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Abstract: The recognition of printed music sheets in camera-based realistic scenarios is a novel
research branch of optical music recognition (OMR). However, special factors in realistic scenarios,
such as uneven lighting distribution and curvature of staff lines, can have adverse effects on OMR
models designed for digital music scores. This paper proposes a stave-aware method based on object
detection to recognize monophonic printed sheet music in camera-based scenarios. By detecting the
positions of staff lines, we improve the accuracy of note pitch effectively. In addition, we present
the Camera Printed Music Staves (CPMS) dataset, which consists of labels and images captured by
mobile phones under different angles and lighting conditions in realistic scenarios. We compare our
method after training on different datasets with a sequence recognition method called CRNN-CTC on
the test set of the CPMS dataset. The results show that the accuracy, robustness, and data dependency
of our method perform better.

Keywords: optical music recognition; printed monophonic score; realistic scenarios; sheet music
photos; stave-aware

1. Introduction

Optical music recognition (OMR) is a research field investigating how to read musical
symbols in documents [1] computationally. In other words, its purpose is to convert music
sheet images into a machine-readable format. OMR has a broad impact across various
domains, including music transcription, archival preservation, automated music analysis,
music education, and so on. It has brought innovation in digitizing music resources and
providing computer-assisted instruction.

Over the past several decades, researchers have proposed various OMR methods,
which typically focus on recognizing printed [2–6] or handwritten [7–10] music scores.
However, most optical printed music recognition methods were designed for digitally
printed scores rather than printed score photos in realistic scenarios [11–13]. Score photos
have many different features compared to digital scores. For example, variations in lighting
due to the distribution of light sources and different camera angles can lead to uneven
illumination in the images. Moreover, the curvature of staff lines in the music scores caused
by paper curvature during capture or distortion characteristics of the camera lens poses a
challenge to accurately discerning the pitch of the recognized notes.

Anyway, there is no open dataset of real music score photos. Specifically, there is
only one dataset called Camera-PrIMuS [3] containing images distorted to simulate photos
in realistic scenarios. The images were generated from digital scores and lacked features
of photos in realistic scenarios such as uneven illumination. It means that the images in
Camera-PrIMuS could not completely represent the score photos.

To address these challenges, this paper presents a staff-aware optical music recognition
method. It utilizes an object detection model to extract the positions of staff lines, musical
notes, and accidental within the music scores. These positional details are then assembled
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into sequences of pitch and duration through a well-designed notation assembly module.
The result shows that our method has a significant improvement in the accuracy and robust-
ness of recognition. The second contribution of this paper is that we build a monophonic
printed music score photos dataset called Camera Printed Music Staves (CPMS). All the
photos are captured by different mobile phone cameras in different realistic scenarios.

The rest of the paper is organized as follows: Section 2 reviews related works about
OMR. Section 3 introduces the design of our method. Section 4 provides details of our
dataset and experiments. Section 5 analyzes our experimental results. In Section 6, we
conclude our work.

2. Related Work

Based on various data sources, OMR tasks can be categorized into two primary
domains: handwritten music score recognition and printed music score recognition. Hand-
written music recognition focuses on extracting and interpreting musical notations from
handwritten manuscripts, including complexities such as varying handwriting styles and
potential ambiguities. In recent years, there have been some breakthroughs in the research
of handwritten music recognition with deep learning methods [8–10,14,15]. In contrast,
printed music score recognition involves analyzing and extracting musical symbols and
annotations from printed music scores, typically characterized by standardized fonts and
precise formatting. This paper focuses on printed music recognition.

Based on the different approaches, printed music score recognition methods can be
categorized into two types: multi-stage method and end-to-end method.

As a past mainstream, multi-stage methods [16–21] used to decompose the task
of OMR into multiple subproblems. The research of multi-stage methods mainly in-
cludes the steps of binarization [17], staff line removal [18,19], note detection, classifica-
tion [20,21], and notation assembly [18]. Pinto et al. [17] proposed a binarization based on
domain knowledge. Szwoch et al. [18] applied horizontal projection to remove staff lines.
Chuanzhen Li et al. [21] solved the problem of note head recognition and pitch position by
adopting template matching. Szwoch et al. [18] proposed a context-free attributed grammar
for notation assembly.

