023, 13, 9397 10 of 34

differently across vehicles. Most importantly, ECUs can verify complete software integrity
and compatibility without requiring the entire software to be present at the ECU level.
Rather, only the tree root and essential branch stubs for absent nodes are necessary.

Our SOTA scheme is based on a Merkle tree approach [25,26]. We present a theoretical
explanation and analysis for our approach, irrespective of the specific software use-cases
employed. Figure 5 outlines the workflow at the backend repositories:

1. The image software resides in the image repository (ImgR).
2. The ImgR provides the correspondent hash value of the software image with addi-

tional manifest data to the OEM repository (OemR) to generate the signature.
3. The OemR has all information about the vehicle, ECUs, and software clusters. The

OemR checks which ECU the software cluster belongs to and uses the corresponding
Merkle tree to calculate the root.

4. Using the private key assigned to EcuX, the Merkle tree root is signed to create the
signature of the software image.

5. The OemR provides the generated signature to ImgR.
6. The OemR constructs the vehicle package containing the manifest data for the software

images to be installed, and then sends it to the OtaM in the vehicle.
7. The ImgR sends the software image appended with the signature.
8. Once EcuX receives the software image, it updates the Merkle tree with the hash of

the received software image, and then it determines whether the root tree is the same
as the one received from the ImgR (after decrypting the received value with the public
key of EcuX). Once verified, EcuX stores the value of updated node and root node in
the Merkle tree in a secure location.

Figure 5. Software update over the air workflow, extended with Merkle tree scheme to safely and
securely update software in the vehicle.

The Merkle-tree-based scheme is designed to work properly regardless of the quantity
of verification or number of software components involved. MT-SOTA does not specify
full implementation details on purpose. It describes the main necessary entities and
methodology for the concept and leaves it up to OEMs to make their own technological

Appl. Sci. 2023, 13, 9397 11 of 34

choices, for example, which hash algorithm to use or which public key cryptographic
algorithm is used by the keys for signing the Merkle tree root (such as RSA or ECDSA [4]).
When the ECU has access to existing software images installed on it, there is no need
to send anything beyond the signature. In this case, the authentication path, the hash
values of the neighbors of the nodes on the path from the leaf to the root, is also not
transmitted. Thus, the communication cost is negligible. We use the following notations in
our MT-SOTA scheme:

• SW = SW0, . . . , SWN−1: SWi is one of the software cluster images to be updated in
an ECU.

• N is the number of software clusters in an ECU.
• Nmax is the max number of software clusters that can reside in an ECU throughout the

lifetime of the ECU.
• Si = ‖SWi‖ is the size of the software cluster SWi in bytes.
• Hi is the hash value of the software cluster SWi image. ‖Hi‖ is the size of Hi in bytes.
• HT: is the Merkle tree height. The height at the root node is equal to log2(N).
• SWM is the modified SW cluster, SWM ∈ SW.
• MT: is the Merkle tree structure, MT[i][j] is the node at height i and index j.

The MT-SOTA scheme consists of two phases. At the OemR side, there are the setup
and generation phases. At the EcuX side, there are the setup and verification phases.
The setup phase of the Merkle tree is similar between OemR and EcuX. The setup phase
consists of creating a full binary Merkle tree using the hashes of all installed software
clusters. The tree needs to accommodate for Nmax nodes that might be deployed throughout
the ECU lifecycle. While a Merkle tree can be essentially infinite, we can use only a fixed
number of levels due to embedded systems constraints. Our Merkle tree construction is a
bottom-up approach, with height or level equal to HT, and can have up to 2HT leaf nodes.
Figure 6 shows the binary Merkle tree where the hashes of the software images are used
for the leaves of the tree. The interior nodes, called non-leaf nodes, are constructed by
hashing the child nodes. In addition to the tree information, there is additional management
information that needs to be saved. We summarize the setup phase of the Merkle tree in
Algorithm 1 as follows:

1. The first set of hash results of the software images SW0 to SWN−1, which are the H0 to
HN−1, represents leaf nodes in the hash tree at height 0.

2. These nodes are combined in pairs to provide the first combined hash nodes. The value
of the parent node is the hash of the concatenation of two child node hashes (left ‖
right), where concatenation is represented by ‖.

3. The hash results are further combined in pairs to an intermediate level hash results.
These intermediate level hash results are repeatedly paired and combined until only a
single combined hash result remains. This is the Merkle tree root.

During runtime, ImgR has a new software image update. Prior to downloading this
software update to the vehicle, ImgR has to request OemR to generate the signature in
the generation phase. Each image software is assigned a unique identifier which is used
to locate the leaf nodes in the Merkle tree corresponding to EcuX. As shown in Figure 7,
OemR inserts the new hash value in the leaf node, calculates the new hash of the parent
hash for this updated leaf node and its sibling, and then the parent of the new hash value
and its sibling has to be hashed. This will be repeated until we get to the tree root. This
root is signed by the private key of EcuX to generate the signature. At the vehicle side,
once EcuX receives a new software cluster update, it has to verify the signature to validate
the received image. Depending on what the EcuX should perform, the corresponding
verification should be performed. There are three operations that can be performed:

1. Update an existing software cluster;
2. Add a new software cluster;
3. Remove an existing software cluster.

Appl. Sci. 2023, 13, 9397 12 of 34

Figure 6. Merkle Tree of ECU composed of N software entities.

Algorithm 1 Merkle Tree Creation
INPUT: List of software ID(SWi), Address (Memory location), and Size(Si) of each software cluster
OUTPUT: Merkle Tree Root
FUNCTION: BuildMerkleTree

for i = 1 to Nmax
if (SWi exist)
Calculate Hi and save as a leaf node in tree

end
Calculate Merkle tree contents (MT[i][j]):
(j is index of node in ith level of the Merkle tree.
i goes from 1 to HT, and j goes from 0 to (2HT−i−1) which is
the number of nodes at the ith level)
for i = 1 to Height of the tree (HT)

for j = 0 to number of nodes at the current level
Calculate Hash of the child nodes (e.g., MT[i][j] = hash(MT[i−1][2j], MT[i−1][2j+1]))

end
end

Figure 8 summarizes the steps performed in the ECU to verify the signature. Verifica-
tion is a bottom-up approach where it starts from the leaf node of the received software
cluster (SWM) and goes through the proof path to obtain the top root of the tree. Updating
the Merkle tree follows the same method at OemR and EcuX once the leaf nodes are up-
dated with the new hash values. The main difference is that OemR obtains the hash value
of the software image from ImgR as OemR does not have access to the software image
itself, while EcuX calculates the hash value of the software images if the software cluster
belongs to it. Otherwise, it retrieves it from OemR.

Appl. Sci. 2023, 13, 9397 13 of 34

Figure 7. Signature Generation and Verification with MT-SOTA.

Appl. Sci. 2023, 13, 9397 14 of 34

Figure 8. Verification process at the target ECU through use of the Merkle (hash) tree: a received root
signature is decrypted to obtain a server-side root that is compared to a client-side root calculated at
the target ECU based on an updated hash tree incorporating the hash of the received software.