In recent years, more and more scholars have been exploring deep learning methods for
OMR. The object detection is used for multi-stage OMR pipeline to detect musical symbols
in music sheets [22–24], particularly when dealing with certain musical symbols that are
relatively small in size compared to the overall dimensions of the music score [25–27]. The
methods based on object detection can be divided into two categories according to the
research objectives: the detection of simple musical symbols and the detection of note pitch
and note type. The majority of research only focuses on the detection of musical symbols’
position rather than the pitch and type of notes. Pacha et al. [22] considered the detection
performance of three state-of-the-art networks on the DeepScores dataset, which include
Faster R-CNN [28], RetinaNet [29], and U-Net [30]. The results show that the U-Net is able
to achieve higher detection accuracy with an average classification accuracy of barely 24.8%.
Tuggener et al. [23] proposed the Deep Watershed Detector (DWD). It is an object detection
network based on synthetic energy maps and the watershed transform and has the ability
to predicate the confidence, position, and type of each musical symbol. In addition, some
scholars have also preliminarily studied the detection of note pitch and type. For example,
Huang et al. [24] used the YOLOv3 [31] network based on darnet53 to predict the pitch
and type of notes in an end-to-end manner and achieved 92% type accuracy and 96% pitch
accuracy on the MuseScore dataset.

The end-to-end method [2,4–6,11,32–34] has become the mainstream of OMR for its
simplicity of data preprocessing. The vast majority of the end-to-end methods is sequence
recognition, which means that it directly converts the stave images into symbol sequences
with the pitch and type of each note. Sequence recognition methods come from the study of
recognizing sequence-like objects in images. Shi B et al. [35] first proposed a Convolutional
Recurrent Neural Network (CRNN), which is able to naturally handle sequences in arbitrary
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lengths and achieve an accuracy of 84% for music score recognition on a closed-source
dataset. Based on the CRNN, Calvo-Zaragoza et al. [2,3] proposed the CRNN-CTC by
improving the network structure of CRNN and optimizing the mapping dictionary of
musical symbol sequences, and achieved note type accuracy of 99.2% on printed dataset
PrIMuS [3] and 96.6% on synthetically distorted dataset Camera-PrIMuS [11]. Qiong
W et al. [4] improved the CRNN-CTC by replacing the CNN with a multi-scale residual
CNN and changing the BilSTM unit with BiSRU. It achieved an accuracy of 99.7% on the
PrIMuS dataset. Eelco et al. [32] applied sequence-to-sequence to OMR and achieved 81% of
note pitch accuracy and 94% of note type accuracy on the author’s self-built printed dataset.
Ríos-Vila A et al. [33] argued two output encodings and found the split-sequence encoding
with the two-dimensional nature of music symbols works better. Edirisooriya et al. [34]
focused on decoders for polyphonic OMR and found RNNDecoder achieves the highest
accuracy of note on self-built MuseScore polyphonic dataset. Ríos-Vila et al. [36] researched
the application of Transformer [37] and Vision Transformer [38] in OMR and proposed
CNNT for recognizing piano scores. Li et al. [5] proposed transformer-based TrOMR, which
outperformed RNNDecoder [34] on polyphonic music scores. They also built a camera
scene dataset that is not open source.

3. Method Details
3.1. Overall Design

Our stave-aware OMR method is the process of extracting metadata, such as the
position and type, from the musical symbols in score photos to reassemble the sequence
of notes in text format. Specifically, we preprocess the image and then utilize YOLOX-S
to detect the position of the musical staff. Then, we employ the FCOS model to detect the
positions of the notes and utilize a classification network to classify the duration of notes
within their respective segments. Finally, we employ a well-designed notation assembly
module to reassemble the notes. The stave-aware OMR method consists of two stages:
symbol detection and symbol assembly. The structure is shown in Figure 1.

1. Symbol detection. In this stage, we detect symbols, which affect the pitch of notes, in the
music sheet such as note heads, clefs, key signatures, and accidentals. Simultaneously,
the detection of staff lines and the segmentation of notes are also conducted. The result
will be utilized for recognizing the pitch and type of the notes.

2. Symbol assembly. This stage includes pitch assembly and duration assembly. In the
pitch assembly, information about the type and position of accidentals, and the position
of note heads and staff lines are fused. In duration assembly, we combine information
about note head duration and note duration to obtain note type. Note head duration
refers to the type of note heads through an object detection network, whereas note
duration is determined by the stem type and whether it is dotted or not through a
classification network.

Pre-Processing Result

Staff Detction

5th line of staff

1st line of staff

Symbol Detction & Classification

Pitch
Type

Note Types

Note Pitches

16th. 32th 16th 16th Note 
Combination

G4  A4 Bb4  E5

16th. 32th 16th 16th

G4    A4   Bb4    E5
+      +      +      +

Figure 1. The structure of our two-stage OMR method.
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3.2. Preprocessing

For subsequent stave position detection, it is necessary to preprocess original sheet
music photos. We use the same preprocessing method as [39]. Specifically, the steps for
preprocessing are as follows:

1. Remove the background lighting. All input images are converted into grayscale because
color is an unnecessary element for OMR. Then, Gaussian blur [40] is applied to obtain
blurred images. Finally, subtract the original grayscale image from the blurred image.
The purpose of this step is to mitigate the brightness and contrast differences between
different regions in the musical score image caused by uneven light distribution.

2. Resize the image. Firstly, we divide the image into a fixed number of columns, calculate
the median gray scale value of each row within each column, and assign it as the value
for that respective row. Next, convolve the modified image with a set of comb filters
corresponding to different staff line spacing. We choose the spacing represented by
the accumulated response of the most prominent comb filter as the distance between
adjacent lines. Finally, we resize the image to ensure the lines’ distance is fixed.
The purpose of this step is to keep a constant distance between adjacent staff lines of
the musical score.

3. Morphological filtering. We perform two rounds of morphological filtering on the image
shown in Figure 2. The first round removes non-horizontal pixels, and the second
round removes thin staff lines. Finally, subtracting the results of the two filtering steps
provides the staff lines eliminated during the second round. The purpose of this step
is to eliminate the musical notes from the image, preserving only the staff lines for
stave detection.

Through preprocessing, we improve the image by fixing uneven lighting and mini-
mizing the impact of musical notes affecting stave detection.

Erosion & Dilation

Filter Symbos

Erosion & Dilation

Beam Removal

Figure 2. Flow chart of the morphological filter.

3.3. Stave Detection

Different from the general multi-stage OMR methods, our work concerns not only
note detection but also staff line detection. As shown in Figure 3, stave features are fed into
the stave detection model to obtain the position of staff lines. With the absolute position
of the note head, we can estimate its relative position to the staff lines—i.e., which line or
space it occupies—by linear interpolation.

Note Head Detection

Score Image Stave Feature Stave Detection Model Note Head Location
5th line of staff

1st line of staff

Note head 
Center Position

Figure 3. Overview of note pitch determination.
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As for the stave detection model, we design a stave-aware network based on the
YOLOX-S [41]. The complete network consists of three stages:

1. Feature extraction. We choose the CSPDarknet [42] backbone to extract the features of
the staff lines (sized 576× 576× 3). The CSPDarknet adopts the structure of YOLOv5s
but replaces the LeakyReLU activation function with SiLU.

2. Feature fusion. The output of the backbone is an image with a size of 20× 20× 512,
which is then fed into PANet [43] for feature fusion. Finally, the network will obtain
three feature branches with sizes of 20× 20× 512, 40× 40× 256, and 80× 80× 128.

3. Decoupling of prediction branch. On the fused feature map, different channel feature
maps are first unified to 128 dimensions with a 1× 1 convolution. Then, two branches
are used to perform decoupling on the detection head, and an IOU branch is added to
the regression branch. Finally, the network merges the output of the three branches.
Since the spectral-aware network used in this paper has a classification number of
1, the final network will output a two-dimensional vector of size 6 × 8400. Here,
8400 represents the number of predicted boxes, and 6 represents the regression and
classification information for each predicted box.

On the basis of the original YOLOX network, we add the YIoU loss branch to
strengthen the training of the stave-aware network. When predicting the position of
staff lines, we only consider the vertical location of the prediction box rather than its hori-
zontal width. This is because the vertical position plays a crucial role in determining the
pitch arrangement. To enhance the network’s perception of the height position of staff lines,
we design a YIoU loss to measure the rectangular boxes’ overlap degree in the ordinate
direction, as shown in expression (1) and Figure 4.

YIoU =
length(P

⋂
B)

length(P
⋃

B)
=

L1
L2

(1)

(a) (b)

PredictionGround Truth

Figure 4. Two situations with the same YIoU loss: (a) bounding box and ground truth box intersecting.
(b) bounding box and ground truth box not intersecting.