Figure 9 shows how a Merkle tree is modified to add or update a software cluster.
When EcuX receives a new software image SWM, it first has to perform hashing operation
on SWM, then the hash value HM is inserted into the corresponding leaf node in the tree,
and the node is marked as updated. Next, the parent hash for this updated node and its
sibling is calculated. Then, it needs to find the sibling node of its parent node and calculates
their hash. This process is iterated until reaching the tree root. Mathematically, this can be
represented as follows:

Let j be the position of the node to be verified; then,
if j is even

MT[i][j/2] = Hash(MT[i− 1][j], MT[i− 1][j + 1])

if j is odd

MT[i][(j− 1)/2] = Hash(MT[i− 1][j− 1], MT[i− 1][j])

Appl. Sci. 2023, 13, 9397 15 of 34

Figure 9. Visual view of Merkle tree modification: update of a software cluster.

When EcuX has to remove a software image, it first identifies the leaf node associated
with the removed software image and designates it as invalid. The hash of its parent is then
updated to match the value of the sibling node of the removed leaf node. Subsequently,
it computes the hashes for all intermediary levels until reaching the tree root. Figure 10
shows how a Merkle tree is modified when a software cluster is removed.

Figure 10. Visual view of Merkle tree modification: removal of software cluster.

Regardless of the verification types EcuX has to perform, the calculated Merkle tree
root is compared with the decrypted received value. If they match, the integrity, authentica-
tion, and compatibility of the updated software cluster is verified. Otherwise, EcuX should
indicate a failure error and report it to OtaM, and then to OemR. The path composed of all
modified nodes is called the proof path of the software cluster node. For a Merkle tree of
height HT, the proof path includes HT nodes to obtain the root. Thus, the higher the tree
level is, the longer the proof path is.

Appl. Sci. 2023, 13, 9397 16 of 34

The storage size of the Merkle tree depends on the hash output size. The Merkle tree
height increases exponentially with the number of nodes. The higher the tree is, the more
memory storage it requires. The MT-SOTA scheme has the capability to retain all nodes
in the tree, encompassing both leaf and non-leaf nodes. This expedites the signature
verification procedure by eliminating the necessity to recompute values for unaffected
nodes within the tree. It is possible to store only the leaf nodes to save on memory storage
at the cost of increased computation because the values of all non-leaf nodes have to be
calculated. The Merkle tree needs to accommodate for (2HT+1−1) nodes. Thus, the storage
of the tree (in bytes) is equal to (2HT+1− 1) × ‖Hi‖. Assuming that SHA-2-256 is used
as the hash algorithm, each node requires 32 bytes for the hash value storage. Table 2
shows the number of bytes used to store the complete Merkle tree based on the number of
software cluster nodes when using SHA-2-256.

Table 2. Merkle tree storage size based on number of used software clusters.

Height Max Number of Node Tree Storage in Bytes

1 2 96
2 4 224
3 8 480
4 16 992
5 32 2016
6 64 4064
7 128 8160

5. Security Analysis

A large amount of software and abstraction can make the vehicle susceptible to cyber-
attacks. Thus, MT-SOTA security remains a significant requirement for software updates
over the air. As explained previously, the fundamental security primitive of the MT-SOTA
is based on the security of both the signature scheme and hash function. The digital sig-
nature scheme should be strongly unforgeable. The cryptographic hash functions should
satisfy the three criteria of preimage resistance, second-preimage resistance, and collision
resistance. The security advantage of our proposed Merkle-tree-based digital signature
consists of the insertion of another layer of security using additional hash steps to generate
the root.

Fact1: Security of Merkle-Tree-Based Signature
Given a randomly chosen software image, the probability that an adversary without

knowledge of the entire tree (software image hashes) can forge a modified image with
a valid signature is negligible if a cryptographic (specifically, one-wayness and collision-
resistance) hash function is used to construct the tree.

Proof. Suppose that there is an adversary who knows some details about the Merkle tree
(index of leaf node, number of leaf nodes, value of the root node). The first scenario would
be that the attacker finds the same valid signature for a modified local software image.
Finding such a signature would mean breaking the Merkle tree signature and obtaining
the OEM private key. If the attacker is not able to accomplish this, it needs to find, for a
given software image of a hash function, another software image with the same hash value.
A hash function in which this is feasible is not second-preimage-resistant. Thus, if the hash
function in use is second-preimage-resistant, the attacker will not be able to find the same
signature. Thus, the Merkle-tree-based signature scheme is secure, as long as the signature
is secure and the hash function used is second-preimage-resistant.

Fact2: Authentication of the individual software image
Given a software image intended for a specific vehicle ECU, the adversary’s capa-

bility to install the image on another ECU is negligible due to the unforgeability of the
digital signature.

Appl. Sci. 2023, 13, 9397 17 of 34

Proof. Suppose that there is an adversary who manages to alter the manifest information
to change the destination ECU of the updated software image, for example from ECU-A
to ECU-B. The prover has used the private key associated with the public key of ECU-A.
If the attacker is able to change the update process and succeed into sending the image
to ECU-B, the verifier decrypts it with the public key of ECU-B and thus the verification
fails. Given that OemR has a unique private/public key pair assigned to each ECU and the
keys are well protected and secured, the attacker will not succeed in installing unintended
software on an ECU.

Fact3: Resilience to the leakage of information
Given that the ECU has access to the other software images whose hashes constitute

the leaf nodes of the tree, there is no need for the prover to send proof nodes (sibling
path) as these can be calculated in the ECU when software clusters are local to the ECU.
An adversary who does not know the details of the other software images cannot obtain
any meaningful information through eavesdropping on the proposed MT-SOTA proposal.
Proof 3: Since the size of the Merkle tree and the information about the software images are
managed by the OEM repository and not by the image repository, there is no relationship
between the signature size, structure, and size of the Merkle tree, making it impossible
for the adversary to know about other software images and their hashes. The signature
generated by our scheme includes the value of the root node in the tree encrypted with a
private key. The adversary must uncover the work done by the OEM repository in order to
compromise the software image signature.

6. Evaluation and Analysis

In this section, we evaluate the performance of our proposed scheme. First, we
briefly discuss the performance overhead of the OemR and more thoroughly EcuX in terms
of computation timing and storage memory. Our scheme does not add any additional
overhead to ImagR because this entity is not engaged with the signature calculation beyond
the calculation of the hash value based on the software image contents. Regarding OtaM,
when EcuX is capable of computing and storing the Merkle tree hashes, there is no overhead
applied to OtaM. Whenever a vehicle is requested to install an update, OtaM also receives
a new piece of metadata from OemR with detailed information on the installed images
bundled within a vehicle package. However, for lightweight ECUs, OtaM may need
to manage the Merkle tree and provide the verification results to the ECU. In this case,
the study we present for EcuX is applied to OtaM itself. It is worth noting that our scheme
does not add much overhead to the network bandwidth because no additional traffic is
needed as a single signature is still sent with the software image. Finally, we briefly discuss
the optimization of the MT-SOTA scheme to address specific- use-cases.