To avoid the situation shown in Figure 4b, we add YIoU loss to IoU loss in the original
loss function. The total loss of the network and the loss of each branch are shown in
expressions (2) and (3). In the expressions, α represents the weight coefficient, which
controls the influence degree of IoU and YIoU loss. In our work, we set α = 5. Both the
classification branch and the regression branch use the BCE loss function.

Ltotal = α× LIoU + α× LYIoU + Lcls + Lloc (2)

LYIoU =
1

Npos

N

∑
i∈pos

1−YIoU2
i (3)

3.4. Musical Symbol Detection

Musical symbol detection is to determine the position and type of basic musical
symbols, which include the notes, clefs, and accidentals shown in Figure 5a. The symbols
in the music sheet are detected and split based on the positions of the staff lines. With the
split symbols, especially split notes, we are able to identify the relative position of note
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heads on the staff and then determine the note pitch with the type of clef and accidental in
the same staff. We can obtain the note type after feeding the split note into the note type
classification model. Specifically, the note type classification model is able to obtain the
note duration and the note head duration, which determine the note type together from the
split note. The note head duration shown in Figure 5b includes the whole note, half note,
and quarter note, whereas the note duration shown in Figure 5c is classified into 10 types.

(a)

(b)

(c)

Whole Half Half Dot Quarter Quarter Dot

Eighth Eighth Dot Sixteenth Sixteenth Dot ThirtySecond

Note Duration Classification

Black Half Whole

Notehead Duration Classification

Clefs Notes

Accidentals

Figure 5. (a) Examples of basic musical symbols. (b) Examples of note head duration. (c) Examples
of note duration.

To detect the symbols in the music sheet, we design a network based on the FCOS [44]
and adopt the HRNetV2p-W18 [45] as the backbone network. The musical symbol detection
model shown in Figure 6 consists of a backbone network, feature pyramid networks,
and detection heads. After the input image (with a size of 600× 1200× 3) is fused with
multi-scale features through the feature pyramid, three sets of feature maps with sizes of
600× 400, 300× 200, and 150× 100 will be generated. The detection heads will classify
each pixel and output the classification, regression, and center-ness branches for each note.
In addition, we modify the stride of the convolutional layer in the original input stem
network to enhance the feature extraction of subsequent backbone networks, specifically
for small objects. The input stem comprises two 3× 3 convolutional layers with a stride of
2. We also modify the stride of the second convolutional layer from 2 to 1 for the feature
extraction of small-sized detection objects in music sheets.

600×400

300×200

150×100

Stage1 Stage2 Stage3 Stage4

×4

×4

Classifiaction

Center-ness

Regression

up
sampling

conv 
block

channel
maps

down
sampling

Stem
Net

High Resolution NetWork Feature Pyramid NetWork Classification, Center-ness and Regression

300×200

150×100

600×400

75×50 75×50

600×4001200×800

150×100

300×200

600×400

H×W×256 H×W×256

H×W×256 H×W×256

H×W×1

H×W×4

H×W×13

Figure 6. Musical symbol detection model.
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To predict the note duration and note head duration of each note, we design a classifi-
cation network based on RepVGG [46]. This network shown in Figure 7a is composed of
28 RepVGGBlocks, which are divided into five stages, each including 1, 4, 6, 16, and 1 block.
The RepVGGBlock shown in Figure 7b consists of a 3 × 3 convolutional branch, a 1 × 1
convolutional branch, and an identity mapping branch. At the first block of each stage,
the stride of the convolutional layer is set to 2 for downsampling, whereas the other convo-
lutional layers’ stride in the same stage is 1. The architecture of RepVGGBlock is equal to
Figure 7c for inference. Following Stage 5, the network reduces dimensionality through a
global average pooling layer. The scores of different note types are then outputted through
a fully-connected layer with the Softmax function.

Relu

conv 3×3

conv 1×1

Reluconv 3×3

(a)

(b) (c)

Note Split Area Note Split

Stage
1

Stage
2

Stage
5

Stage
4

Stage
3

Avg
+

FC

Note Type Classfication Model

Input Output

Note Type

16th. 32th 16th 16th

Figure 7. Overview of note type classification. (a) Note type classification model. (b) RepVGGBlock
for training. (c) RepVGGBlock for inference.

3.5. Notation Assembly

The purpose of notation assembly is to calculate and combine the results of the stave
detection model and musical symbol detection model according to the semantic rules of
music sheets, and finally obtain the pitch and type of notes. Specifically, notation assembly
includes three tasks:

1. Determining the note pitch. Note pitch is decided by the relative position of the note
heads and the positions of accidental, clef, and staff lines.

2. Determining the note type. Note type is judged by the classification of note head duration
and note duration.

3. Combining output note sequences. Identify the fused output sequence of notes by note
pitch and note type.

The logic of notation assembly is shown in Figure 8. The (a) and (b), respectively,
describe the five basic elements that serve the notation assembly: stave position, note head
position, note head type, note head duration, and note duration. To determine the pitch of
notes (as shown in Figure 8c), we interpolate the notes’ relative position on the staff based
on the absolute position of the staves and notes. Then, we obtain the note pitch according
to the types of note heads, accidentals, and clefs. To determine the note type (as shown
in Figure 8d), we compare and judge the classification results of note head duration and
note duration. Specifically, we use three types as the duration of the note head: “Black”
corresponds to a quarter (or shorter) note, “Half” corresponds to a half note, and “Whole”
corresponds to a whole note. The types of note duration are divided into two categories:
dotted notes and non-dotted notes, which can be used to judge the existence of dotted
notes. The strategy for determining the type of note is as follows: when the note duration
matches the note head duration, the note type is the same as the output of the network;
when they do not match, we consider the final note type as a combination of the note head
duration and the dotted note.
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5th line of staff

1st line of staff

Staff Feature Staff Position

Score Image Detection & note head 
Classification

Note Detection & Classification

Staff Detection

Staff Position

Note head 
Position

Note head 
Location

Key Signatures 
& Accidentals

Note Pitch

Note Duration
Classification

Note head Duration
Classification

Note Type

Note Type Determination

Note Pitch Determination(a)

(b)

(c)

(d)

Figure 8. Overview of notation assembly.

4. Dataset and Experiment
4.1. Dataset

PrIMuS. The PrIMuS [3] dataset is a monophonic printed music dataset for sequence
recognition, which contains 87,678 monodic single-staff real scores in common Western
notation. Five different formats are used to describe each record: a rendered PNG image,
a MIDI file, an MEI file, and two label files in custom encodings (semantic encoding and
agnostic encoding). We selected 15,062 scores from PrIMuS as a part of the training set
for the non-photographic images. For object detection, every 10 images are concatenated
vertically into one image, and each musical symbol in the music sheets is labeled with
LabelMe software.

DeepScoresV2. The DeepScoresV2 dataset is the current mainstream printed dataset
for music object detection [47]. It contains 255,386 images, 135 category annotations, and a
total of 151 million musical symbols. The DeepScoreV2 dataset provides bounding boxes
for 135 different classes of musical symbols, along with pitch and type information for
notes. Additionally, DeepScoresV2 has a dense version, including 1714 of the most diverse
music score images in total. We choose the dense version as a part of the training set.

CPMS (https://github.com/itec-hust/CPMS (accessed on 15 August 2023)). The Cam-
era Printed Music Staves (CPMS) dataset is a monophonic printed single-staff music score
dataset, differing from PrIMuS and CameraPrIMuS in that we provide photos captured by
mobile phone cameras under various angles and lighting conditions in realistic scenarios
for each record. In the CPMS, the training set consists of 910 lines containing 31,262 symbols,
whereas the test set consists of 600 lines containing 15,542 symbols. The training set and
the test set have different sources: the training set is sourced from the musescore-dataset
(https://github.com/Xmader/musescore-dataset (accessed on 15 August 2023)) and the
test set is sourced from the public repertoire of the 2020 sight-singing exam of the Wuhan
Conservatory of Music in China (http://www.hbea.edu.cn/html/2019-09/12349.html (ac-
cessed on 15 August 2023)). Specifically, the training set is obtained by taking photos of
A4-sized printed music scores, whereas the test set is sourced from real books. All the sheet
music photos were captured from (1) flat (Figure 9a), (2) bend (Figure 9b), (3) keystone
distortion (Figure 9c), and (4) uneven light distribution (Figure 9d) scenes that may appear
in real books. For each image in the CPMS dataset, we labeled the position of all the
symbols and provided a manually cropped PNG file and a semantic encoding file for each
line, similar to the PrIMuS dataset. It means that the CPMS is available for both object
detection and sequence recognition. We choose the test set of CPMS as the test set of the
experiments behind because there is no other public OMR dataset that is also available for

https://github.com/itec-hust/CPMS
https://github.com/Xmader/musescore-dataset
http://www.hbea.edu.cn/html/2019-09/12349.html
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both object detection and sequence recognition. That is also one of the reasons why we
built the CPMS.