6.1. OemR

The OEM repository is a key component in our scheme as it is responsible for gen-
erating the signature by computing the Merkle tree root and signing it for each software
image update. OemR has full knowledge of the vehicle architecture and identification,
ECUs, and software cluster distribution and activation among these ECUs; therefore, OemR
knows how to create and maintain the Merkle trees used to generate the signature. OemR
can extract information about used software images on a vehicle. Using this information, it
can determine how to construct and update the Merkle tree with the new hash value of the
software image. Thus, at the minimum, OemR has the storage overhead of the Merkle tree,
which is highly dependent on the vehicle architecture. If Y is the number of ECUs in the
vehicle, and Nmax is the total number of the software clusters per ECU and is a power of 2,
then the Merkle tree height HT is set to log2(NMax), and the storage overhead of the Merkle
trees is given by:

Y× (2HT+1 − 1)× ‖Hi‖

Appl. Sci. 2023, 13, 9397 18 of 34

6.2. EcuX

As the process of updating software in an ECU is complex, and in the interest of
measuring performance accurately at the ECU level, this study focuses on the MT-SOTA
realization in the ECU to show the Merkle tree overheard on the end-target ECU, including
resource demands, processor overheads, start-up time, and code sizes. It is possible that
the initial Merkle tree contents are flashed at the end of line programming along the initial
software to offload this task from EcuX. With our scheme, the key management is the same
between the standard SOTA and the MT-SOTA schemes because this was a requirement
for our design (Requirement 7 in Section 3.3) to maintain single-key usage for signatures
regardless of the number and providers of the software clusters used.

6.3. Experimental Evaluation

In this section, we evaluate the performance of our concept through extensive experi-
ments and verify its superiority in comparison to the standard traditional SOTA process.
We built the test target ECU using an Infineon AURIX(TM) starter kit triboard [27] with
a TC49x 32-bit microcontroller operating at a 400 MHz CPU clock and connected to a
laptop acting as the repository through the UART/USB interface. We initially started our
implementation with a TC39x 32-bit microcontroller [28]. However, given that the TC49x
offers more support for different hash algorithms implemented in hardware, it is efficient
to compare results with the same experimental conditions where hashes are calculated
by hardware engines in the TC49x instead of being calculated by software for the cases
where the TC39x does not support the required hash algorithms (e.g., the case of SHA3-512).
The hardware security is typically a small cost adder (less than 10%) and nowadays it has
become a necessity in ECUs. Thus, our experiments used security hardware engines to
perform the hash calculations and signature verification operations. The full sequence of
secure MT-SOTA implementation in the ECU is shown in Figure 11. To simplify the system,
a new image is flashed to the triboard using programming tools. In addition, cryptographic
key setup is out of the scope, and keys are loaded to the device using programming tools.

Figure 11. Secure MT-SOTA workflow sequence within the ECU. Once image is received, the signature
verification is performed before installing the image.

The application software is stored in the physical non-volatile memory (NvM). Given
the memory layout of the microcontroller we are using, we have six program flash (Pflash)
banks used for application cores and one Pflash bank used for the security core. We
designed and located the main scheduler and MT-SOTA scheme handler in Pflash0. The ap-
plication software clusters are located in any of the Pflash1 through Pflash5 NvM banks.
The security software, located in Pflashcs, is responsible for executing on-demand cryp-
tographic functions (e.g., hash computations) initiated by the MT-SOTA scheme software

Appl. Sci. 2023, 13, 9397 19 of 34

handler. As the smallest erasable Pflash size is 16 Kbyte, we assume that the smallest size
of any software cluster or block is 16Kbyte and its size should always be a multiple of 16.
We assume that we have N software images in addition to the security image and the main
MT-SOTA handler image. Thus, we have N + 2 image binaries to flash on the device. We
present the non-volatile memory map layout as shown in Figure 12.

Figure 12. Software memory mapping for the ECU test case.

Software clusters (SWC) are usually separated based on various criteria such as safety
level, functionality, virtual platforms, etc. We analyze different generic-use-cases to
reflect different flash memory sizes, different numbers of software clusters, and different
hash algorithms. We experimented with the performance of these use cases built with a
combination of parameters, as shown in Table 3. Because the encryption and decryption
of the Merkle tree root are the same for all use cases, we do not include it in the results to
emphasize the performance results of the MT-SOTA scheme itself.

Table 3. Parameters used in MT-SOTA scheme study.

Parameter Supported Cases

Hash algorithm (Hash output size in bytes)
SHA3-512 (64), SHA3-256 (32), SHA2-256 (32),
SHAKE-256 (32), SHAKE-128 (16), SHA1-160

(20), MD5-128 (16), SM3 (256)

Number of SWCs 2 through 128

Non-volatile program flash sizes 1 MB through 20 MB

Size of software clusters
Multiple of 16 KB.

Max size = Flash size/Number of
software clusters

The computation of hashes is performed using cryptographic services (algorithms
that map arbitrarily sized data to a fixed size output). These cryptographic routines can be
implemented in software or hardware, and mixed setups can be supported. It should be
possible for different applications to have different underlying cryptographic primitives
or schemes. This flexibility is one of the advantages of this approach. For example, one
software cluster might use SHA-2 as the hash algorithm, while another software cluster
uses a SHA-3 hash algorithm. Excluding some exceptions, more hash output bits aim to
achieve stronger security and higher collision resistance. As a general rule, 512-bit hash

Appl. Sci. 2023, 13, 9397 20 of 34

functions are stronger than 256-bit hash functions, which are stronger than 128-bit hash
functions. The main security profiles of computation of hashes [24]:

• SHA-2: Length: 224, 256, 384, 512
• SHA-3: Length: 224, 256, 384, 512
• BLAKE: Length: 224, 256, 384, 512
• BLAKE: Length: 224, 256, 384, 512
• RIPEMD-160: Length: 128, 160, 256, 320
• SM3: Length: 256

Since the hashing computation can be executed by hardware engines within the secu-
rity module in AURIX(TM), our analysis shows that the usage of different hash algorithms
does not have a major impact on execution timing. Thus, we decided to include the results
of the work performed with the SHA2-256 hash algorithm in this paper.

The number of software clusters and the hash algorithm used have a direct impact
on the data flash memory required to save the contents. The larger the size of the hash
output is, the more memory it takes to construct and store the Merkle tree. The more
software clusters there are, the more levels the Merkle tree has. In order to compare our
MT-SOTA concept performance to existing concepts, we study the case when MT-SOTA is
not used. Since our concept requires using a single security key pair for each ECU, we have
the same requirement for a SOTA study without MT-SOTA. In this case, when any part
of the software is modified, added, or removed, the complete software must be hashed,
and then the hash value is signed (encrypted by OemR and decrypted by EcuX). We show
the hashing time execution for different values of software cluster sizes and numbers in
Figure 13. As the software cluster size increases, more time is required to perform hash
operations. It is worth noting that there is an inverse correlation between the size and the
number of software clusters as the complete software has to fit into the available Pflash
memories. Thus, the maximum size of the software cluster becomes limited as the number
of software clusters increases.

With our MT-SOTA implementation, we measured the time required to create and set
up the Merkle tree data. Prior to this, hashing values of all software components had to
be calculated and used for the leaf nodes of the tree, followed by creating different levels
of hashes until reaching to the root, as explained earlier. The execution times are shown
in Figure 14. As shown, the Merkle tree setup is independent of the software cluster size
because only the hash values are used. The more nodes used, the more time is required for
the tree setup.

Once the Merkle tree is built, we study the case of adding new software clusters or
updating or removing them. Figure 15 shows the time required to add or update a software
component. This includes hashing the added/updated software and updating the Merkle
tree with a new hash value. Figure 16 shows the time required to remove a software
component entry from the Merkle tree. Because removing a node does not require hashing
for the software cluster, the time taken to remove a node is shorter than the time taken to
add a node. It only requires updating the Merkle tree to retrieve the root.

Employing MT-SOTA for software cluster updates leads to a reduction in timing
by as much as 80%, as illustrated in Figure 17. The measurement results in Figure 18,
showcasing various Merkle tree sizes, further affirm the significant improvement provided
by MT-SOTA. The time required for hashing smaller data blocks (software clusters) is
significantly shorter than the time needed for hashing the entire software. As the number
of nodes increases, the performance advantage of MT-SOTA over the traditional SOTA
process becomes more noticeable. For example, when there are only eight nodes per ECU,
MT-SOTA improves the process by 80% regardless of the size of the software clusters.
Additionally, MT-SOTA demonstrates improved efficiency when removing a software
cluster, as it eliminates the need for hash calculations on the removed software. Instead,
the algorithm solely updates the Merkle tree contents. Consequently, the time depicted in
Figure 13 becomes unnecessary, and MT-SOTA decreases the time interval from multiple
milliseconds to microseconds.

Appl. Sci. 2023, 13, 9397 21 of 34

Figure 13. Processing time for generating hash of the entire software image. As the number of
software clusters or the size of the software increases, the required time also increases.

Figure 14. Execution time for setting up the Merkle tree.

Figure 15. Execution time for adding/updating individual software clusters with MT-SOTA.

Appl. Sci. 2023, 13, 9397 22 of 34

Figure 16. Execution time for removing individual software clusters with MT-SOTA.

Figure 17. Time execution percentage improvement with MT-SOTA vs. standard SOTA.

Figure 18. Comparing execution times: updating software clusters with MT-SOTA vs. standard SOTA.

Appl. Sci. 2023, 13, 9397 23 of 34

Looking into memory needs, the overhead of the MT-SOTA scheme depends on the
software clusters number as well as the hash algorithm used. In Table 4, we provide a
summary of memory utilization for various hash output sizes and maximum node counts
across our study cases.

Table 4. Memory utilization with MT-SOTA scheme.

Type of Memory Amount of Memory Used Description

Non-volatile program flash 7 KB MT-SOTA handler code

Non-volatile data flash

Memory USED (Max
Nodes/Hash Output Size):

16.5 KB (128/64)
8.5 KB (128/32)
5.5 KB (128/20)
4.5 KB (128/16)
6.3 KB (64/64)
4.2 KB (64/32)
3.5 KB (64/20)
3.2 KB (64/16)

Merkle tree contents (64 or 128
as max number of stored

nodes). The larger the hash
output size is, the more

memory is needed.

RAM (data) 100 bytes + copy of Dflash
Merkle tree contents

MT-SOTA handler-related
variables. The Merkle tree

contents have to be copied to
RAM when a new software
update has to be performed,
and then the updated RAM

copy will be copied to Dflash
once the software update is
validated and completed.

7. MT-SOTA Optimization Techniques

The Previous sections have demonstrated the performance of MT-SOTA in updating
software clusters within the ECU. Nonetheless, specific challenges must be acknowledged
based on the relevant use cases. In this section, we explore various approaches to address
certain limitations associated with the utilization of MT-SOTA.

7.1. Dynamic Merkle Tree Algorithm

Up to this point, our emphasis has been on a static tree design, in which software
nodes are sequentially assigned to the leaf nodes located at the bottom level. We showed
that the smaller the tree height (maximal number of levels below the root) is, the better
the software update performance is. As software nodes are anticipated to be dynamically
added in the vehicle, the tree can be re-designed such that the addition and removal of
nodes can be performed efficiently with the minimum tree height possible. The goal is
to build a self-balancing Merkle tree that automatically keeps its height small for node
insertions and deletions. Self-balancing trees have proven their efficiency for many binary
search trees, such as red–black trees and AVL trees [29]. Given that nodes are added and
removed independently, the algorithm should be meticulously designed to achieve optimal
results, resulting in the minimal achievable tree height. Deviating from the bottom-up
approach we have adopted in our study, we can follow a top–bottom approach to add the
new leaf node. To explain our approach, we show in Figure 19 an example of a Merkle
tree with eight nodes. To add node 6, it needs to move down node 5 to a lower level, add
node 6 to the right side, and then calculate their parent node and the root node. When
all nodes are added, it ends up with a balanced Merkle tree similar to the static tree we
worked with previously.

When a node needs to be removed, we initiate the process from the node’s location.
In our pursuit to maintain a minimized tree height, we assess whether another individual
leaf can be rotated to take the place of the removed node, facilitating the rebalancing of

Appl. Sci. 2023, 13, 9397 24 of 34

the tree. When the tree has an even number of leaf nodes, the process of removing a node
is straightforward. The designated node is removed, its adjacent node is elevated to its
position, and the corresponding branch is adjusted to reconnect to the tree root. When
the tree has an odd number of leaf nodes, removing a node mandates rebalancing the
tree. A straightforward approach involves leaving the node in its position and replacing
it with the other single leaf node. Subsequently, adjustments are made to the branch of
the transitioning leaf node, followed by the recalculation of parent nodes for all nodes that
have undergone modification. As shown in Figure 20, removing node 5 requires only the
calculation of the root, while removal of node 3 requires transitioning node 6 to the node 3
position, resulting in reducing the tree height by 1.

Figure 19. Nodes added dynamically to the tree.

Figure 20. Node removal and re-balancing of Merkle tree.

To achieve a fast search when adding a node, each non-leaf node holds an additional
bit to indicate if it has a full balanced structure. At a given time, the tree has N nodes with
HT as height. If 2HT is larger than the number of existing nodes, then the height of the tree
remains the same when a new node is added. Otherwise, the height should be incremented,
and in this case, as the tree is already full, a new level has to be added to accommodate
the new node. The current root node becomes the left node, and the new added node is
the right node, and their parent node is the new tree root. This is the case when node 5 is
added in Figure 19. When the tree has space to add more nodes, we always start at the level
below the root level and go down until we locate where the new node should be added.
Algorithm A1 , shown in Appendix A, shows how to add a new software cluster (leaf node)
to the tree, while Algorithm A2 shows how to delete a node from the tree. We have used
array and index terms to make it simple to read and follow these algorithms. However,
the implementation is using pointers to efficiently create and manipulate the dynamic tree
contents. We summarize the process as follows:

If any of the nodes is a leaf node at the current level, then the new node will be added
as the neighbor leaf node, and their parent node replaces the location where the leaf node
was (e.g., node 4 or 6 added in Figure 19). If both nodes are non-leaf nodes, it first checks if
the left node is complete (complete bit is set) or not. If the left node is set as complete, it
checks if there is a leaf node in the right node. If the right node has only one leaf node, this
leaf node is moved down to the left side at the lower level, and then the new node is added
as a neighbor at the right side, and then their parent node replaces the location where the
right node was (e.g., node 4 or 8 added in Figure 19). If the right node has two nodes (either

Appl. Sci. 2023, 13, 9397 25 of 34

two leaf nodes or two non-leaf nodes), we need to move down the right node and make it
the left node at the lower level, and then add the new node as a neighbor at the right side,
and their parent node replaces the location where the right node was (e.g., node 7 added in
Figure 19).