(a) (b) (c) (d)

Figure 9. Typical images from CPMS. (a) An example of flat sheets. (b) Image with curved lines.
(c) Image with keystone distortion. (d) Image with uneven light distribution.

4.2. Evaluation Metric

We use the following three evaluation metrics to evaluate our method: pitch accuracy,
type accuracy, and note accuracy. Their definitions are as follows:

1. Pitch Accuracy: the proportion of notes whose pitch is correctly predicted to the total
number of notes.

2. Type Accuracy: the proportion of notes whose type is correctly predicted to the total
number of notes.

3. Note Accuracy: the proportion of notes whose pitch as well as type is correctly predicted
to the total number of notes.

For each note, when the predicted result is consistent with the corresponding ground
truth, set it as a positive sample (PS), otherwise set it as a negative sample (NS). The accu-
racy is calculated as follows:

Accurary =
PS

PS + NS
(4)

4.3. Implementation Details

We train the stave detection model, musical symbol detection model, and note type
classification model with the following methods:

To train the stave detection model, we utilized an NVIDIA GTX 1080 GPU and
employed the stochastic gradient descent (SGD) optimizer. The learning rate was set
to 0.01, momentum to 0.9, and weight decay to 0.0005. Each iteration involved processing a
batch of 16 images, and the total number of training epochs was set to 300. Additionally,
we applied a learning rate warm-up strategy during the first five training epochs.

We trained the musical symbol detection model with two NVIDIA GTX 1080 GPUs
and the optimization algorithm of SGD. The learning rate was set to 0.005, the momentum
was set to 0.9, and the weight decay was set to 0.0001. Each iteration processed a batch of
size 2, and we employed a learning rate decay strategy based on batches. The total number
of training epochs was set to 1000, with learning rate adjustments made at the 500th and
750th epochs.

The note duration classification network was trained with an NVIDIA GTX 1080 GPU.
We employed the SGD optimizer with a learning rate of 0.1, momentum of 0.9, and weight
decay of 0.0001. The learning rate was reduced with a cosine annealing strategy, and the
total number of training epochs was set to 120.

4.4. Experiment
4.4.1. Factors Affecting Pitch Accuracy

The purpose of this experiment is to analyze the impact of the stave detection model
and the note head position on the accuracy of note pitch. We select the comb filter-based
method proposed by Tsai et al. [39] as a baseline, which is a representative traditional
method to obtain the position of note heads. With the training set of the DeepScoreV2
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dataset and test set of the CPMS dataset, we design four experimental groups: (1) comb
filter-based method; (2) comb filter-based method + note head position; (3) stave detection
model; (4) stave detection model + note head position. The note head position is obtained
by the musical symbol detection model.

4.4.2. Robustness Comparison

The purpose of this experiment is to figure out the impact of the photographic training
data on detection accuracy. We select the CRNN-CTC [3] as a comparison for its high
accuracy on non-photographic score images and representativeness of current open-source
OMR sequence methods. In particular, we applied the preprocessing method described
in the first step of Section 3.2 to remove background lighting from the input images. We
compare the detection accuracy of our method and the CRNN-CTC model on the CPMS
test set after being trained on two different combinations of datasets: one was only the
PrIMuS dataset, and the other is a mixture of both the PrIMuS and CPMS datasets. Note
that the PrIMuS dataset consists of printed staves and does not have any photographic
features. We use these two datasets to compare the robustness of these two methods.

4.4.3. Data Dependence Proof

This experiment aims to argue the effect of the data dependence of our method. We
compare the detection accuracy of our method on the CPMS test set after being trained on
three different datasets, to clarify whether our method can get rid of the dependence on
the photographic training set. The first two datasets are the same as the last experiment,
and the third dataset is DeepScoresV2, which does not have any photographic features but
has a much larger amount of scores than the other two.

5. Results and Discussion
5.1. Experimental Results

The results of Experiment 1 are shown in Table 1; both the stave detection model
and the note head position significantly improve the note pitch accuracy. The note head
position improves the note pitch accuracy of both the comb filter-based method and the
stave detection model, which indicates that the relative position of note heads on the stave
is an important factor affecting note pitch accuracy. Moreover, the note pitch accuracy
of the stave detection model without note head position is higher than that of the comb
filter-based method with note head position. The stave detection model with note head
position achieves the highest accuracy of 99.23%. This demonstrates that our stave detection
model can effectively detect the position of staff lines and works well in conjunction with
the note head position.