If the left node is not set as complete, then we start with the left side node and we
repeat the same process. Once the new node is added, the correspondent branch from this
node to the root is updated with new hashes.

7.2. Skewed (Unbalanced) Merkle-Tree-Based SOTA

The Merkle-tree-based approach provides a flexible balanced approach to build the
tree of hashes. As described in this paper, the root is retrieved from the hash tree in an
average time proportion to log2(N), where N is the number of nodes (software clusters) in
the tree. In theory, this could be optimal when all leaf nodes are utilized and updated at
an equal rate. However, given that software modules within the vehicle are dynamically
integrated and updated at varying rates, the objective is to reduce the path required for
nodes that undergo more frequent updates.

To come up with an efficient approach to speed up the overall system performance,
MT-SOTA is updated in a way to build an unbalanced tree to allow faster execution for more
frequent software nodes. Let us first explain our approach with a simple use case with four
nodes. On the left side of Figure 21, we have a balanced Merkle tree with four nodes and
height of 2. Each updated leaf node requires changing two nodes (its parent node and the
root node) and consequently two hash operations to retrieve the root. If we can move the
leaf node, the mostly updated, to a higher level closer to root level, we will need to change
only the root node in the tree whenever this leaf node is updated. Thus, by structuring the
Merkle tree such that the path of the frequently accessed nodes is reduced, performance can
be improved. Compared to the balanced Merkle tree, updating the leaf nodes which are on
the shorter path to the root takes less time and has lower overhead in terms of memory access.
In order to implement such an approach, each software node has to be given an attribute
to indicate its priority level. On average, the unbalanced tree is two times deeper than the
balanced one. The drawback for such approach is the height of the tree increases, resulting in
increasing the path of some leaf nodes in the tree. The key difference between regular Merkle
tree and an unbalanced or skewed Merkle tree is that the paths from the different leaf nodes
to the root note have different lengths, depending on type of the skewed tree.

Figure 21. Transition from balanced to skewed (unbalanced) Merkle tree.

In order to deal with this trade-off, we can combine a characteristic of a B-tree [30]
type with our Merkle tree. A leaf node is not anymore a single node hash but has a variable
number of child nodes within some pre-defined range. The leaf node is a block of multiple
individual nodes that share some common criteria. As shown in Figure 22, node 8 is the
most frequently updated node and set at the top level below the root level as a single node,
and then nodes 6 and 7 come at the next level and thus combine together to create a single

Appl. Sci. 2023, 13, 9397 26 of 34

node with an array of two nodes. The nodes 1, 2, and 3 correspond to the lowest level with
an array of three nodes. By structuring the tree in such block-based nodes, we can obtain
the benefit of having shorter paths, without adversely affecting the paths of the other leaf
nodes. In this paper, we focused our analysis on a balanced Merkle tree but we plan to
incorporate unbalanced tree analysis in future work.

Figure 22. Unbalanced Merkle tree with arrayed leaf nodes.

7.3. Memory Reduction—Usage of Different Hash Algorithm for Non-Leaf Nodes

According to our study results, the larger the hash output size is, the more data
flash and RAM memory are required. Some ECUs may have restrictions on the available
memory in their devices. To reduce the amount of memory used for the Merkle tree without
compromising the algorithm, it suffices to store the number of bytes correspondent with the
sufficient security level in the leaf nodes and then modify the Merkle tree to use different
hash algorithms with smaller output sizes in the non-leaf nodes versus the leaf nodes. This
can save many bytes per non-leaf node because each node of the tree is a single hash value,
thus reducing the overall memory used by the Merkle tree. This optimization requires only
changes in OemR and EcuX, where the Merkle tree scheme is implemented, without any
impact on ImgR. When using SHA3-512 or other hash algorithms with 64-byte hash values
for hashing the software clusters, we can reduce the memory used by 1 Kbyte for 32 nodes,
and by 2 Kbytes for 64 nodes and 4 Kbytes for 128 nodes if we use SHA3-256 or other hash
algorithms with 32-byte hash values for non-leaf nodes. For the case of using SHA2-256 or
other hash algorithms with 32-byte hash values for hashing the software clusters, we can
reduce the memory by 0.5kbytes for 32 nodes, and by 1 Kbyte for 64 nodes and by 2 Kbytes
for 128 nodes if we use SHA3-256 or other hash algorithms with 16-byte hash values for
non-leaf nodes.

7.4. Time Execution Improvement—Multi Root Merkle Trees

The results of our study show that the execution time increases with more software
clusters used. The time required to update a software cluster can be reduced if the number
of nodes used is reduced in the Merkle tree. Thus, having multiple smaller Merkle trees
instead of a single, big tree can achieve a faster execution time for updating a software
cluster. Given that certain software clusters can be updated more often than the others,
it is efficient to reduce the updates path for more frequent software clusters. Thus, we
can divide the Merkle tree into coupled multi-root trees. This allows faster execution and
enables the separation of nodes into different trees because not all software clusters are
updated equally and frequently. In Figure 23, we show an example use case of a 16-node
Merkle tree that can be divided into two 8-node Merkle trees or four 4-node Merkle trees.
The roots of the multiple trees are used as the leaf nodes of an auxiliary Merkle tree whose
root will be signed with the secret key to generate the signature. As an alternative, the roots
of the multiple trees can be simply hashed together and the output hash value is signed
by the secret key to generated the signature. Figure 24 shows the timing improvement
achieved when we divide the single Merkle tree in the ECU into multiple trees with 8 or 16
nodes per tree. The more nodes exist, the better the timing improvement is. A Merkle tree
of 8 nodes is 50% better when the number of nodes is more than 40, while a Merkle tree of
16 nodes is at least 45% better when the number of nodes is more than 72. An advantage
of this optimization is its ability to add more nodes than anticipated for the ECU. Due to

Appl. Sci. 2023, 13, 9397 27 of 34

the nature of traditional microcontrollers, we used a fixed number of levels for the Merkle
tree based on the maximum number of software clusters or blocks anticipated for the ECU.
With multi-root Merkle trees, a new Merkle tree can be dynamically added as long as the
auxiliary Merkle tree can accommodate new leaf nodes or the roots are directly hashed.

Figure 23. Decomposition of single Merkle tree into multi-root Merkle trees.

Figure 24. Time execution performance for Merkle tree setup with multi-root trees.

7.5. Pre-Flash of Merkle Tree Leaf Nodes

As demonstrated by this work, the MT-SOTA scheme accelerates the process of updat-
ing a software cluster. During the creation and configuration of the Merkle tree, each leaf

Appl. Sci. 2023, 13, 9397 28 of 34

node involves the hashing of its corresponding software cluster or block. This procedure
can be time-consuming during the initial startup, especially when the software’s size is
substantial. Nonetheless, this is not a significant concern, as it occurs only once during the
ECU’s initial power-on. To enhance setup efficiency, a solution could involve pre-flashing
and pre-installing Merkle-tree leaf nodes into the ECU, along with the initial software (e.g.,
during end-of-line programming). This step would eliminate this task from the ECU and
potentially expedite the setup time. In this case, there is no need to calculate the hash of
each individual software cluster, and the Merkle tree can be setup in the ECU at a negligible
cost as shown in Figure 14.

8. Conclusions and Future Research

In this paper, we presented MT-SOTA as our scheme for software over-the-air updates
for software-based vehicle architectures. We furnished a theoretical explanation and analy-
sis of this approach, considering various parameter values to encompass diverse use cases,
ultimately representing various software architectures. The outcomes of our study illustrate
the performance enhancement realized through MT-SOTA, coupled with a reasonable storage
overhead. The MT-SOTA scheme is scalable, convenient, and flexible for integration into existing
automotive software architecture platforms and new software-defined vehicle architectures.
The execution time and memory requirements show that the Merkle-tree-based signature is
suitable for deployment in backend repositories and most importantly in resource-constrained
ECUs. The MT-SOTA is parameterized to fit the need of OEM applications and architecture-use
cases. The intended performance and ECU resources, including factors such as the presence of
hash engines in hardware, necessary calculation speed, and memory capacity, are carefully con-
sidered when determining the MT-SOTA parameters to achieve optimal outcomes. As shown
through the measurement results and proposed optimization methods, MT-SOTA accelerates
the time required to verify a software component update in the field. The removal of a software
component exhibits enhanced efficiency with MT-SOTA, leading to reduced time due to the
absence of hash calculations on the eliminated software component. While MT-SOTA offers
several advantages for software over-the-air updates, it also comes with certain limitations.
Implementing and managing Merkle trees can be complex. OEMs are required to establish the
Merkle trees within their repositories and communicate the structure to the ECUs in the vehicle.
Constructing the initial Merkle tree contents involves computing hash values for all software
blocks, which can be time-consuming and resource intensive. The MT-SOTA’s efficiency dimin-
ishes when the number of software clusters is restricted. Consequently, one potential proposal
is to adopt a per-vehicle Merkle tree approach. Future work is to study the MT-SOTA for high
Computing ECUs or zone controller ECUs with the AUTOSAR adaptive platform as well as the
new AUTOSAR “Vehicle API” variant. Our forthcoming research endeavors encompass the
exploration of the MT-SOTA methodology to tackle the complexities of variant management.
This involves effectively managing diverse software configurations and adaptations within an
ECU. The primary incentive is to establish a single signature, generated utilizing the Merkle tree
scheme, for the ECU. This signature will subsequently undergo verification at the ECU level,
accommodating distinct vehicle models, options, or features.

9. Patents

There is a pending patent resulting from the work reported in this manuscript.

Author Contributions: Writing—original draft, A.B.; Supervision, A.S. and D.M. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Appl. Sci. 2023, 13, 9397 29 of 34

Acknowledgments: We would like to thank the anonymous reviewers for their review of this paper.

Conflicts of Interest: The authors declare the following financial interest/personal relationships
which may be considered as potential competing interests: Abir Bazzi is currently employed by
Infineon Technologies. The evaluation platform used for the experiments is provided by Infineon.
However, the author has taken the necessary precautions to generalize the results as much as possible.

Abbreviations
The following abbreviations are used in this manuscript:

AUTOSAR AUTomotive Open System ARchitecture
ECU Electronic Control Unit
ImgR Image Repository
MT-SOTA Merkle Tree-Based Software Updates over the Air
OEM Original Equipment Manufacturer
OemR OEM Repository
OtaM OTA Master
SOTA Software Updates over the Air

Appendix A

Algorithm A1 Dynamic Merkle Tree Node Insertion
INPUT: SWM ID, HM
OUTPUT: Merkle Tree Root, Position of SWM
FUNCTION: AddToMerkleTree
if (2HT = N) //Tree is full, Need to add another level
{

MT[HT][1] = HM;
MT[HT+1][0] = Hash(MT[HT][0], MT[HT][1]);
Pos(SWM) = [Height = HT,Index = 1];
HT++;
N++;
Return; //Exit

}
HTtemp = HT-1;//starting at the top level(below the Root)
i = 0;
NodeNotlocated = 1;
do //start of the (do- while)loop

if(MT[HTtemp][i] AND MT[HTtemp][i+1] are leaf nodes)
{

MT[HTtemp- 1][2i] = MT[HTtemp][i];
MT[HTtemp - 1][2i+1] = MT[HTtemp][i+1];
MT[HTtemp][i] = MT[HTtemp+1][i/2];
MT[HTtemp][i+1] = HM;
j = i;
HT

′
= HTtemp;

while (HT
′

< HT)
{

MT[HT
′
+1][j/2] =

Hash(MT[HT
′
][j], MT[HT

′
][j+1]);

j = j/2; if j = 1 then j = 0;
HT

′
++;

}

Appl. Sci. 2023, 13, 9397 30 of 34

Algorithm A1 Cont.
Pos(SWM) = [Height = HTtemp,Index = i+1];
N++;

NodeNotlocated = 0; //Exit while loop
}
else if (MT[HTtemp][i] is leaf node)
{

MT[HTtemp- 1][i] = MT[HTtemp][i];
MT[HTtemp - 1][i+1] = HM;
MT[HTtemp][i] =
Hash(MT[HTtemp-1][i], MT[HTtemp-1][i+1]);
j =i;
HT

′
= HTtemp;

while (HT
′

< HT)
{

MT[HT
′
+1][j/2] =

Hash(MT[HT
′
][j], MT[HT

′
][j+1]);

j = j/2; if j =1 then j = 0;
HT

′
++;

}
Pos(SWM) = [Height = HTtemp - 1,Index = i+1];
N++;
NodeNotlocated = 0; //Exit while loop

}
else if (MT[HTtemp][i+1] is leaf node)
{

MT[HTtemp-1][2i+2] = MT[HTtemp][i+1];
MT[HTtemp-1][2i+3] = HM;
MT[HTtemp][i+1] =
Hash(MT[HTtemp - 1][2i+2], MT[HTtemp -1][2i+3]);
j =i;
HT

′
= HTtemp;

while (HT
′

< HT)
{

MT[HT
′
+1][j/2] =

Hash(MT[HT
′
][j], MT[HT

′
][j+1]);

j = j/2; if j =1 then j=0;
HT

′
++;

}
Pos(SWM) = [Height = HTtemp - 1,Index = 2i+3];
N++;
NodeNotlocated = 0; //Exit while loop

}
else
{

if (MT[HTtemp][i] is set as complete)
{

//add node on the right side at this level
i = 2*(i+1);
HTtemp = HTtemp-1;

}
else
{

Appl. Sci. 2023, 13, 9397 31 of 34

Algorithm A1 Cont.
//add node on the left side at this level
i = 2*i;
HTtemp = HTtemp-1;