Table 1. Pitch accuracy comparison between different methods.

Method Note Pitch Accuracy on CPMS(%)

Comb filter-based method 85.54

Comb filter-based method + note head position 91.23

Stave detection model 95.49

Stave detection model + note head position 99.23

The results of Experiment 2 are shown in Table 2. It is clear that our method performs
much better than the CRNN-CTC on recognition in camera-based scenarios when the
training set consists of only the PrIMuS dataset. Even when the CPMS dataset, which in-
cludes sheet music photos, was added to the training set, our method still comprehensively
outperformed the baseline. This indicates that our method is more robust and much better
at learning photographic features on the training data than CRNN-CTC.
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Table 2. Accuracy comparison between our method and the CRNN-CTC model.

Method Training Set
Accuracy on CPMS(%)

Pitch Type Note

CRNN-CTC
PrIMuS

44.23 51.58 37.42

Ours 89.77 94.46 85.17

CRNN-CTC
PrIMuS + CPMS training set

95.07 96.74 91.95

Ours 97.10 97.15 94.40

The results of Experiment 3 are shown in Table 3. After training on DeepScoresV2,
which does not contain sheet music photos, our method achieves higher pitch accuracy and
note accuracy compared to the mixed dataset training of the PrIMuS and CPMS datasets,
whereas the type accuracy is slightly lower than the best one. This indicates that our
method is able to handle the complexities of sheet music photos in real-world scenarios
through training on non-photographic data, demonstrating low data dependency and
high robustness.

Table 3. Accuracy comparison of our method on different datasets.

Method Training Set
Accuracy on CPMS(%)

Pitch Type Note

Ours

PrIMuS 89.77 94.46 85.17

PrIMuS + CPMS training set 97.10 97.15 94.40

DeepScoresV2 99.23 96.87 96.29

5.2. Distribution of Errors

Since the papers in books on camera-based realistic scenarios tend to have a great
impact on the curvature of staff lines, we manually divide the test set of the CPMS dataset
into 359 flat scores and 241 curved scores based on the degree of curvature.

The pitch accuracy comparison in Figure 10 shows that our method performs similarly
for flat and curved scores, whereas the CRNN-CTC performs significantly better on flat
scores than curved scores. This indicates that the effect of stave curvature on our method is
much less than that on CRNN-CTC, which means that our stave-aware method effectively
handles staff distortion and is more robust.

Our Method CRNN-CTC

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00% 99.43%
99.00%

97.78%

91.83%

Flat scores Curved scores

Figure 10. Pitch accuracy comparison histogram for different bending levels.

The comparison of type accuracy is presented in Figure 11. Both methods achieve
similar type accuracy for both sets of scores. Moreover, the type accuracy of both methods
is slightly higher for straight music scores than for curved music scores, suggesting that the
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effect of music score curvature on type accuracy is minimal. This is because the curvature
of staves primarily affects the position (pitch) of the notes rather than their shape (type).

Our Method CRNN-CTC

92.00%

93.00%

94.00%

95.00%

96.00%

97.00%

98.00%

97.31%
96.98%

97.26%
96.91%

Flat scores Curved scores

Figure 11. Type accuracy comparison histogram for different bending levels.

6. Conclusions

In this paper, we present a stave-aware OMR method based on object detection that
aims to recognize sheet music photos captured by mobile phone cameras in real-world
scenarios. Our method allows us to split curved stave into multiple segments by predicting
the positions of staves and determine the pitch of notes by combining stave positions
and note head positions, effectively improving the pitch accuracy on sheet music photos.
Our method consists of two parts: symbol detection and notation assembly. Symbol
detection is applied to locate note heads and classify note head duration, whereas notation
assembly is used to determine note pitch and note type. Our method achieves higher
accuracy and better robustness than the CRNN-CTC model in recognizing sheet music
photos in real-world scenarios, particularly in handling the common issue of curved staves.
Additionally, our method demonstrates less data dependence on training sets composed of
sheet music photos.

Polyphonic music score recognition is an essential part of the OMR field. Currently,
our work is limited to monophonic scores. In our future work, we intend to extend the
application of our method to recognize more complex sheet music, including polyphonic
scores and even piano scores. We are also going to expand our dataset with more photos of
monophonic scores and polyphonic scores in various scenarios.
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