}
}

while (NodeNotlocated) //end of the (do- while)loop

Algorithm A2 Dynamic Merkle Tree-Node Deletion
INPUT: SWM
OUTPUT: Merkle Tree Root
FUNCTION: DeleteFromMerkleTree
PosM = Position (SWM);
if (N % 2 == 0) // Node number is Even
{

DeleteNode(PosM); //Just delete node, no re-balancing
}
else // Node number is Odd—Rebalancing might be needed
{

HTt = HT; //starting at the top Root level
i = 0;
LineB :
if (MT[HTt][i] has 2 non-leaf nodes)

if (PosM at left side)
i = 2i; else i = 2i + 1;
HTt = HTt -1;
goto LineB;

else if (MT[HTt][i] has 2 leaf nodes)
[SWM2, Ht2, Index2] =

CheckSingleleafNode(HTt, PosM);
if exist
if deleted node is the left one:
MT[HTt-1][2i] = MT[HT2][Index2];
MT[HTt][i] =
Hash(MT[HTt-1][2i], MT[HTt-1][2i+1]);
if deleted node is the right one:
MT[HTt][2i+1] = MT[HT2][Index2]
MT[HTt][i] =
Hash(MT[HTt-1][2i], MT[HTt-1][2i+1]);
j = i;if j =1 then j = 0;
HT

′
= HTt;

while (HT
′

< Ht2)
{

MT[HT
′
+1][j/2] =

Hash(MT[HT
′
][j], MT[HT

′
][j+1]);

j = j/2; if j =1 then j=0;
HT

′
++;

}
DeleteNode(PosM2);
Return;

Appl. Sci. 2023, 13, 9397 32 of 34

Algorithm A2 Cont.
if Do not exist
if deleted node is the left one:
MT[HTt][i] = MT[HTt - 1][2i+1]
else if deleted node is the right one:
MT[HTt][i] = MT[HTt - 1][2i]
j = i;if j =1 then j = 0;
HT

′
= HTt;

while (HT
′

< HT)
{

MT[HT
′
+1][j/2] =

Hash(MT[HT
′
][j], MT[HT

′
][j+1]);

j = j/2; if j = 1 then j = 0;
HT

′
++;

}
else if (MT[HTt][i] has 1 leaf node)

if it is a single node:
{

if deleted node is the leaf left node:
MT[HTt+1][i/2] = MT[HTt][2i]

else if deleted node is the leaf right node:
MT[HTt+1][i/2] = MT[HTt][2i+1]

}
else
{

if deleted node is the leaf left node:
MT[HTt][i] = MT[HTt - 1][2i+1]

else if deleted node is the leaf right node:
MT[HTt][i] = MT[HTt - 1][2i]

else if deleted node is neither one:
if (PosM at left side)
i = 2i; else i = 2i+1;
HTt = HTt -1;
goto LineB;

}
j = i;if j = 1 then j = 0;
HT

′
= HTt;

while (HT
′

< HT)
{

MT[HT
′
+1][j/2] =

Hash(MT[HT
′
][j], MT[HT

′
][j+1]);

j = j/2; if j =1 then j = 0;
HT

′
++;

}
N = N- 1;
Height-Adjustment();

}

INPUT: PosM //Position of SWM
OUTPUT: Merkle Tree Root
FUNCTION: DeleteNode

Appl. Sci. 2023, 13, 9397 33 of 34

Algorithm A2 Cont.
{

HTt = HT; //starting at the top Root level
i =0;

LineA :
if (MT[HTt][i] has 2 non-leaf nodes)

if (PosM at left side)
i = 2i; else i = 2i+1;
HTt = HTt -1;
goto LineA;

else if (MT[HTt][i] has 2 leaf nodes)
if deleted node is the left one:
MT[HTt][i] = MT[HTt - 1][2i+1]
if deleted node is the right one:
MT[HTt][i] = MT[HTt - 1][2i]
j = i; if j =1 then j = 0;
HT

′
= HTt;

while (HT
′

< HT)
{

MT[HT
′
+1][j/2] =

Hash(MT[HT
′
][j], MT[HT

′
][j+1]);

j = j/2; if j = 1 then j = 0;
HT

′
++;

}
else if (MT[HTt][i] has 1 leaf node)

if deleted node is the leaf left node:
MT[HTt][i] = MT[HTt - 1][2i+1]

if deleted node is the leaf right node:
MT[HTt][i] = MT[HTt - 1][2i]
j = i;
HT

′
= HTt;

while (HT
′

< HT)
{
MT[HT

′
+1][j/2] =

Hash(MT[HT
′
][j], MT[HT

′
][j+1]);

j = j/2; if j = 1 then j = 0;
HT

′
++;

}
N = N - 1;
Height-Adjustment();

}

References
1. Dixon, R. Evolution of New EE Architecture. S&P Global. Available online: https://autotechinsight.ihsmarkit.com/shop/

product/5003328/evolution-of-new-ee-architecture-october-2022 (accessed on 1 December 2022).
2. AUTOSAR, Adaptive Release R22-11, 2022. Available online: https://www.autosar.org/search?tx_solr%5Bfilter%5D%5B0%5D=

category%3AR22-11&tx_solr%5Bfilter%5D%5B1%5D=platform%3AAP&tx_solr%5Bq%5D= (accessed on 1 January 2023).
3. Zeeb, A. AUTOSAR Classic Platform Flexibility Managing the complexity of distributed embedded software development:

Invited Talk. In Proceedings of the IEEE 18th International Conference on Software Architecture Companion (ICSA-C), Stuttgart,
Germany, 22–26 March 2021; p. 167.

4. NIST FIPS 186-5, Digital Signature Standard (DSS), 3 February 2023. Available online: https://nvlpubs.nist.gov/nistpubs/FIPS/
NIST.FIPS.186-5.pdf (accessed on 1 April 2023).

5. Bazzi, A.; Shaout, A.; Ma, D. Secure Software Update in Automotive Modern Software Architecture. In Proceedings of the Women
in Semiconductor Hardware (WISH) Conference, San Jose, CA, USA, 14–15 September 2022.

6. Bielawski, R.; Gaynier, R.; Ma, D.; Lauzon, S.; Weimerskirch, A. Cybersecurity of Firmware Updates; Technical Report DOT HS 812
807; National Highway Traffic Safety Administration: Washington, DC , USA, 2020.

https://autotechinsight.ihsmarkit.com/shop/product/5003328/evolution-of-new-ee-architecture-october-2022
https://autotechinsight.ihsmarkit.com/shop/product/5003328/evolution-of-new-ee-architecture-october-2022
https://www.autosar.org/search?tx_solr%5Bfilter%5D%5B0%5D=category%3AR22-11&tx_solr%5Bfilter%5D%5B1%5D=platform%3AAP&tx_solr%5Bq%5D=
https://www.autosar.org/search?tx_solr%5Bfilter%5D%5B0%5D=category%3AR22-11&tx_solr%5Bfilter%5D%5B1%5D=platform%3AAP&tx_solr%5Bq%5D=
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf

Appl. Sci. 2023, 13, 9397 34 of 34

7. Rehman, G.U.; Haq, M.I.U.; Zubair, M.M.; Mahmood, Z.; Singh, M.; Singh, D. Misbehavior of nodes in IoT based vehicular delay
tolerant networks VDTNs. Multimedia Tools Appl. 2023, 82, 7841–7859. [CrossRef]

8. Rehman, G.U.; Zubair, M.; Qasim, I.; Badshah, A.; Mahmood, Z.; Aslam, M.; Jilani, S.F. EMS: Efficient Monitoring System to
Detect Non-Cooperative Nodes in IoT-Based Vehicular Delay Tolerant Networks (VDTNs). Sensors 2023, 23, 99.. [CrossRef]
[PubMed]

9. TCG Guidance for Secure Update of Software and Firmware on Embedded Systems; Rep. Version 1, Revision 72; Trusted Computing
Group: Beaverton, OR , USA, 10 February 2020.

10. A Firmware Update Architecture for Internet of Things; IETF RFC 9019; 2022. Available online: https://datatracker.ietf.org/doc/
html/rfc9019 (accessed on 15 August 2023).

11. Kuppusamy, T.K.; DeLong, L.A.; Cappos, J. Uptane: Security and Customizability of Software Updates for Vehicles. IEEE Veh.
Technol. Mag. 2018, 13, 66–73. [CrossRef]

12. Steger, M.; Boano, C.A.; Niedermayr, T.; Karner, M.; Hillebrand, J.; Roemer, K.; Rom, W. An Efficient and Secure Automotive
Wireless Software Update Framework. IEEE Trans. Ind. Inform. 2018, 14, 2181–2193. [CrossRef]

13. Nilsson, D.K.; Sun, L.; Nakajima, T. A Framework for Self-Verification of Firmware Updates over the Air in Vehicle ECUs.
In Proceedings of the IEEE Globecom Workshops, New Orleans, LA, USA, 30 November–4 December 2008; pp. 1–5.

14. Ghosal, A.; Halder, S.; Conti, M. STRIDE: Scalable and Secure Over-The-Air Software Update Scheme for Autonomous Vehicles.
In Proceedings of the IEEE International Conference on Communications (ICC), Dublin, Ireland, 7–11 June 2020; pp. 1–6.

15. Mansour, K.; Farag, W.; ElHelw, M. AiroDiag: A sophisticated tool that diagnoses and updates vehicles software over air.
In Proceedings of the IEEE International Electric Vehicle Conference, Greenville, SC, USA, 4–8 March 2012; pp. 1–7.

16. Mayilsamy, K.; Ramachandran, N.; Raj, V.S. An integrated approach for data security in vehicle diagnostics over internet protocol
and software update over the air. Sci. Direct-Comput. Electr. Eng. 2018, 7, 578–593. [CrossRef]

17. Suzuki, N.; Hayashi, T.; Kiyohara, R. Data Compression for Software Updating of ECUs. In Proceedings of the IEEE 23rd
International Symposium on Consumer Technologies, Ancona, Italy, 19–21 June 2019; pp. 304–307.

18. Bogdan, D.; Bogdan, R.; Popa, M. Delta flashing of an ECU in the automotive industry. In Proceedings of the IEEE 11th
International Symposium on Applied Computational Intelligence and Informatics, Timisoara, Romania, 12–14 May 2016;
pp. 503–508.

19. Baza, M.; Nabil, M.; Lasla, N.; Fidan, K.; Mahmoud, M.; Abdallah, M. Blockchain-based Firmware Update Scheme Tailored for
Autonomous Vehicles. In Proceedings of the IEEE Wireless Communications and Networking Conference, Marrakesh, Morocco,
15–18 April 2019; pp. 1–7.

20. Steger, M.; Dorri, A.; Kanhere, S.S.; Römer, K.; Jurdak, R.; Karner, M. Secure Wireless Automotive Software Updates Using
Blockchains: A Proof of Concept. In Proceedings of the Advanced Microsystems for Automotive Applications, Berlin, Germany,
11–12 September 2018; pp. 137–149.

21. Menezes, A.J.; van Oorschot, P.C.; Vanstone, S.A. Handbook of Applied Cryptography; CRC Press: Boca Raton, FL, USA, 2016.
22. Rogaway, P.; Shrimpton, T. Cryptographic Hash-Function Basics: Definitions, Implications, and Separations for Preimage

Resistance, Second-Preimage Resistance, and Collision Resistance. In Fast Software Encryption; Springer: Berlin/Heidelberg,
Germany, 2004; pp. 371–388.

23. Burkacky, O.; Deichmann, J.; Stein, J. Automotive Software and Electronics 2030. Availableonline:https://www.mckinsey.com/
industries/automotive-and-assembly/our-insights/the-case-for-an-end-to-end-automotive-software-platform (accessed on
22 March 2023).

24. ISO/IEC 10118-3:2018; IT Security Techniques—Hash-Functions —Part 3: Dedicated Hash-Functions. ISO: Geneva, Switzerland,
2018.

25. Merkle, R.C. A Certified Digital Signature. In Advances in Cryptology—CRYPTO’ 89 Proceedings; Brassard, Gilles : New York, NY,
USA, 1990; pp. 218–238.

26. Merkle, C. Method of Providing Digital Signatures. U.S. Patent US4309569A, 5 January 1982.
27. Infineon Technologies TC4xx Evaluation Board. Available online: https://www.infineon.com/cms/en/product/microcontroller/

32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc4x/ (accessed on 1 March 2023).
28. Infineon Technologies TC3xx Evaluation Board. Available online: https://www.infineon.com/cms/en/product/microcontroller/

32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/ (accessed on 1 March 2023).
29. Meguellati, F.M.; Zegour, D.E. A Survey on Balanced Binary Search Trees methods. In Proceedings of the International Conference

on Information Systems and Advanced Technologies (ICISAT), Tebessa, Algeria, 27–28 December 2021; pp. 1–5.
30. Comer, D. Ubiquitous b-tree. ACM Comput. Surv. 1979, 11, 121–137. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s11042-022-13624-2
http://dx.doi.org/10.3390/s23010099
http://www.ncbi.nlm.nih.gov/pubmed/36616697
https://datatracker.ietf.org/doc/html/rfc9019
https://datatracker.ietf.org/doc/html/rfc9019
http://dx.doi.org/10.1109/MVT.2017.2778751
http://dx.doi.org/10.1109/TII.2017.2776250
http://dx.doi.org/10.1016/j.compeleceng.2018.08.002
Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-case-for-an-end-to-end-automotive-software-platform
Available online: https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/the-case-for-an-end-to-end-automotive-software-platform
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc4x/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc4x/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/32-bit-tricore-aurix-tc3xx/
http://dx.doi.org/10.1145/356770.356776

	Introduction
	 Related Work
	 System Model
	Adversary Model
	Assumptions
	Requirements

	Scheme Design
	Security Analysis
	Evaluation and Analysis
	OemR
	EcuX
	Experimental Evaluation

	MT-SOTA Optimization Techniques
	Dynamic Merkle Tree Algorithm
	 Skewed (Unbalanced) Merkle-Tree-Based SOTA
	Memory Reduction—Usage of Different Hash Algorithm for Non-Leaf Nodes
	Time Execution Improvement—Multi Root Merkle Trees
	Pre-Flash of Merkle Tree Leaf Nodes

	Conclusions and Future Research
	Patents
	Appendix A
	References

